

Automatic discourse analysis in aphasia

Sara Andreetta | SISSA, International School for Advanced Studies, Trieste (Italy)

sara.andreetta@sissa.it

Introduction

- People with aphasia (PWA) experience difficulties in daily communication
- Language disorder can affect different levels of linguistic processing
- It is important to assess their spared linguistic skills with a thourough method that takes into account all linguistic levels
- Recent interest towards **discourse** (spontaneous speech)
- Evidence showed that spontaneous speech can provide more information than classical standardized tests for aphasia
- Need of automatization for analysis to guarantee replicability and precision for future studies
- AphasiaBank: international shared database about spontaneous speech in persons with aphasia (MacWhinney et al., 2011)

Purpose

- To contribute to AphasiaBank with data from Italian speaking PWA
- To assess the linguistic skills of a group of persons with fluent aphasia in spontaneous speech with a multi-level approach (Marini et al., 2011)
- Check the clinical implications of the discourse evaluation by correlating spontaneous speech measures with measures from a classical standardized test for aphasia: Aachener Aphasie Test (AAT, Luzzatti et al.,1991)

Materials and Methods

PARTICIPANTS:

- 11 people with fluent aphasia
- Italian native speakers
- Mean age: 64,72 (st.dev. = 9,24)
- Neurological stability

MATERIALS:

- AphasiaBank protocol (free speech samples, picture descriptions, story narrative, procedural discourse, Verb Naming Test)
- AAT Test (Aachener Aphasie Test, Luzzatti et al., 1991)
- Three extra pictures for storytelling (one single picture, two cartoon stories)

METHODS

- Videorecording of conversations
- Transcriptions with CHAT format (Codes for the Human Analysis of Transcripts. Macwhinney, 2000)

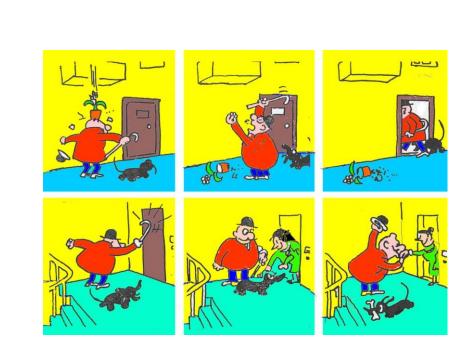


Fig. 2: Example of extra storytelling: the Flower Pot (Huber and Gleber, 1982)

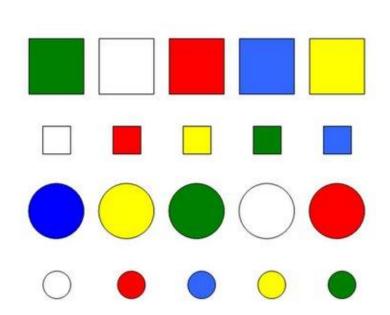
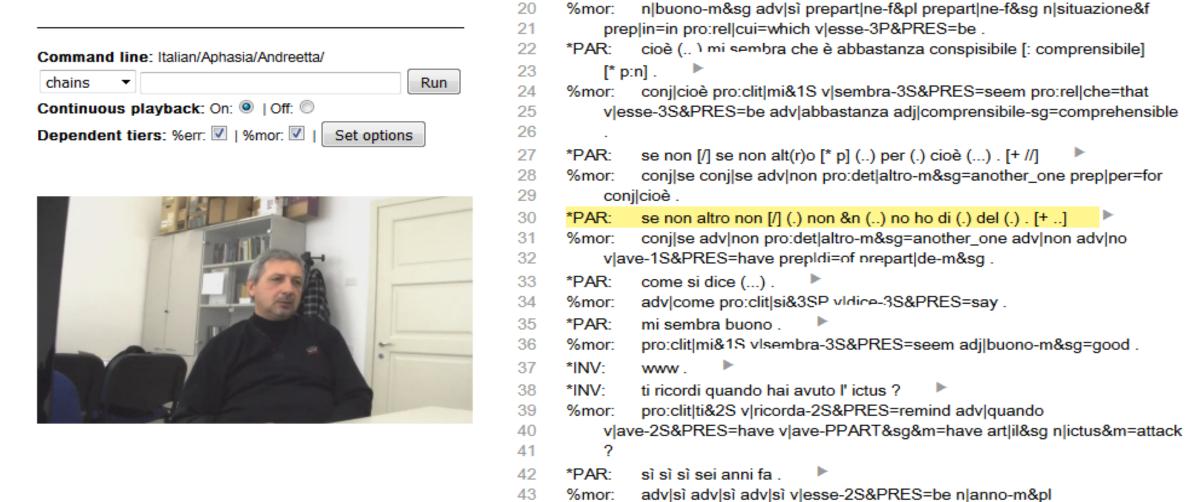



Fig. 3: Example of a subtest from AAT: Token Test

Data analysis

*PAR: buono (.) sì (.) nelle (.) nella si^tuazione in cui sono .

