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Aphasia classification

The classical taxonomic approaches classifies fluent aphasias into the subtypes
Wernicke’s, anomic, transcortical sensory, and conduction aphasia syndromes.
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Aphasia classification

The classical taxonomic approaches classifies fluent aphasias into the subtypes
Wernicke’s, anomic, transcortical sensory, and conduction aphasia syndromes

O Test batteries (e.g., WAB, BDAE etc)
O Spontaneous speech analyses
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Aphasia classification challenges

To classify individuals with aphasia based on their linguistic profile can be:

O Time consuming
O Resource intensive

O Language samples collected through test batteries often do not reflect natural spoken
language
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Aim of study

The goal of this project was to examine the use of large language models to
automatically detect fluent aphasia types using spontaneous speech
transcripts
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Language Models: Gradient Attribution

Input “Welcome back ladies and”

Tokens Welcome back ladies

Embeddings a I a I
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a Can we automatically detect fluent aphasias types from healthy controls using
spontaneous speech transcripts?
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Research questions

a Can we automatically detect fluent aphasias types from healthy controls using
spontaneous speech transcripts?

a How much spontaneous speech sample does a language model require to attain a high
accuracy?

a Which words or linguistic features are most informative for the model’s
predictions in distinguishing fluent aphasia types from healthy controls?
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Method

Participants and data

o Data from AphasiaBank (Macwhinney et
al., 2011)

1 Spontaneous speech (SS) transcripts

of:

1 202 Anomic aphasia

1 47 Wernicke

1 99 Conduction

1 267 Healthy Controls (HCs)
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Method

Participants and data

o Data from AphasiaBank (Macwhinney et
al., 2011)

1 Spontaneous speech (SS) transcripts
of:
1 202 Anomic aphasia
1 47 Wernicke
1 99 Conduction
1 267 Healthy Controls (HCs)

Spontaneous Speech data:

1 Picture description: e.g. cookie thetft,
cat rescue, broken window

1 Narration: e.g. Cinderella story

1 Open-ended questions: e.g. how do
you think your speech is these days?
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Method

Example sentences containing pauses and data preprocessing

Raw: and and &-um it didn't fit of course. so &-um cinderella was able to finally put the shoe on.

Preprocessed: and and [FP] it didn't fit of course. so [FP] cinderella was able to finally put the
shoe on.
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Pretrained DistilBERT (Distilled Bidirectional Encoder Representations from
Transformers: sanh et al., 2019) language model (LM)
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Pretrained DistilBERT (Distilled Bidirectional Encoder Representations from
Transformers: sanh et al., 2019) language model (LM)

We finetuned using part (70%) of healthy control (HC) and the clinical data, and then
tested on the remaining (30%) of the data
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Method: Models

Pretrained DistilBERT (Distilled Bidirectional Encoder Representations from
Transformers: sanh et al., 2019) language model (LM)

We finetuned using part (70%) of healthy control (HC) and the clinical data, and then
tested on the remaining (30%) of the data

Transformer Interpret (Pierse 2021) was used for interpretability
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Results: using all data

Anomic vs HC
Wernicke vs HC

Conduction vs HC

AcCcC.

91%

96%

95%

Precision

89%

95%

94%
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92%
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Results: using all data

Anomic vs HC
Wernicke vs HC
Conduction vs HC

Anomic, Wernicke, Conduction

AcCcC.

91%

96%

95%

55%

Precision

89%

95%

94%
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Recall

92%

92%
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Results: only open-ended guestions

Anomic vs HC

Wernicke vs HC

Conduction vs HC

Anomic, Wernicke, Conduction

AcCcC.

93%
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92%

46%

Precision

90%
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Recall
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79%
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Results: only open-ended guestions

Acc. (Prev) Precision (prev) Recall (Prev)

Anomic vs HC 93% (91%) | 90% (89%) 94% (92%)
Wernicke vs HC 84% (96%) | 86% (95%) 79% (92%)
Conduction vs HC 92% (95%) | 93% (94%) 91% (92%)
Anomic, Wernicke, Conduction 46% (55%) @ 46% (60%) 56% (47%)

Previous Model's performance (using all data) highlighted in bold
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Results: interpretability — Anomic vs HC

True: ANOMIC Pred: ANOMIC
Text: okay. [FP] went to school at jamaica. [FP] head boy. so [FP] head boy and wear epaulets and a tie. no i can't. i don't remember. yeah okay.

Legend: M Negative [] Neutral [l Positive

True Predicted Attribution Attribution Word Importance
Label Label Label Score P
[CLS] okay . [FP] went to school at jamaica . [FP] head boy . so [FP] head boy and wear epa ##ule ##ts and atie . no i
n/a (0.07) CONTROL -4.67 ]
can't.idon'tremember. yeah okay . [SEP]
[CLS] okay . [FP] went to school at jamaica . [FP] head boy . so [FP] head boy and wear epa ##ule ##ts and atie . no i
n/a (0.91) ANOMIC 4.79

can't.idon'tremember . yeah okay . [SEP]
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Results: interpretability — Wernicke vs HC

True: WERNICKE Pred: WERNICKE
Text: very good. yes. it's always different. [FP] the talking they don't work. yeah.

