

Function Words in Narrative Discourse in Aphasia

Hana Kim, Stephen Kintz, & Heather Harris Wright

Aging & Adult Language Disorders Lab Department of Communication Sciences and Disorders College of Allied Health Sciences East Carolina University Greenville, North Carolina 27858

Contact information: Hana Kim kimha15@students.ecu.edu

INTRODUCTION

Function Words

Function words are generally regarded as low imageability which negatively affects the speech production (Bird, Franklin & Howard, 2001).

For language acquisition, it is followed by verb production with a rise in the acquisition of grammatical morphology (Bates et al., 1991).

 fMRI studies show that function words and content words recruit different brain regions during processing (Friederici, Opitz, & Von Cramon, 2000; Nobre et al., 1997

 Limited attention to paid performance of function word retrieval in PWA

Core Lexicon

Lexicon-based analysis is time-efficient and highly reliable because clinicians only have to count how many lexical items are present (McWhinney, Fromm, Holland, Forbes & Wright, 2010)

Based on previous research, the core lexicon measure was able to differentiate PWA's impaired lexical access from healthy controls (Dalton & Richardson, 2015)

The core lexicon list for function words were hierarchically created depending on word frequency

PURPOSE OF THE STUDY

- Is function word production of PWA significantly correlated with WAB-R AQ score?
- Is there an underlying relationship among the percentage of core lexical items produced (verbs, nouns, adjectives, adverbs, and function words) by PWA?
- What would be the best combination of five core lexicon items to predict WAB-R AQ score?

PARTICIPANTS

470 control participants (252 female, 218 male) & 11 aphasia participants

 Normal controls were divided into seven age groups (20s, 30s, 40s, 50s, 60s, 70s, and 80s)

PARTICIPANTS

11 Aphasia Participants

	Age	Gender	Edu	AQ	Aphasia Type
01A	65	М	18	76.3	Conduction
03A	73	М	12	85.2	Anomic
04A	84	F	12	62.6	Conduction
05A	55	М	14	57.6	Broca's
06A	66	F	14	56.3	Broca's
07A	34	F	14	90.7	Anomic
09A	38	F	14	57.7	Broca's
10A	62	F	20	61.3	Broca's
11A	72	М	12	64.9	Transcortical Motor
12A	65	F	11	89.4	Anomic
13A	65	М	14	54.4	Broca's

* Edu = Education; AQ = Aphasia Quotient

METHOD

• Stimuli: 2 wordless picture book

 To create the core lexicon list, the 25 most commonly used words were extracted from the transcripts of the normative samples with The Computerized Language Analysis (CLAN, MacWhinney, 2000)

- An example of the core lexicon list of 70 age group
 - ✓ If PWAs produced any lemmas on any of the core lexicon lists, they would receive a point regardless of how many times the lemma form may have been used.

1	the	1
2	and	
3	they	
4	a	V
5	of	
6	he	
7	in	
8	be	
9	she	
	their	
	with	
12	it	V
13	not	
14	on	
	his	V
	one	
	out	V
	all	
	to	
	him	
21		
22	them	
	for	1
	that	
	up	
Total		6/25

RESULTS

 Percent agreement with the core lexicon for Function Words

Function Words						
	Age Group	GDC (%)	Picnic (%)			
01A	60s	60	72			
03A	70s	80	72			
04A	80s	92	76			
05A	50s	28	28			
06A	60s	N/A	16			
07A	30s	76	72			
09A	30s	20	24			
10A	60s	44	16			
11A	70s	36	8			
12A	60s	76	88			
13A	60s	16	16			

Stenwise Regression for GDC

Stepwise Regression for ODC				
		b	SE b	β
Model 1	Constant	49.355	4.987	
	Verbs	.771	.163	.859**
Model 2	Constant	60.746	3.100	
	Verbs	.854	.077	.952**
	Adverbs	655	.119	471**

- ✓ Sig. results for Model 1 & Model 2 (p < .001)
- $\checkmark R^2 = .704 \rightarrow R^2 = .937$

- Spearman's correlation coefficient between AQ scores and function words
- ✓ For *GDC*, Sig. positive correlation between AQ and function words, $r_s = .742$, p<.05
- ✓ For *Picnic*, Sig. positive correlation between AQ and function words, $r_s = .620$, p < .05

Core Lexicon Variable	Factor 1	Factor 2
Adjectives	1.032	
Adverbs	.553	
Nouns		.931
Function Words		.718
Verbs		.641

- ✓ A 2-factor solution accounts for 81% of the total variance.
- ✓ Factor 1: adjectives and adverbs
- ✓ Factor 2: verbs, nouns, and function words
- Stepwise Regression for Picnic

		b	SE b	β
Model 1	Constant	49.370	3.670	
	Verbs	.821	.132	.901**

- ✓ Sig. relation b/w AQs and core verbs (p < .001)
- \checkmark F(1,9) = 38.614, p < .001.
- $\checkmark R^2 = .811$
 - ✓ Predicted AOs = .821 x Verb + 49.370

DISCUSSION

- The core lexicon list for function words were hierarchically created depending on word frequency and possibly a more reliable method for capturing aphasia severity.
- Function words may be useful for quantifying severity of aphasia.
- Although verbs, nouns, adjectives, and adverbs are linguistically considered content words, verbs and nouns were loaded on a factor together with function words, but not with adjectives and adverbs.
 - Factor 1 seems to reflect the nature of the modifier that stands alongside nouns and/or verbs.
 - Factor 2 appears that function words may lie somewhere between nouns and verbs.
- The final model including both verbs and adverbs significantly improves our ability to predict the
 aphasia severity.
- Treatment and evaluation of modifiers deserve to be taken into account as distinct from nouns and verbs.