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Abstract

Conventional automatic assessment of pathological speech usually follows two main steps: (1) extraction of pathology-
specific features; (2) classification or regression on extracted features. Given the great variety of speech and language
disorders, feature design is never a straightforward task, and yet it is most crucial to the performance of assessment. This
paper presents an end-to-end approach to automatic speech assessment for Cantonese-speaking People With Aphasia (PWA).
The assessment is formulated as a binary classification task to discriminate PWA with high scores of subjective assessment
from those with low scores. The 2-layer Gated Recurrent Unit (GRU) and Convolutional Neural Network (CNN) models are
applied to realize the end-to-end mapping from basic speech features to the classification outcome. The pathology-specific
features used for assessment are learned implicitly by the neural network model. The Class Activation Mapping (CAM)
method is utilized to visualize how the learned features contribute to the assessment result. Experimental results show that
the end-to-end approach can achieve comparable performance to the conventional two-step approach in the classification
task, and the CNN model is able to learn impairment-related features that are similar to the hand-crafted features. The

experimental results also indicate that CNN model performs better than 2-layer GRU model in this specific task.

Keywords Pathological speech assessment - End-to-end - Aphasia - Cantonese - Deep neural network

1 Introduction

Aphasia refers to an acquired neurogenic speech-language
disorder resulting from physical damage to specific brain
regions. Symptoms of aphasia may adversely affect
different modalities of language skills such as auditory
comprehension, verbal expression, reading and writing [1].
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The impairment could also span over various levels and
components of the language system, including phonology,
lexicon, syntax, and semantics [2]. Speakers with aphasia
may have difficulties in recalling names of objects and/or
putting words together into sentences [3]. Symptoms
like anomia (word retrieval difficulty), dysfluency, voice
disorder and dysprosody may be present in People With
Aphasia (PWA) at various severity level and with different
combinations [4, 5].

Speech assessment is an essential part of the compre-
hensive assessment for people with aphasia (PWA), which
aims at determining the type and/or severity degree of
impairment. It is required to be carried out by a well-
trained speech and language therapist, based on subjective
evaluation of various abilities of language communication.
Subjective assessment of speech from PWA is a challeng-
ing task because it requires not only clinical knowledge
about the disease but also good understanding of relevant
linguistic and cultural background. There are clearly urgent
practical needs to develop effective and reliable methods of
automatic speech assessment for PWA.

Automatic analysis of PWA speech is expected to
facilitate objective and efficient assessment to assist

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-019-01511-3&domain=pdf
http://orcid.org/0000-0003-4606-7174
mailto: yingqin@link.cuhk.edu.hk
mailto: yzwu@link.cuhk.edu.hk
mailto: tanlee@cuhk.edu.hk
mailto: antkong@ucf.edu

J Sign Process Syst

diagnosis and rehabilitation of PWA. Automatic speech
recognition (ASR) technique and machine learning based
approaches have been applied to this problem. Various
acoustic features and text features were designed and
evaluated for PWA speech assessment. Peintner et al. [6]
performed an automatic classification on three sub-types
of frontotemporal lobar degeneration in a relatively small
dataset which includes the progressive non-fluent aphasia.
They proposed a number of phone duration features, part-of-
speech features as well as linguistic inquiry and word count
features, which were extracted from ASR outputs. Fraser
et al. [7, 8] performed an automatic classification of sub-
types of primary progressive aphasia using acoustic features
and text features extracted from manual transcriptions. In
their follow-up work [9], an off-the-shelf commercial ASR
system was adopted to automatically generate transcriptions
for text feature extraction. However, the effectiveness of
assessment was limited by the low recognition accuracy
on impaired speech. Duc Le et al. [10, 11] improved the
PWA speech recognition using discriminative pre-training
with out-of-domain dataset and multi-task acoustic model.
They achieved good performance in predicting subjective
assessment scores based on ASR outputs by analyzing text
statistics (e.g. the number of nouns and verbs in spoken
utterances), part-of-speech language model etc. Kohlschein
et al. [12] proposed to automatically classify four most
prevalent aphasia syndromes (Global aphasia, Broca’s
aphasia, Wernicke’s aphasia and amnesic aphasia) based
on manual transcriptions. A Long Short-Term Memory
(LSTM) based classifier was trained with word vectors
which were derived from the manual transcriptions. The
peak classification accuracy obtained by their proposed
model was 44.3%, and involving more training samples was
suggested to further improve the classification performance.
The above studies target the automatic speech assessment
for English-speaking and German-speaking PWA. In recent
years, we made great efforts to develop an automatic
assessment system for Cantonese-speaking PWA. In [13],
the effectiveness of supra-segmental duration features
in speech assessment of Cantonese-speaking PWA was
investigated. The features such as duration of pause-
delimited speech segments, duration of silence segments
and frequency count of silence segments were found to
be useful in differentiating speech of PWA from that of
unimpaired individuals. The computation of these duration
features requires a forced alignment process relying on
manual transcriptions, which is undesirable in practical
applications. A general-purpose ASR system was applied
on PWA speech in [14] and a higher syllable error rate was
observed for aphasia subjects compared with unimpaired
subjects. In [15], we proposed a framework of fully
automatic speech assessment for PWA. Supra-segmental
duration features were computed from time alignment
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generated by a dedicated ASR system. The text features
were derived from the ASR-generated text output using
syllable-level embedding technique. With the combination
of these extracted features, the prediction of severity of
impairment was formulated as a regression task. The
prediction results showed a high correlation with subjective
assessment scores. We also attempted to improve the ASR
performance on PWA speech using multi-task learning
strategy, and used N-best lists and confusion networks to
mitigate the effect of ASR errors on the text features [16].

