Speech-timing and episodic analyses of the story of Cinderella: Implications for aphasia recovery

Gayle DeDe & Christos Salis

Sciences

Background – Our primary focus

A group of people who in the aphasiological/stroke literature have been described under different labels – some examples below:

"Post-stroke cognitive impairment" (Sun et al., 2014)

"Latent aphasia" (Boller & Vignolo, 1966; Heilburn, 1958; Pichot, 1955; Vallar et al., 1988) "People who have become non aphasic" (Netos & Santos, 2012) "Not aphasic by WAB" (Dalton & Richardson, 2015; Fromm et al., 2017)

The central question in this literature domain is the concept of pre-stroke "recovery" of verbal cognitive abilities, either implicitly or explicitly

Background – Measuring recovery as "speed/rate of information processing"

Range of measures:

- Self-perceptions of speed in real-life tasks (Gerritsen et al., 2003)
- Stop-watch in language tasks (Netos & Santos, 2012)
- Word fluency standard, pen-and-paper (Kertesz, 1982)
- "Guestimate" number and duration of pauses (Schlenck et al., 1989)
- Speech rate of spoken narratives (words per minute) (Fromm et al., 2017)

Background – Fromm et al. (2017) – Speech rate

Participants: Not aphasic by WAB (plus controls, plus anomic)

Measure: Speech rate of Cinderella narratives (as words per minute)

Main finding: Lower speech rate in not aphasic by WAB as compared to controls

Background – Speech rate and its components

Speech rate includes (among other behaviours):

The bottom line: Speech rate is a coarse-grained, though useful, measure of information transmission rate

Background – Beyond speech rate, more fine-grained measures

Articulation rate includes:

- 1) Words, i.e., information
- 2) Revisions
- 3) Fillers
- 4) Filled pauses/disfluencies
- 5) Silent pauses

PURPOSE: To examine overt information and editing behaviours

Word rate includes:

- 1) Words, i.e., information
- 2) Revisions
- 3) Fillers
- 4) Filled pauses/disfluencies
- 5) Silent pauses

PURPOSE: To examine **pure information rate** without formulation and editing behaviours

Background – Examining episodes as formulation

Episodes are the main sequences of events in the story of Cinderella (Stark, 2010)

The ordering of the episodes is fixed for certain events; however, it can also vary with regard to other episodes

Relevance to aphasia recovery: Anomia may prevent retrieval and realization of semantic memory content that would make an episode complete

Background – Research questions

- 1. If we were to "peel" speech rate and isolate some of its components, what can we learn about aphasia recovery, if we compared recovered and control participants?
- 2. How do people with different levels of language ability (recovered, controls, aphasia) cope with spoken narrative demands (episodic organisation)?
- 3. How do standard cognitive-linguistic measures (WAB AQ, verbal STM span) correlate with our measures of rate and episodic organisation?

Method - Participants

30 Participants from the AphasiaBank (MacWhinney et al., 2011)

Recovered: 10 people who had recovered from aphasia, i.e., \geq 93.8 on AQ WAB

Aphasia: 10 people with aphasia, ≤ 93.8 (all "anomic")

Control: 10 neurotypical

Method – Speech-timing analyses

Cinderella narratives (first narration) analysed with Praat (Boersma & Weenink, 2016)

Semi-automated identification and segmentation of:

- silent pauses (≥ 200 ms) (Mack et al., 2016; Peach & Coelho, 2016; Salis, Martin et al., 2018)
- revisions
- disfluencies
- word segments

All these behaviours were coded and transcribed (where applicable)

Method – Episodic analyses

Episodic structure and terms (Stark, 2010)	Our codes	Summary of information conveyed
Setting/Orientation	RO	Cinderella's domestic situation
Episode 1	INV	Invitation to the Prince's ball
Episode 2a	PAL	Arrival of stepmother and stepsisters at the ball
Episode 2b	FAI	The miracle: Fairy godmother meets Cinderella
Episode 3	CAP	Cinderella's arrival and encounter with Prince
Episode 4	TLM	Clock strikes 12 and the magic wears off
Episode 5	SOL	Prince's search and shoe fittings
Coda	HAP	The marriage and the happily ever after

Method – Praat illustration

Method – Base measures

• **Total duration** of narratives (from speech onset after investigator's instructions to the very end of each narrative)