Legend: B Negative L] Neutral & Positive
True Label Predicted Label Attribution Label Attribution Score Word Importance

n/a (0.23) CONTROL -3.22 [CLS] very good . yes . it ' s always different . [FP] the talking they don ' t work . yeah . [SEP]

n/a (0.78) WERNICKE 3.21 [CLS] very good . yes . it ' s always different . [FP] the talking they don ' t work . yeah . [SEP]
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Results: interpretability — Conduction vs HC

True: CONDUCTION Pred: CONDUCTION
Text: how do they how do they what? okay. okay. okay. [FP] bad. bad. [FP] my [FP] me that i've been there then before that the stroke. [FP] it's it

Legend: B Negative [ 1 Neutral [ Positive
True Predicted Attribution

Label Label Attribution Label Score Word Importance
[CLS] how do they how do they what ? okay . okay . okay . [FP] bad . bad . [FP] my [FP] me that i ' ve been there then before
n/a (0.11) CONTROL -8.79 that the stroke . [FP] it 'sit's [FP] deep . [FP] it doesn "t it doesn 't me at all . and it looks like [FP] echo hello echo . it
doesn 'tlike i m saying it . but it ' s going like [FP] it doesn 't somebody else . it really does . [SEP]
[CLS] how do they how do they what ? okay . okay . okay . [FP] bad . bad . [FP] my [FP] me thati ' ve been there then before
n/a (0.92) CONDUCTION 8.65 that the stroke . [FP]it'sit's [FP] deep . [FP] it doesn "tit doesn 't me at all . and it looks like [FP] echo hello echo . it

doesn 'tlikei' m sayingit. butit's going like [FP] it doesn ' t somebody else . it really does . [SEP]
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o Language models can automatically detect fluent aphasia(s) with a very high
accuracy
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o Language models can automatically detect fluent aphasia(s) with a very high
accuracy

o This level of accuracy is largely maintained when using spontaneous speech sample
based on only open-ended questions are used

o We have demonstrated language model’'s capability to learn linguistic patterns and
contextual cues from fluent aphasic speech
1 Pauses, interjections, or discourse markers seem to be the features that consistently
predicts fluent aphasia(s)
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Conclusions |

o Language models can automatically detect fluent aphasia(s) with a very high
accuracy

o This level of accuracy is largely maintained when using spontaneous speech sample
based on only open-ended questions are used

o We have demonstrated language model’'s capability to learn linguistic patterns and
contextual cues from fluent aphasic speech
1 Pauses, interjections, or discourse markers seem to be the features that consistently
predicts fluent aphasia(s)
2 A systematic profiling of the words or phrases with highest attribution should be done in
future work
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o Classification between the clinical groups shows a reduced level of accuracy,
although still above chance level
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although still above chance level

o This could be interpreted as:
o Presence of overlapping linguistic features across the three groups
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Conclusions Il

o Classification between the clinical groups shows a reduced level of accuracy,
although still above chance level

o This could be interpreted as:
o Presence of overlapping linguistic features across the three groups
o Over-reliance on the ‘gold standard labels’ from AphasiaBank
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Thank you
Contact: f.tsiwah@rug.nl

Ruhi mahadeshwar

TalkBank AphasiaBank

AphasiaBank is a shared database of multimedia interactions for the study of communication in aphasia. Access to the data
in AphasiaBank is password protected and restricted to members of the AphasiaBank consortium group.

Researchers, educators, and clinicians working with aphasia who are interested in joining the consortium should read the
Ground Rules and then send email to macw@cmu.edu with contact information and affiliation. Please include a brief
general statement about how you envision using the data. Students interested in using the data should ask their faculty
advisors to join as members. AphasiaBank is supported by NIH-NIDCD grant R01-DC008524 for 2022-2027.
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Results: using all data

Acc. (BM) Precision (BM) | Recall (BMm)

Anomic vs HC 91% (47%) | 89% (50%) 92% (100%)
Wernicke vs HC 96% (39%) | 95% (47%) 92% (64%)
Conduction vs HC 95% (72%) | 94% (87%) 92% (18%)
Anomic, Wernicke, Conduction 55% (40%) | 60% (42%) 47% (41%)

Model’s baseline performance highlighted in bold
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Results: interpretability — Wernicke vs HC

True: WERNICKE Pred: WERNICKE
Text: and then [FP] [FP] let's see. and then [FP] yeah. okay [FP] and then page. [FP] [FP] and then [FP] laughing and talking mean man girl. and [I

Legend: B Negative [ ] Neutral E Positive

True Predicted Attribution Attribution Word Importance

Label Label Label Score
[CLS] and then [FP] [FP] let ' s see . and then [FP] yeah . okay [FP] and then page . [FP] [FP] and then [FP] laughing and talking
mean man girl . and [FP] and then [FP] and then horse . and a nice girl and horse . and then [FP] laughing and talking [FP] a [FP]
three girls mean man . [FP] and then [FP] and then [FP] cinderella and . oh boy ! and then [FP] [FP] and then [FP] dancing .
n/a (0.23) CONTROL -5.71

cinderella and another man and dancing . and then [FP] at twelve o ' clock at midnight and . uh ##oh . and . [FP] [FP] oh boy . oh
ah yeah . and then [FP] and then next day and then [FP] mean man tree mean man . and then sit down and [FP] slip [FP] slip [FP]
perfect . and . ah . [FP] [FP] two girl and man married . and wow , lord . [SEP]

[CLS] and then [FP] [FP] let ' s see . and then [FP] yeah . okay [FP] and then page . [FP] [FP] and then [FP] laughing and talking
mean man girl . and [FP] and then [FP] and then horse . and a nice girl and horse . and then [FP] laughing and talking [FP] a [FP]
three girls mean man . [FP] and then [FP] and then [FP] cinderella and . oh boy ! and then [FP] [FP] and then [FP] dancing .

n/a (0.77) WERNICKE 5.22 ) . o
cinderella and another man and dancing . and then [FP] at twelve o ' clock at midnight and . uh ##oh . and . [FP] [FP] oh boy . oh
ah yeah . and then [FP] and then next day and then [FP] mean man tree mean man . and then sit down and [FP] slip [FP] slip [FP]

perfect . and . ah . [FP] [FP] two girl and man married . and wow , lord . [SEP]
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