From previous studies, it is evident that the exploration
of pathology-specific features is an essential part of
designing the assessment system and it is usually based
on expert knowledge. However, some impairment-related
characteristics contained in the raw speech data may
be missed after the extraction of hand-crafted features.
After extracting a great number of acoustic features and
text features, post-processing procedures such as feature
selection and classification/regression are required. They
are generally complicated and time-consuming. In addition,
parameters of feature extraction and assessment model
are optimized separately instead of jointly. Recently, the
so-called “end-to-end” approach has demonstrated good
successes in ASR [17], machine translation [18], and other
applications. It requires relatively little human effort on
designing tailored features and shows superior performance
[17]. Inspired by the “end-to-end” paradigm, we propose
the design of a “utterance-to-score” system for PWA
speech assessment to boost the efficiency of assessment
system. Utterances spoken by PWA are fed directly
to a Deep Neural Network (DNN), without requiring
explicit feature extraction and selection. The output of the
DNN gives the predicted assessment score for each input
utterance. The overall assessment score for the impaired
speaker is obtained by combining all his/her utterance-level
scores.

This paper reports our preliminary results on PWA
speech assessment using the end-to-end approach. Among
numerous neural network structures, Recurrent Neural
Network (RNN) has the ability to model sequential
signals and to deal with variable-length utterances. LSTM
[19] and Gated Recurrent Unit (GRU) [20] are well-
established “gating” models that tackle the problem of
gradient vanishing in vanilla RNN. The GRU is able to
achieve comparable performance to LSTM, with a more
simplified architecture. It has been applied to utterance-
based classification tasks, e.g., question detection [21]
and emotion classification [22]. On the other hand,
Convolutional Neural Network (CNN) based approaches
have been investigated in the speech assessment area. It
was successfully applied to spoken fluency scoring [23]
and differentiate speech of people with Parkinson disease
from that of healthy people [24]. In this paper, we focus
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on investigating the effectiveness of GRU model and CNN
model in PWA speech assessment.

Although the CNN-based models are demonstrated to
be effective in speech and audio classification tasks,
there have been few attempts to provide interpretations
of what types of speech or audio patterns are perceived
by a CNN model. In the image classification domain,
similar issues have been extensively explored. The Class
Activation Mapping (CAM) [25] was proposed to highlight
the class-discriminative image regions in CNNs with global
average pooling. A generalized version of CAM named
the Gradient-weighted Class Activation Mapping (Grad-
CAM) was proposed in [26], which can be applied to a
wider variety of CNN structures. Recently, the Grad-CAM
technique was used to analyze the classification results in
the audio scene classification task [27]. Inspired by this,
in the present study, we perform the visualization of CAM
based on the time-frequency representations of acoustic
features, which can be regarded as 2-dimensional images.
It allows the comparison between machine perception and
human interpretation, as well as the analysis of what
acoustic clues are actually important for deciding the
severity degree of PWA.

2 Corpus: Cantonese AphasiaBank

Cantonese is an influential Chinese dialect spoken by tens
of million of people in Hong Kong, Macau, Southern China
as well as overseas Chinese communities. Like Mandarin,
Cantonese is a monosyllabic and tone language. Each
Chinese character is spoken as a monosyllable carrying a
specific tone.

