2101112 UNIVERSITY

Racial Differences in the Boston Naming Test among Persons with Aphasia: Disparity or Diagnostic Inaccuracy () RUSH UNIVERSITY Charles Ellis, PhD CCC-SLP & Richard K. Peach CCC-SLP

INTRODUCTION

- Each year 100,000 individuals experience aphasia, a higher order disturbance of language primarily caused by stroke.¹
- Aphasia even in its mildest form can significantly impact communication ability (comprehension, expression, reading, writing).²
- Although racial-ethnic differences have been observed in general stroke outcomes the same association has not been reported in studies of aphasia.³⁻⁵
- Few studies of aphasia outcomes have considered potential racial-ethnic differences in aphasia outcomes.
- The **objective** of this study was to examine racial differences in aphasia assessment scores using the Boston Naming Test.

METHODS

- This study is a secondary data analysis.
- Data for this study were obtained from AphasiaBank, a database designed for the study of aphasia outcomes.⁶
- AphasiaBank includes a) speech samples, b) picture descriptions, c) story narratives, d) procedural discourse samples, e) and standardized test results (Boston Naming Test, Verb Naming Test, Western Aphasia Battery, etc).
- The primary aphasia outcome of interest in this study was the 15-item Boston Naming Test score.
- Sample: 42 Blacks and 339 Whites were included in the analysis.
- Statistical Analysis: A Generalized linear model (GLM) was utilized to examine racial differences in BNT scores controlling for age, educational level, duration of aphasia and years of treatment for aphasia.

RESULTS

Table 1. Demog	raphic Charact	eristics of Samp	le of PWA	
	Total (N=381)	White (N=339)	Black (N=42)	p-value
Age (Mean/SD)	62.8 (12.0)	63.8 (11.6)	54.7 (12.3)	<.001
Education (Mean/SD)	15.5 (2.9)	15.7 (2.9)	14.1 (1.9)	<.001
Gender # male (%)	237 (61.1)	216 (62.4)	21 (50.0)	.119
Aphasia Duration (Mean/SD)	5.4 (4.9)	5.2 (4.7)	6.6 (5.9)	.151
WAB-R AQ (Mean/SD)	69.2 (20.7)	69.7 (21.0)	65.1 (17.6)	.118
Aphasia Type # (%)				
Anomic	127 (32.7)	116 (33.5)	11 (26.2)	.807
• Broca	119 (30.7)	101 (29.2)	18 (42.9)	
Wernicke	25 (6.4)	23 (6.6)	2 (4.8)	
 Global 	21 (5.4)	19 (5.5)	2 (4.8)	
 Conduction 	40 (10.3)	35 (10.1)	5 (11.9)	
 Transcortical 	17 (4.8)	16 (5.2)	1 (2.4)	
 Other 	38 (9.0)	36 (9.3)	3 (7.1)	
Aphasia Severity # (%)				.306
Severe Aphasia	26 (6.7)	24 (7.0)	2 (4.8)	
 Moderate Aphasia 	103 (26.6)	88 (25.5)	15 (35.7)	
Mild Aphasia	22 (58.7)	203 (58.8)	24 (57.1)	
 No Aphasia 	31 (8.0)	30 (8.7)	1 (2.4)	
Table 2. Rac	ial Comparison	of BNT		
			•	

Whites	
6.53	

Mean BNT Score

**GLM model showed significant racial differences persisted in BNT scores (p=.002) after controlling for age, educational level, duration of aphasia and years of treatment for aphasia.

DISCUSSION

REFERENCES

1.	Ellis C, Di United Sta
2.	Armstrone argument
3.	Centers for and white Mortal Wi
4.	Ellis C, Bo difference Phys Meo
5.	Ellis C, Hy Lackland rehabilitat ID 95074
6.	Forbes M clinicians.
7.	Kimbarow demograp Boston Na
8.	Gasquoin Neuropsy

CONTACT

Disorders

Blacks	p-value
4.80	0.00

After controlling for age, educational level, duration of aphasia and years of treatment for aphasia Blacks with aphasia achieved lower scores on the 15-item BNT when compared to Whites.

Previous studies using the Boston Naming Test suggests Blacks score lower than Whites with similar education.⁷

• It is unclear if the observed differences represent a true disparity in performance or the diagnostic inaccuracy of the BNT when assessing Blacks with aphasia.

Some suggest race-based norms may be needed to a need for race-based norms to reduce the likelihood of racial-ethnic minorities with language and cognitive issued being misdiagnosed.⁸

> ismuke C, Edwards KK. Longitudinal trends in aphasia in the ates. NeuroRehabilitation, 2010. 27(4): p. 327-33.

ng E, Fox S, Wilkinson R. Mild aphasia: is this the place for an ? Am J Speech Lang Pathol. 2013; 22(2):S268-78.

for Disease C, Prevention. Differences in disability among black stroke survivors--United States, 2000-2001. MMWR Morb /kly Rep 2005;54(1):3-6.

Boan AD, Turan TN, Ozark S, Bachman D, Lackland, D. Racial es in post-stroke rehabilitation and functional outcomes. Arch d Rehabil. 2015; 96: 84-90.

Iyacinth HI, Beckett J, Feng W, Chimowitz M, Ovbiagele B, D, Adams R. Racial-ethnic differences in post-stroke ation outcomes. Stroke Research and Treatment. 2014. Article 6, 12 pages, 2014. doi:10.1155/2014/950746.

IM, Fromm D, MacWhinney. AphasiaBank: A resource for Semin Speech Lang. 2012; 33(30):217-222...

w ML, Vangel SJ and Lichenberg, PA. The influence of phic variables on normal elderly subjects' performance on the Jaming Test. Clinical Aphasiology. 1996; 24:135-144.

ne PG. Race-norming of neuropsychological tests. ychol Rev. 2009; 19: 250-262.

Charles Ellis, PhD CCC-SLP

Communication Equity and Outcomes Lab Department of Communication Sciences and

College of Allied Health Sciences East Carolina University Greenville, North Carolina 27858 ellisc14@ecu.edu