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Aphasia classification

The classical taxonomic approaches classifies fluent aphasias into the subtypes 

Wernicke’s, anomic, transcortical sensory, and conduction aphasia syndromes.
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Aphasia classification

The classical taxonomic approaches classifies fluent aphasias into the subtypes 

Wernicke’s, anomic, transcortical sensory, and conduction aphasia syndromes

❑ Test batteries (e.g., WAB, BDAE etc)

❑ Spontaneous speech analyses
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Aphasia classification challenges

To classify individuals with aphasia based on their linguistic profile can be:

❑ Time consuming

❑ Resource intensive

❑ Language samples collected through test batteries often do not reflect natural spoken 

language 
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Aim of study

The goal of this project was to examine the use of large language models to 

automatically detect fluent aphasia types using spontaneous speech 

transcripts
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Language Models: Gradient Attribution 
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Research questions

❑ Can we automatically detect fluent aphasias types from healthy controls using 

spontaneous speech transcripts?

❑ How much spontaneous speech sample does a language model require to attain a high 

accuracy?

❑ Which words or linguistic features are most informative for the model’s 

predictions in distinguishing fluent aphasia types from healthy controls?
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Method

Participants and data

❏ Data from AphasiaBank (MacWhinney et 

al., 2011)

❏ Spontaneous speech (SS) transcripts 

of: 
❏ 202 Anomic aphasia

❏ 47 Wernicke

❏ 99 Conduction

❏ 267 Healthy Controls (HCs)
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Method

Participants and data

❏ Data from AphasiaBank (MacWhinney et 

al., 2011)

❏ Spontaneous speech (SS) transcripts 

of: 
❏ 202 Anomic aphasia

❏ 47 Wernicke

❏ 99 Conduction

❏ 267 Healthy Controls (HCs)

Spontaneous Speech data:

❏ Picture description: e.g. cookie theft, 

cat rescue, broken window

❏ Narration: e.g. Cinderella story

❏ Open-ended questions: e.g. how do 

you think your speech is these days? 
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Method

Raw: and and &-um it didn't fit of course. so &-um cinderella was able to finally put the shoe on.

Preprocessed: and and [FP] it didn't fit of course. so [FP] cinderella was able to finally put the 

shoe on.

Example sentences containing pauses and data preprocessing
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Method: Models

Pretrained DistilBERT (Distilled  Bidirectional Encoder Representations from 

Transformers: Sanh et al., 2019) language model (LM) 
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We finetuned using part (70%) of healthy control (HC) and the clinical data, and then 

tested on the remaining (30%) of the data



19|

Method: Models

Pretrained DistilBERT (Distilled  Bidirectional Encoder Representations from 

Transformers: Sanh et al., 2019) language model (LM) 

We finetuned using part (70%) of healthy control (HC) and the clinical data, and then 

tested on the remaining (30%) of the data

Transformer Interpret (Pierse 2021) was used for interpretability
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Results: using all data 

Acc. Precision Recall

Anomic vs HC 91% 89% 92%

Wernicke vs HC 96% 95% 92%

Conduction vs HC 95% 94% 92%

Anomic, Wernicke, Conduction 55% 60% 47%
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Results: only open-ended questions 

Acc. Precision Recall 

Anomic vs HC 93% 90% 94%

Wernicke vs HC 84% 86% 79%

Conduction vs HC 92% 93% 91%

Anomic, Wernicke, Conduction 46% 46% 56%
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Results: only open-ended questions 

Acc. (Prev) Precision (Prev) Recall (Prev)

Anomic vs HC 93% (91%) 90% (89%) 94% (92%)

Wernicke vs HC 84% (96%) 86% (95%) 79% (92%)

Conduction vs HC 92% (95%) 93% (94%) 91% (92%)

Anomic, Wernicke, Conduction 46% (55%) 46% (60%) 56% (47%)

Previous Model’s performance (using all data) highlighted in bold
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Results: interpretability – Anomic vs HC
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Results: interpretability – Anomic vs HC
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Results: interpretability – Wernicke vs HC
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Results: interpretability – Conduction vs HC
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Conclusions I

❏ Language models can automatically detect fluent aphasia(s) with a very high 

accuracy

❏ This level of accuracy is largely maintained when using spontaneous speech sample 

based on only open-ended questions are used

❏ We have demonstrated language model’s capability to learn linguistic patterns and 

contextual cues from fluent aphasic speech

❏ Pauses, interjections, or discourse markers seem to be the features that consistently 

predicts fluent aphasia(s)

❏ A systematic profiling of the words or phrases with highest attribution should be done in 

future work
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Conclusions II

❏ Classification between the clinical groups shows a reduced level of accuracy, 

although still above chance level
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❏ This could be interpreted as:

❏ Presence of overlapping linguistic features across the three groups
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Conclusions II

❏ Classification between the clinical groups shows a reduced level of accuracy, 

although still above chance level

❏ This could be interpreted as:

❏ Presence of overlapping linguistic features across the three groups

❏ Over-reliance on the ‘gold standard labels’ from AphasiaBank



35| 35|

Thank you
Contact: f.tsiwah@rug.nl

Ruhi mahadeshwar
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Results: using all data 

Acc. (BM) Precision (BM) Recall (BM)

Anomic vs HC 91% (47%) 89% (50%) 92% (100%)

Wernicke vs HC 96% (39%) 95% (47%) 92% (64%)

Conduction vs HC 95% (72%) 94% (87%) 92% (18%)

Anomic, Wernicke, Conduction 55% (40%) 60% (42%) 47% (41%)

Model’s baseline performance highlighted in bold
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Results: interpretability – Wernicke vs HC
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