Cantonese AphasiaBank used in this study is a large-
scale multi-modal corpus jointly developed by the Univer-
sity of Central Florida and the University of Hong Kong
[28]. It aims to support both fundamental and clinical
research on Cantonese-speaking aphasia population. [The
corpus contains recordings of spontaneous speech from 149

Table 1 Recording tasks in the Cantonese AphasiaBank.

unimpaired and 104 aphasic subjects who are all native
Cantonese speakers. The speech recordings were elicited
following the AphasiaBank protocol, with adaptation to
local Chinese culture [29, 30]. Each subject was required
to complete 9 narrative tasks, including 4 picture descrip-
tions, 1 procedure description, 2 story telling and 2 personal
monologues, with details given as in Table 1. Except per-
sonal monologues, the speech produced in each task is
expected to be about a specific topic. All the recordings
happened in a sound proof booth and were collected using
a standardized recording set-up and protocol. Specifically,
the audio signal was simultaneously recorded using a solid-
state digital recorder, at a sampling frequency of 44.1 kHz
with 16-bit quantization, and a headworn condenser micro-
phone. All impaired subjects in the corpus went through a
standardized assessment using the Cantonese Aphasia Bat-
tery [31]. It involves a series of sub-tests measuring fluency,
information content, comprehension, repetition and nam-
ing abilities of the subject. The sum of sub-test scores is
named the Aphasia Quotient (AQ). The value of AQ ranging
from O to 100 is an indication of overall severity of impair-
ment. Lower AQ value means higher degree of severity. In
[31], it was suggested to use AQ = 96.4 as cutoff point
for differentiating normal subjects from those with aphasia,
as it represented 2 standard deviations below the mean of
healthy controls’ performance. In this study, the AQ score
is regarded as the ground-truth measure of the severity of
aphasia.

In this study, about 15.6 hours speech data of 9 tasks
from 91 impaired subjects are selected for the following
experiments, including 58 Anomic subjects, 6 Transcortical
sensory subjects, 12 Transcortical motor subjects, 10
Broca’s subjects, 1 Isolation subject, 2 Wernicke’s subjects
and 2 Global aphasia subjects. Their AQ values are in the
range of 11.0 to 99.0. Figure 1 shows the histogram of
the AQ scores of 91 aphasic subjects. As the participants
we extracted from the Cantonese AphasiaBank were those
who could perform open-ended spoken discourse tasks, they
tended to be higher-level functioning and less impaired in

Description

Task Recording
Single picture description CatRe
Flood
Sequential picture description BroWn
RefUm
Procedure description EggHm
Story telling CryWf
TorHa
Personal monologue ImpEv
Stroke

Black and white drawing of a cat on a tree being rescued.

A color photo showing a fireman rescuing a girl.

Black and white drawing of a boy accidentally breaking a window.
Black and white drawing of a boy refusing an umbrella from his mother.
Procedures of preparing a sandwich with egg, ham and bread.

Telling a story from a picture book “The boy who cried wolf”.

Telling a story from a picture book “The tortoise and the hare”.
Description of an important event in life.

Description of the experience of suffering a stroke.
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Figure 1 Histogram of AQ scores of 91 impaired speakers.

terms of severity (see details in [32]). Therefore, in our
case, it is typical that the AQ scores cluster towards the
high scores among the aphasic group. The speakers who
had lower AQ scores, i.e., those in the range of 10 or 20,
were those with non-fluent aphasia, such as Broca’s aphasia,
Isolation aphasia, Transcortical Motor aphasia, or Global
aphasia.

3 General Framework

We propose to utilize end-to-end approach to differentiating
PWA with High-AQ (AQ > 90) from those with Low-
AQ (AQ < 90). The cutoff value of 90 is set to reach
balanced number of subjects in two groups. Figure 2
illustrates the general framework of proposed classification
system. Fundamental frame-level acoustic features (e.g.
Mel-frequency cepstral coefficients, filterbank features) are
extracted from the utterance of PWA and subsequently fed
to a Neural Network-based (NN-based) classifier. Under the
“end-to-end” framework, neither pathology-specific feature
extraction nor feature selection procedures are required.
They are expected to be automatically carried out by the
NN-based classifiers. The classification label of the input
utterance is inherited from the impaired speaker. For the

Classification Result

T

Score Averaging

T

NN-based Classifier (sigmoid function)

T

Fundamental Frame-level Features

T

Input Speech Utterance

Figure 2 General framework of the classification system.
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output of classifier, an assessment score for each utterance
can be obtained after the sigmoid function of the neural
network. The speaker-level overall assessment score is
computed by taking the average of all utterance-level scores
from the test speaker. The higher overall assessment score
indicates a higher possibility of the speaker being in the
High-AQ group.

4 Methods
4.1 Models

In this study, we experiment with two mainstream structures
of neural network, namely the 2-layer GRU and CNN
for the classification purpose. GRU model is known for
learning features along a temporal sequence of speech
frames, while CNN model is good for exploring features
from time-frequency matrix representation of speech. These
two different mechanisms of pattern modeling are compared
on the intended aphasia speech assessment task.