• Durations of:

word segments (either in isolation or connected)

silent pauses

filled pauses (e.g., "hm", "er")

fillers and revisions (e.g., "you know what I mean")

• Number of words per narrative

Method – Rate, speech-timing measures

Speech rate: ALL speech segments, **PLUS** filled pauses and revisions, **PLUS** silent pauses

Articulation rate: ALL speech segments, **PLUS** filled pauses and revisions, but **EXCLUDING** silent pauses

Word rate: ALL speech segments, EXCLUDING filled pauses, revisions, and silent pauses

Note: All these measures expressed as words per second

Method – Episodic structure measures

Episode Recurrence Index :

How often a previous episode recurs in a person's narrative

Episode Omission Index:

How many episodes are omitted from a person's narrative

Note: Both measures expressed as numbers of episodes

Results – Group characteristics

	Aphasia	Recovered	Controls	Statistical comparisons
Age	58.5	61.5	60.3	ns
Education	16.0	15.9	15.2	ns
Gender	7 female 3 male	7 female 3 male	6 female 4 male	ns
Time Post-onset	5.8	5.5	-	ns
STM (word span)	4	4	-	ns
Aphasia Quotient	87.2	97.2	-	<i>p</i> < .001

Results – Number of words (base measure)

K-W = 9.90, p = .01

Results - Pause duration (base measure)

K-W = 15.36, p = .00

Note: Only pause duration significantly differed among groups; other base durational measures did not (e.g., total narrative duration)

Results – <u>Speech</u> rate (i.e., information, editing, formulation)

Results – <u>Articulation</u> rate (i.e., information, editing)

Results – <u>Word</u> rate (i.e., information only)

K-W = 8.77, p =.01

Results – Episode <u>Recurrence</u> Index

K-W = .98, p = .61

Results – Episode <u>Omission</u> Index

Results - Correlations

	Speech Rate	Articulation Rate	Word Rate	Episode Recurrence	Episode Omission
WAB AQ	.11	.05	03	.10	<mark>59*</mark>
STM	.29	.08	.01	.13	<mark>.61*</mark>

* p < .05

Summary of (some) measures

	Aphasia- Recovered	Aphasia- Controls	Recovered- Controls
Number of words	\checkmark	\checkmark	-
Pause durations	—	\checkmark	\checkmark
Speech rate		\checkmark	<mark>√</mark>
Articulation rate	\checkmark	\checkmark	
Word rate		\checkmark	-

Discussion – Recovered group differed from controls in formulation time, not information or editing time

- Speech rate differed between recovered and controls, a similar finding to Fromm et al. (2017)
- Pause durations differed between recovered and controls
- Articulation rate and word rate did not differ between recovered and controls
- Considered together, these findings indicate that the recovered group differed from controls in terms of **covert formulation time**

Discussion – What are the sources of the differences?

Processing speed impairment, even though the task was not "speeded"

Slower in "thinking for speaking" (Marshall & Cairns, 2005)

Executive functioning demands: Formulation, monitoring

Other reasons: Fewer main concepts, subtle TTR differences (Fromm et al., 2017)

Discussion – Recovered and controls similar in episodic structure

• Episode Recurrence and Episode Omission Indices similar between recovered and controls

• Overall, episodic structure was similar in recovered and controls

Discussion – Episodes in aphasia and controls

- PWA differed from controls only in terms of episode omissions, not in episode recurrence
- Memory and/or language? (Pritchard, Dipper & Salis, in preparation)

• Executive functioning deficit (Murray, 2017)

Discussion - Correlations

- Rate measures did not correlate, neither with AQ, nor with STM
- Different underlying constructs: Perhaps processing speed associated with formulation
- Episode omission correlated with AQ and STM
- Direction of correlations was different

Discussion – Overview of our protocol

- Captures standard levels of linguistic description in terms of accuracy (Rochon et al., 2000; Saffran et al., 1989; Thompson, 1995)
- Also captures and integrates linguistic description, rate of production at the following levels:
- Episodes, the focus of today's presentation
- Sentences
- Words
- D(i/y)sfluencies, offering important insights into monitoring and editing mechanisms, especially when combined with rate measures

More to be data to be extracted!

Acknowledgements

- Marisa Simon
- Kelly Doyle
- Molly Henagan
- Jee Eun Sung

• AphasiaBank: Brian, Davida, Margaret, Audrey, & all other contributors to data