 Automatic analysis with CLAN (Computerized Language Analysis. MacWhinney, 2000)

2. Discourse analysis focusing on four main aspects of linguistic processing (Marini et al., 2011):

PRODUCTIVITY	MICRO-LINGUISTIC ANALYSIS
LEXICAL AND GRAMMATICAL PROCESSING	
NARRATIVE ORGANIZATION	NAACDO LINICIJICTIO ANIALVOIC
INFORMATIVENESS	MACRO-LINGUISTIC ANALYSIS

3. Bivariate Pearson product-moment correlation between AAT subtests and discourse measures

Results

Selected results of correlations between AAT subtests and discourse measures.

	LEXICAL INFORM.	PHON. ERRORS	SEMANTIC PARAPH.	GLOB. COHER.ERRORS	SEM. UNREL. UTTERANCES	TANGENTIAL UTTERANCES
AAT REPETITION	.41	03	36	45	30	60
AAT NAMING	.65	.11	57	70	56	68
AAT COMPREHENSION	.56	.22	52	65	59	67
AAT TOKEN	36	31	.10	.46	.49	.47
AAT COMMUNICATIVE	.45	69	62	33	.12	38
BEHAVIOR						
AAT ARTICUL. AND	13	35	.19	.37	.13	.18
PROSODY						
AAT AUTOMATIC	.80	30	66	80	29	45
LANGUAGE						
AAT SEMANTIC	.70	60	85	74	27	57
STRUCTURE						
AAT PHON. STRUCTURE	.00	59	20	.07	.12	.05
AAT SYNTACTIC	.52	19	40	56	32	15
STRUCTURE						
AAT WRITTEN	.54	43	73	57	10	56

Table 1: Pearson's values.
Values b/w .10 and .29 = small; b/w .30 and .49 = medium; b/w .50 and 1.0 = large (Cohen, 1988)

CORRELATIONS BETWEEN NARRATIVE MEASURES AND AAT ASSESSMENT

■ LEXICAL INFORMATIVENESS ■ PHON. ERRORS ■ SEMANTIC PARAPH. ■ GLOB. COHER.ERRORS ■ SEM. UNREL. UTTERANCES ■ TANGENTIAL UTTERANCES

Conclusions

- Discourse analysis provides information about PWA's linguistic skills that we don't find in AAT (e.g. Informativeness)
- Discourse analysis has a remarkable value even in a theoretical framework, providing researchers and clinicians a window to observe how the linguistic levels interact on the bases of quantitative and pragmatic measures
- Correlations with a classical standardized test confirmed the validity of spontaneous speech assessment
- In the future: need to implement the Italian sample for AphasiaBank

References

Table 2: graphical representation of

Pearson's values, showing the distribution between negative and

positive correlations.

- Huber, W., and Gleber, J. (1982). Linguistic and non-linguistic
- processing of narratives in aphasia. Brain and Language, 16, 1-18.
 Luzzatti, C., Willems, K., and DeBleser, R. (1991). Aachener Aphasie Test (Versione italiana). Organizzazioni Speciali, Firenze, Italy.
 MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing
- Talm. 3rd Edition. Lawrence Erlbaum Associates, Mahwah (NJ).
 MacWhinney, B., Fromm, D., Forbes, M., and Holland, A. (2011).
 AphasiaBank: Methods for studying discourse. Aphasiology, 25, 11,
- Marini, A, Andreetta, S., Del Tin, S., and Carlomagno, S. (2011a). A multi-level approach to the analysis of narrative language in aphasia. Aphasiology, 25, 11, 1372–1392. Cohen, J. (1988). Statistical power
- Aphasiology, 25, 11, 1372–1392. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum, Hillsdale, NJ. https://aphasia.talkbank.org/
- https://aphasia.talkbank.org/