4.1.1 2-layer GRU

GRU is specialized in sequential modeling, which is
expected to characterize the impairment of the entire utter-
ance spoken from PWA. The architecture of proposed 2-
layer GRU model is detailed in Fig. 3. Frame-level acoustic
features 01, 07, - - - , o7 of an utterance are sequentially fed
to the neural network. A hidden representation is generated
at each time step, summarizing the past acoustic informa-
tion. The hidden representation k at the ' time step is given
by

h; = GRU(01, 02, -+, 0;; 0p), (D

where 0; denotes the model parameters and the function
GRU(:) indicates two uni-directional GRU layers with
hidden size of 200 per layer. Our preliminary experiments

Y
Sigmoid {
h, 7

GRU » GRU GRU (----» GRU
R S S

GRU » GRU » GRU » GRU
| ) ) )
Features 0, 0, 0, e Or

Figure 3 Architecture of the 2-layer GRU.
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show no significant improvement using the bi-directional
GRU layers, thus a uni-directional structure is adopted in
this study. A predicted score y for the input utterance is
produced by a sigmoid activation function Sigmoid(-) at the
output layer, which is given by

y = Sigmoid(Wohr + b,), )

where hr is the hidden representation at the last time step
which summarizes the information of entire utterance. W,
and b, are the trainable parameters connecting A1 with y.

4.1.2 Convolutional Neural Network

CNN is known as to learn local high-level features from the
spatial or temporal data. It performs discrete convolution
between a local region of the input image f and a set of
filters w with the shapes of m x n. After the input image f
passes through the convolutional layer, the output is given
by

(f xw)li, j1=Y_ " fli +m,i+nlwlm, nl. 3)

m

For the input utterance, the short-time acoustic features are
extracted and concatenated sequentially as a 2-dimensional
time-frequency representation. The CNN model structure
described in Table 2 is inspired by the AlexNet [33] and
VGG [34] models. It is constructed with a Global Average
Pooling (GAP) layer instead of a fully-connected layer after
the last convolutional layer. GAP has been proved to be a
good regularizer for CNNs in image classification [35] and
audio scene classification [27] tasks. Batch normalization
(BN) layer and ReLU activation function are added after
each convolutional layer.

Table 2 Architecture of the CNN model.

Input 1x300x 128

33 Convolution (pad-1, stride-1)-64-BN-ReLU
3x3 Max Pooling (stride-2)

33 Convolution (pad-1, stride-1)-192-BN-ReLU
3x3 Max Pooling (stride-2)

33 Convolution (pad-1, stride-1)-384-BN-ReL.U
33 Convolution (pad-1, stride-1)-256-BN-ReL.U
33 Convolution (pad-1, stride-1)-256-BN-ReL.U
3x3 Max Pooling (stride-2)

Global Average Pooling

O 0 N N kW N~

—
(=)

Sigmoid

4.2 Class Activation Mapping

Given a CNN model, the technique of Class Activation
Mapping (CAM) [25] is capable of visualizing the class-
discriminative regions in the input images. Therefore, the
CAM can improve understanding and interpretability of
CNN models. Given a trained CNN model with GAP, the
mean values of K feature maps at the penultimate layer are
linearly transformed to generate a score y¢ for each class c,

yC=Zw,§%Zka<x,y>, “
k x oy

where fi(x, y) denotes the point (x, y) in the k' feature
map before GAP. The weight wj connecting k' feature
map to output class ¢ indicates the importance of k" feature
map for the target class c¢. Z is a normalization term,
representing the number of pixels in the feature map. The
spatial elements of class activation map L 4,, for class ¢
are obtained by exchanging the order of summation in Eq. 4,

Léam (e, y) = Y wi fi(x, y). (5)
k

The above CAM is only applicable to CNNs with GAP. As a
strict generalization of CAM, the Gradient-weighted Class
Activation Mapping (Grad-CAM) can be applied to a wider
variety of CNN models, such as those with fully-connected
layers (e.g. VGG, AlexNet). It is implemented by replacing
the weight of each feature map wy, with the average gradient
(cry) of the score for class ¢ with respect to each feature map,
which is computed by

o1 ay°©

of = — _— (6)
£z ZX}: dfi(x. y)

Then we have

LGra.cam@: ») = ReLUQY o fi(x, y), )
k

where ReLU is applied to identify the features that have a
positive influence on the target class. Note that f; in this
case is no longer limited to the last convolutional layer in
CNN but can be from any convolutional layer.

We propose to use Grad-CAM technique to analyze a
trained CNN model for the assessment task. It is expected
to help the understanding of the feature patterns learned by
CNN in the decision of severity degree. Note that the class
number ¢ is equal to 1 and the sigmoid function is used
in this study. Equation 7 is used to highlight the positive
regions to the High-AQ class. By negating the weighted
combination before the ReLU function, the negative regions
to the High-AQ class (positive to Low-AQ class) could be
visualized.

