

Dimensions of spontaneous speech in aphasia: A factor analysis (JSLHR, in press)

JEAN K. GORDON, PHD, CCC-SLP COMMUNICATION SCIENCES & DISORDERS UNIVERSITY OF IOWA

- partially supported by funding from the ASH Foundation (New Century Scholars Grant, 2017)
- presented to the Academy of Aphasia, online, October 18-20, 2020
- currently in press in JSLHR

2. Motivation

- Spontaneous speech tasks are critically important for the clinical diagnosis of aphasia, both because of their linguistic complexity and their ecological validity.
- However, their linguistic complexity also makes performance highly variable, both across and within aphasia subtypes.

Aphasia syndromes are criticized for their variability—is there a better basis for classification?

The current study identified factors underlying spontaneous speech in aphasia, and investigated their relationship to traditionally defined aphasia subtypes via linear discriminant and latent profile analyses.

3. 19 microlinguistic variables...

<u>Narrative-level measures:</u>

1) total utterances; 2) speech rate (WpM)

<u>Utterance-level measures:</u>

- 3) MLU; 4) sentence complexity;
- 5) embeddings; 6) grammatical errors;
- 7) repairs; 8) circumlocution/empty speech;
- 9) jargon

Word-level measures:

10) MATTR; 11) content:function ratio;
12) propositional density; 13) verb marking;
14) noun marking*; 15) morphological errors;
16) semantic errors*; 17) phonological errors;
18) unrelated word errors; 19) neologisms

...in 274 persons with aphasia (PwA)...

- Aphasia Quotients: 13–99 (median=75)
- Types of aphasia:
 - 88 Broca's aphasia (32%)
 - 85 anomic aphasia (31%)
 - 42 conduction aphasia (15%)
 - 20 Wernicke's aphasia (7%)
 - 11 transcortical motor aphasia (4%)
 - 28 not aphasia by WAB, or NABW (10%)

...analyzed from story retelling task (Cinderella)

* Two variables were removed because of a lack of shared variance, indicating poor 'factorability'.

4. Mean performance by syndrome showed expected patterns, especially on measures of fluency (WpM, MLU), grammatical complexity & accuracy, circumlocution & jargon

6. Factor structure matrix (loadings > .4 are highlighted)

Variable	Phrase	Grammatical	Semantic	Grammatical	Narrative	Repairs	
	Building	Complexity	Anomaly	Errors	Productivity		
Total Utterances	0.10	-0.02	-0.04	-0.08	0.37	0.14	
Speech Rate (WpM)	0.47	0.59	-0.15	-0.39	0.86	-0.14	
Utterance length (MLU)	0.69	0.79	-0.32	-0.55	0.53	0.20	
Propositional Density	0.70	0.33	-0.31	-0.16	0.29	0.10	
Content:Function Ratio	-0.44	-0.13	0.02	0.46	-0.41	-0.26	
Repairs (repeat, retrace)	0.25	0.20	-0.17	-0.14	0.20	0.58	
Morphological Errors	-0.12	-0.12	-0.06	0.28	-0.02	0.20	
Neologistic Errors	-0.52	-0.24	0.57	0.27	-0.31	-0.25	
Phonological Errors	-0.45	-0.25	0.14	0.33	-0.38	-0.19	
Unrelated Word Errors	-0.31	-0.20	0.68	0.06	-0.23	-0.28	
Type-Token Ratio (MATTR)	0.61	0.43	-0.31	-0.36	0.30	0.07	
Circumlocution/Empty Speech	0.19	0.24	-0.05	-0.19	0.34	0.14	
Grammatical Errors	-0.41	-0.33	0.02	0.97	-0.37	-0.15	
Jargon	-0.17	-0.15	0.96	-0.11	0.03	-0.02	
Embedded Clauses	0.49	0.86	-0.25	-0.34	0.35	0.21	
Verb Marking	0.48	0.18	-0.12	-0.30	0.16	0.18	
Complexity Ratio	0.31	0.82	-0.17	-0.25	0.18	0.07	

7. Factor scores were generated for each individual (*regression method*) and compared across syndromes

8. Linear discriminants were used to calculate the probability of each speaker belonging to their given aphasia subtype

Number (%) of each subtype correctly classified by linear discriminants

Diagnosed subtype	BRO	ТСМ	CON	WER	ANO	NABW	Predicted Sums	
Broca's aphasia	68	8	6	1	8	0	91	 Largest groups
	(0.77)	(0.73)	(0.14)	(0.05)	(0.09)	(0.00)	(1.03)	(Broca's, anomic)
Transcortical motor aphasia	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	0 (0.00)	were more accurate, but
Conduction	2	0	10	4	3	1	20	over-predicted. Lowest accuracy
aphasia	(0.02)	(0.00)	(0.24)	(0.20)	(0.04)	(0.04)	(0.48)	
Wernicke's aphasia	1 (0.01)	0 (0.00)	5 (0.12)	11 (0.55)	4 (0.05)	0 (0.00)	21 (1.05)	for TCM (0%) and conduction
Anomic aphasia	17	2	18	3	66	16	122	aphasia (24%).
	(0.19)	(0.18)	(0.43)	(0.15)	(0.78)	(0.57)	(1.44)	■ Overall_61% were
Not aphasic by	0	1	3	1	4	11	20	correctly
WAB	(0.00)	(0.09)	(0.07)	(0.05)	(0.05)	(0.39)	(0.71)	classified.
Actual sums	88 (1.00)	11 (1.00)	42 (1.00)	20 (1.00)	85 (1.00)	28 (1.00)	166 (0.61)	

9. Both the LD model and clinicians were prone to confuse anomic and Broca's aphasia. The model was more likely to confuse conduction with anomic aphasia; clinicians were more likely to confuse conduction with Broca's aphasia.

10. A latent profile analysis of the factor scores generated 7 profiles that captured qualitative differences among syndromes and quantitative differences within syndromes.

11. Latent profiles showed little correspondence to subtype diagnoses.

- Each profile included at least 4 aphasia subtypes
 - even Profile 4 ("Anomic") included 5 other subtypes
- Each aphasia subtype was represented in at least 3 of the profiles.
- Performance differences were confirmed between 'high' and 'low' categories on variables and AQ scores.

12. Summary & Discussion

- An exploratory factor analysis generated 6 factors reflecting phraselevel and narrative-level fluency, grammatical accuracy and complexity, semantic accuracy, and repair behaviors.
- Factors accounted for 52% of the variance, leaving open questions about other sources of variance (e.g. premorbid style).
- Linear discriminant analyses generated correct subtype classifications for only ~60% of the speakers. Mismatches were similar to those shown by clinicians.
- Latent profile analyses reflected both quantitative and qualitative variance in generating classifications, dividing many syndromes into higher and lower-performing subsets.

 Limitations reinforce the need to balance such data-driven, populationlevel approaches with more fine-grained, individual-level analyses.