@ Springer
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Table 3 The number of variable-length utterances in each fold by
manual segmentation.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Train 8, 000 8,278 8,207 8,535 8,368
Test 2,623 2,001 2,389 2,261 2,276
Valid 927 1,271 954 754 906

5 Experimental Setup
5.1 Data

To perform severity assessment for all 91 PWA, the binary
classification experiment is carried out with the arrangement
of 5-fold cross validation. In each fold, 80% of the subjects
are used for training and the rest 20% subjects are used for
test. 10% of subjects are randomly selected from training
subjects as the validation data. There are 39 PWA in High-
AQ group and 52 PWA in Low-AQ group respectively.

To provide more training samples, the long recordings
are segmented into short utterances. Each short utterance
will be given a score of severity degree by neural networks
independently, depending on the learned features related
to speech impairment. We consider to use two types of
segmentation methods to process speech recordings. The
first method is manual segmentation according to the
sentence boundaries marked in the Cantonese AphasiaBank.
In this way, the speech recordings of 91 PWA are cut
into 11,550 utterances. A total number of 6, 172 utterances
spoken from High-AQ speakers are assigned with label 1,
while 5, 378 utterances from Low-AQ group are assigned
with label 0. The lengths of utterances range from 0.07
second to 70.03 seconds. Table 3 details the 5-fold data sets
with the manual segmentation.

The second segmentation method is to cut the speech
recordings of 91 PWA into non-overlapping segments of
3 seconds, leading to 18, 149 equal-length short utterances
for training models. There are 7, 322 utterances and 10, 827
utterances being labeled as 1 and O respectively. The
number of equal-length utterances in 5 folds is listed in
Table 4.

Table 4 The number of equal-length utterances of 3 seconds in each
fold.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Train 12, 839 13,270 13,155 13,984 12, 669
Test 4, 100 3,224 3,725 2,940 4,160
Valid 1,210 1, 655 1,269 1,225 1,320
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5.2 Features

Mel-Frequency Cepstral Coefficient (MFCC) and Log-
Mel filterbank features are explored to train the proposed
models. The 39-dimensional MFCC+HA + A A features are
extracted from each input utterance, with 25 milliseconds
window length and 10 milliseconds window shift. The
number of points in Discrete Fourier Transform (DFT) is
set to 2, 048, and the number of filters in the Mel filterbank
is set to 128. Dimension-wise normalization of the MFCC
features is performed within each fold using the mean and
variance computed from the training set. For the extraction
of Log-Mel filterbank features, the settings of DFT and
Mel filterbank are the same as those used for extracting
the MFCC features. The Log-Mel filterbank features are
derived from short-time frames (same window size and
window shift as mentioned before) from input utterances,
with the dimension of 128. Subsequently, the frame-level
features are stacked together as a time-frequency matrix
for the input utterance. The feature normalization is also
applied to Log-Mel filterbank features in each fold.

In addition, topic information is taken into consideration
in the feature design. With the topic information, the
content-related acoustic patterns are expected to be learned
by the NN-based models. For instance, if an utterance is
from the topic 1, the first element of a topic vector (topicvec)
is set to 1 and other 8 elements are set to zeros. For training
the 2-layer GRU model, the 9-dimensional one-hot topic
vector is concatenated with a 128-dimensional Log-Mel
filterbank feature, resulting in a 137-dimensional vector for
each frame as a kind of topic adaptation. For the CNN
model, the one-hot topic vectors are utilized in a different
way. The topic vector is concatenated with the embedding of
time-frequency representation of the utterance. Specifically,
the 256-dimensional high-level features derived from the
Log-Mel filterbank features can be obtained after the GAP
layer, which is shown in Table 2. They are concatenated with
9-dimensional one-hot topic vectors and then fed to a fully-
connected neural network containing two hidden layers (the
vector size of each hidden layer is 256). It is followed by a
sigmoid layer as the final output layer.

In the following experiments, we consider to use MFCC,
Log-Mel filterbank and topic-adapted features derived from
two types of segmented speech data to train the 2-layer GRU
model and CNN model.

5.3 Hyperparameters for Model Training

The training parameters are set empirically. The mini-
batch size is 64 for training the 2-layer GRU model and
the CNN model. The initial learning rate is set to 10~
for the 2-layer GRU model and it is set to 10~ for the
CNN model. Model training aims at minimizing the binary
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cross-entropy loss using the Adam optimizer [36]. Weight
decay coefficient is set to 5 x 10~* for both models to tackle
the overfitting problem. All models are implemented using
the deep learning toolkit Pytorch [37].

6 Experiments and Results
6.1 Utterance-level Classification Accuracy

For the binary classification on test utterances from
High-AQ and Low-AQ subjects, the Area Under receiver
operating characteristic Curve (AUC) [38] is adopted as
the performance metric. In the case of binary classification,
AUC can be viewed as the probability that the classifier
ranks a randomly chosen positive sample higher than a
negative one [39]. An AUC value 0.5 means a random guess
and 1.0 represents a perfect classification.

Table 5 compares the AUC results of 5-fold cross-
validation experiments with 2-layer GRU model (GRU
model) and CNN model. The “-var” and “-eq” denote the
acoustic features extracted from variable-length and equal-
length utterances respectively. The weighted averaged of
AUC (W-AUC) across all folds is also compared, where
the weight is the proportion of test data of each fold
in the whole test data. From the AUC results based on
the GRU model, it can be seen that higher AUCs are
obtained using the Log-Mel filterbank (Log-Mel) features
than using the MFCC features. This suggests that the Log-
Mel features are more suitable for the intended classification
task. The result comparison between Log-Mel-var and Log-
Mel-eq shows that the equal-length utterances perform
better than the variable-length ones for training the GRU
model. It may attribute to a larger number of utterances used
for training. With the Log-Mel-eq features, a significant
AUC improvement can be observed using the CNN model
compared with using the GRU model. This probably
because the CNN model performs better on capturing

localized time-frequency information of impairment-related
acoustic patterns. Nevertheless, the CNN model does not
benefit much from the topic vectors for the severity degree
classification, whilst for the 2-layer GRU model, using
the concatenation of Log-Mel and topic vector features
achieves better performance than using the Log-Mel
features only. This shows that the topic information may
provide additional benefits to the classification performance
to some extent.

The 2-layer GRU model trained with Log-Mel+topicvec-
eq features attains the best performance among all 2-
layer GRU models, thus it is used for the analysis in
Sections 6.2 and 7.1. For the CNN model, it is noted
that the topic vectors show little improvement on the
classification performance. Therefore, the CNN model
trained with Log-Mel-eq without topic vectors is used for
the following analysis of experimental results and Grad-
CAM visualization.

Although the utterance-level AUC is a direct metric to
measure the performance of classifiers, it is unable to reflect
the performance of severity degree assessment for PWA. A
score fusion procedure is required to give a speaker-level
classification decision.

6.2 Speaker-level Classification Accuracy

We consider to compare the speaker-level classification
accuracy given by the 2-layer GRU model with the best
performance (trained with Log-Mel+topicvec-eq features),
the CNN model (trained with Log-Mel-eq features) and a
baseline system. As shown in Fig. 2, for the NN-based
models, after obtaining utterance-level scores from a test
speaker, a score fusion is performed to combine them
as an overall score for the speaker-level classification.
The overall score for each test speaker is obtained by
taking the average of speaker’s utterance-level scores.
The threshold for binary classification is set to 0.5. If
the overall score is higher than 0.5, the test speaker is

Table 5 Performance comparison between 2-layer GRU and CNN models. MFCC, Log-Mel and topic-adapted features derived from variable-
length (-var) and equal-length (-eq) utterances are used for training the models. W-AUC refers to the weighted average of AUC. The highest AUC

value for each fold is marked in bold

Model Feature AUC W-AUC
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

GRU MFCC-var 0.58 0.62 0.58 0.61 0.80 0.64
Log-Mel-var 0.62 0.65 0.62 0.61 0.80 0.67
Log-Mel-eq 0.62 0.69 0.64 0.61 0.81 0.68
Log-Mel+topicvec-eq 0.64 0.75 0.65 0.63 0.83 0.70

CNN Log-Mel-eq 0.74 0.81 0.78 0.70 0.90 0.79
Log-Mel+topicvec-eq 0.70 0.82 0.76 0.70 0.89 0.78
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Table 6 Performance comparison between the baseline system, 2-
layer GRU and CNN model. It is measured in terms of the accuracy,
average F1 score, recall, specificity and equal error rate (EER). The
values in bold indicate best classification results

Model Accuracy Fl1 Recall/Specificity EER
Baseline 0.813 0.810 0.795/0.827 -
GRU 0.791 0.789 0.795/0.789 0.212
CNN 0.824 0.822 0.821/0.827 0.173

classified as High-AQ, otherwise the speaker is classified as
Low-AQ.

The baseline assessment system in this study follows
a conventional two-step assessment approach proposed in
our previous study [15]. A 5-dimensional feature vector of
supra-segmental duration features is evaluated on the same
task of binary classification using a random forest classifier.
The leave-one-out cross validation strategy is adopted. The
feature vector includes: (1) duration ratio between non-
speech part and speech part; (2) average duration of silence
segments (longer than 0.5 second); (3) average duration
of speech segments (speech region between two silence
segments); (4) ratio of silence segment count to syllable
count; (5) syllable count per second. All of the features
are generated from the time alignment of a dedicated ASR
system. The time-delay layers stacked with bidirectional
long short term memory layers (TDNN-BLSTM) are used
as acoustic model of the ASR system and it is trained using
multi-task learning strategy [16]. These ASR-generated
features were shown to be effective to classify High-AQ
speakers from Low-AQ ones in the aspect of acoustic
impairment of PWA speech [15].

Table 6 lists the speaker-level binary classification
results on 91 test speakers with the threshold of 0.5.
The classification performance is measured in terms of
the accuracy, average F1 score, recall and specificity. It
is seen that the CNN model performs the best among
the three models, while the performance of 2-layer GRU
model is worse than that of the baseline system. This
demonstrates that the proposed CNN model is preferred
than the 2-layer GRU model for this specific assessment
task. The CNN model outperforms the baseline system
in terms of the recall, with the value of 0.821 (32/39)
versus 0.795 (31/39). Table 7 shows the confusion matrix

Table 7 Confusion matrix of classification result using CNN model.

ROC and EER of GRU and CNN models
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Figure4 ROC curves attained with 2-layer GRU and CNN models.

of classification result using the CNN model. The result
suggests that the end-to-end approach has great potential
to replace the traditional two-step method to perform
speech assessment for PWA. With all possible classification
thresholds, we further plot ROC curves (see Fig. 4) and
compute equal error rate (EER) (see Table 6) to measure the
performance of GRU and CNN models. From Fig. 4, the
same conclusion of CNN outperforming GRU can be drawn.

Pairwise McNemar’s Test [40, 41] is performed on the
classification results given by the three systems in Table 6.
The results are shown in Table 8. It is noted that there is no
statistically significant difference among them.

7 Discussion
7.1 2-layer GRU vs. CNN

To investigate the performance of the 2-layer GRU and
CNN models, we analyze twenty typical impaired subjects
for whom the classification results are correct. Ten of
the selected speakers are with High-AQ while the others
are with Low-AQ. Figure 5 illustrates the histograms of
utterance-level scores given by the 2-layer GRU and CNN
for High-AQ speakers respectively. Although two models

Table 8 Pairwise McNemar’s Test on classification results given by
the three systems. p < .05 indicates statistical significance.

True: High-AQ True: Low-AQ Total Model comparison Results of McNemar’s Test
Predicted: High-AQ 32 9 41 Baseline vs. GRU model Xz(l) =.062, p = .803
Predicted: Low-AQ 7 43 50 Baseline vs. CNN model x2(1) = .000, p = 1.000
Total 39 52 91 CNN model vs. GRU model x2(1) = 444, p = 505
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Figure 5 Comparison between

histogram of utterance-level 70

scores from 2-layer GRU model
and that from CNN model for
ten speakers with High-AQ.
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make correct decisions on these speakers, their overall
assessment scores generated from the CNN (range from
0.616 to 0.922) is much nearer to 1.0 than those from the 2-
layer GRU (range from 0.530 to 0.830). Specifically, most
of the utterance-level scores are higher than 0.9 with the
CNN model, while those are mainly distributed in the range
of 0.7 to 0.9 based on the 2-layer GRU model. Similar to
the previous case, the CNN performs better than the 2-layer
GRU in generating overall scores for ten speakers with Low-
AQ (0.002 — 0.342 versus 0.021 — 0.432). The distribution
of utterance-level scores produced by the CNN model is
even denser in the low-score region as shown in Fig. 6.
Generally speaking, utterance-level scores from the CNN
model tend to be more polarized than those from the 2-
layer GRU model, meaning the CNN model has a higher
classification confidence. This is also consistent with the
AUC results as shown in Table 5.

7.2 Visualization with Class Activation Maps
Given a trained CNN model, the Grad-CAM technique is

applied to explore what types of features in impaired speech
are learned in the CNN classifier to perform assessment.

Figure 6 Comparison between

0.6

Assessment score: 0.021-0.432
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Utterance-level score
(b) CNN

07 08 08 09 1

Recall that 3-second Log-Mel features are as the input
to the CNN model, and they can be viewed as time-
frequency gray-scale images. After simply up-sampling
the class activation maps to the same size of the input
image, the transformed class activation maps are further
combined with the input image for localizing the class-
discriminative regions. The proposed CAM visualization
consists of three image components. The base one is
the gray-scale Log-Mel image. The second component is
a semi-transparent image in red derived from the class
activation map. It contains the time-frequency regions that
positively influence the classification score of the High-AQ
class. For the last component, it is a semi-transparent image
of blue color, in which the blue areas indicate regions having
a negative influence on the class of High-AQ. The detailed
computations of class activation maps for creating the
second and third components are described in section 4.2.
Figures 7 and 8 give utterance-level scores and CAM
visualizations of two 15-second speech segments from
a High-AQ speaker (AQ: 94.7) and a Low-AQ speaker
(AQ: 74.2) respectively. These two speakers are correctly
classified by the CNN model. The CAM visualizations
are derived from the last convolutional layer (7" layer) in

Assessment score: 0.002-0.342
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Figure 7 Utterance-level scores

and CAM visualization of the

same speech segment from a

High-AQ speaker. They are

derived from the CNN model

with Log-Mel-eq input. The
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(a) Utterance-level scores (bottom) of a speech segment with label 1 from CNN model.

(b) CAM visualization of a speech segment with label 1 derived from CNN model.

the CNN structure, since the last convolutional layer was
expected to keep balance between high-level semantics and
detailed spatial information [26]. It is clearly observed that
the area of positive activation (red) in speech from the High-
AQ speaker is larger than that from the Low-AQ speaker. In
general, we observe that the CNN model is able to learn the
following features to determine the severity degree of PWA:

1. Duration-related features:

As illustrated in Figs. 7b and 8b, silence parts
are usually highlighted as negative activation in blue,
while speech parts are as positive activation in red.
Meanwhile, 3-second utterances with longer pauses
tend to have lower classification scores from CNN
model, which can be observed in Figs. 7a and 8a.
This indicates that milder PWA (with higher AQ) tend
to exhibit less dysfluency and vice versa. This also
confirms that the CNN is able to automatically learn
similar duration-related features as we designed in the
baseline system, such as “average duration of silence
segments” and “average duration of speech segments”.

Figure 8 Utterance-level scores
and CAM visualization of the
same speech segment from a
Low-AQ speaker. They are
derived from the CNN model
with Log-Mel-eq input. The
positive and negative activation

Transitions between speech parts and silence parts:

As we can see from Figs. 7b and 8b, the magnitudes
of positive activation (red) are higher at the transition
regions between speech parts and silence parts.
Thus, speakers who have high speaking rate with a
large number of transitions in their speech have a
higher probability to be classified as High-AQ. This
CNN-learned feature is also matched with one of
the conventional features named ‘“syllable count per
second” used in the baseline system.

Significant variation of formants:

It can be seen that the positive activation (red)
concentrate more on the time-frequency regions with
significant variation of formants. Speakers who produce
utterances with a variety of formant changes are more
likely to be classified into the High-AQ group. This
reveals that the fundamental formant information is
important to the classification result and it can be
implicitly learned by the CNN model. As mentioned in
Section 6.2, the formant feature is not considered in the

baseline system, which may be the reason of the poorer

for target class are highlighted . 2
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respectively.

(a) Utterance-level scores (bottom) of a speech segment with label 0 from CNN model.

(b) CAM visualization of a speech segment with label O derived from CNN model.

@ Springer



J Sign Process Syst

Figure9 CAM-visualization of
a speech segment from the
over-estimated speaker.

classification performance than the CNN model. The
lack of formant changes could be related to phonetic
disorder, voice disorder and limited vocabulary in PWA
speech. This suggests that using formant features for
the PWA speech assessment is promising and it will be
investigated in the future.

Overall, with the CAM visualization, the CNN model is
demonstrated to be capable of implicitly learning impaired
acoustic patterns for the PWA speech assessment.

7.3 Limitations of Study

We analyze one test speaker (AQ: 66.8) who is mis-
classified into High-AQ group with the CNN model. It is
found that there are a large number of function words and
filler words but few topic-specific words in his utterance,
even though his utterances are quite fluent. Figure 9 shows
the CAM visualization of a speech segment from this over-
estimation impaired subject, in which most of the speech
parts are in red. This reveals a major limitation of proposed
model: it fails to sufficiently learn the semantic content of
utterances but mainly focuses on acoustic impairment of
PWA. In the future, we propose to establish another neural
network that aims at characterizing language impairment
of PWA. A combined neural network considering both
acoustic and language impairments will be investigated
afterwards.

8 Conclusions

This paper presents an investigation on end-to-end
approaches to automatic speech assessment for Cantonese-
speaking PWA. The CNN model trained with equal-length
utterances using Log-Mel filterbank features shows compa-
rable performance to the conventional two-step assessment
method. The experimental results confirm the effective-
ness of using CNN model for automatic extraction of
pathological-related features. With the CAM visualization
technique, it is observed that the CNN-learned features
show similar physical meaning to hand-crafted features.
It suggests that applying end-to-end approach is able to
improve the efficiency of developing assessment system and
save significant amount of manual work.
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