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A B S T R A C T   

Discourse is a fundamentally important aspect of communication, and discourse production provides a wealth of 
information about linguistic ability. Aphasia commonly affects, in multiple ways, the ability to produce 
discourse. Comprehensive aphasia assessments such as the Western Aphasia Battery-Revised (WAB-R) are time- 
and resource-intensive. We examined whether discourse measures can be used to estimate WAB-R Aphasia 
Quotient (AQ), and whether this can serve as an ecologically valid, less resource-intensive measure. We used 
features extracted from discourse tasks using three AphasiaBank prompts involving expositional (picture 
description), story narrative, and procedural discourse. These features were used to train a machine learning 
model to predict the WAB-R AQ. We also compared and supplemented the model with lesion location infor
mation from structural neuroimaging. We found that discourse-based models could estimate AQ well, and that 
they outperformed models based on lesion features. Addition of lesion features to the discourse features did not 
improve the performance of the discourse model substantially. Inspection of the most informative discourse 
features revealed that different prompt types taxed different aspects of language. These findings suggest that 
discourse can be used to estimate aphasia severity, and provide insight into the linguistic content elicited by 
different types of discourse prompts.   

1. Introduction 

Brain injury via stroke or neurodegenerative disease can often result 
in aphasia, defined as impaired language and communication. Aphasia 
can lead to significant declines in quality of life and well-being (Bullier 
et al., 2020; Spaccavento et al., 2014), as the ability to communicate 
effectively is vital for interpersonal relationships, employment, and 
navigating the world. A major part of this decline can be related to 
impairments in spoken discourse (Galski et al., 1998). Spoken discourse 
provides a wealth of information about linguistic ability that is related to 
aphasia severity. Hence, evaluation of discourse in persons with aphasia 
has gained increasing recognition for clinical assessment and treatment 
(Bryant et al., 2016; Stark & Fukuyama, 2021). The majority of current 
aphasia assessments, such as the Western Aphasia Battery-Revised 
(WAB-R; (Kertesz, 2007)) are rigorous but relatively demanding stan
dardized tests that can be burdensome for survivors of stroke, their 
families, and clinicians. In the United States, it is often difficult for 

people to even be approved or financially supported for comprehensive 
baseline language evaluations post-stroke (Walker et al., 2022). Hence, a 
goal is to attempt to develop supplementary assessments that are brief 
but comparable. If reliable, such assessments could be used for triage 
purposes, measuring change in language abilities over time, or for in
dividuals who have limited access to healthcare resources (e.g., rural or 
impoverished). In this context, discourse analysis is a promising line of 
research, given the rich set of microstructural (lexical, syntactic) and 
macrostructural (cohesion, coherence) elements in discourse. 

Compared to a 45 minute to 2 hour standardized test, eliciting 
discourse is more tractable for a non-specialist, thanks to resources such 
as AphasiaBank (Fromm et al., 2020; Macwhinney et al., 2011). Tasks 
include an expositional description of a sequence of pictures (Broken 
Window), narrative discourse without visual aids (‘tell me the story of 
Cinderella’), and procedural (‘tell me how to make a peanut butter and 
jelly sandwich’). The tasks are brief (<5 min) and data collection could 
be done remotely via mobile phone applications or wearable monitors. 
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The prompts allow for more continuous and naturalistic output than 
other language assessments such as confrontation naming, sentence- 
picture matching, or production of isolated sentences. The variety of 
prompts (e.g., expositional vs. procedural) also allows for the inspection 
of relationships between linguistic and more domain-general cognitive 
processes such as procedural or episodic memory (Stark, 2019). These 
unique demands mean that discourse samples can measure language loss 
or recovery in a more naturalistic way than long-form standardized tests 
(Bryant et al., 2016). 

Previous studies have noted that the time-intensive nature of 
discourse transcription and coding presents a significant barrier to using 
discourse analysis clinically and in research settings (Bryant et al., 2016; 
Cruice et al., 2020; Stark & Fukuyama, 2021). However, recent advances 
in computerized transcription and natural language processing are likely 
to aid automated transcription and coding in the coming years (Dalton 
et al., 2022; Liu et al., 2023), although these automated methods are not 
yet widely used in clinical or research settings. Some work has been 
done to develop brief aphasia screenings such as the mobile aphasia 
screening test (Choi et al., 2015), Quick Aphasia Battery (Wilson et al., 
2018), Bedside WAB-R (Kertesz, 2007), or others designed for detection 
of paraphasia (Le et al., 2017) or primary progressive aphasia (PPA; 
(Fraser et al., 2014)). However, these have largely been designed with 
the binary goal of detecting the presence or absence of aphasia, specif
ically in severely affected patients (Kertesz, 2022), or classifying sub
types of PPA, instead of assessing the entire range of aphasia severity. 
Additionally, some of these brief measures have short and strict item- 
level response times, resulting in a tendency to overestimate aphasia 
severity in mildly affected patients (Wilson et al., 2018). 

There is a growing body of research that uses discourse as an 
outcome measure of therapy (Bryant et al., 2016). Some work has been 
done to investigate higher-level conceptual properties (macrostructure) 
of spoken discourse, such as main concept production and informa
tiveness metrics. These studies have found that people with aphasia tend 
to produce less informative speech and that different aphasia subtypes 
have differing levels of semantic and conceptual content in their speech 
(Dalton & Richardson, 2019; Gordon, 2008; Kong, 2009; Kong et al., 
2016). Other work has focused more on discourse microstructure, the 
focus of the current manuscript. Microstructure here is defined as 
grammatical and ‘lower-level’ linguistic features, such as number of 
nouns, utterance length, etc., as opposed to the correctness/complete
ness of higher-level semantic or conceptual content of the speech. 

For example, Stark (2019) quantitatively established that the 
different discourse prompt types (e.g., expositional, narrative, and 
procedural) tend to tax different aspects of the language system in both 
controls and people with aphasia. Narrative discourse was found to elicit 
the most content-rich speech. Procedural discourse, on the other hand, 
elicited the lowest syntactic complexity. These findings suggest that 
using multiple prompt types may be important for discourse-based 
language assessment. 

In related work, Fromm et al. (2016) investigated the relationship 
between proposition density and aphasia severity. Proposition density is 
the number of verbs, adjectives, adverbs, prepositions, and conjunctions 
divided by the total number of words, and is an indication of commu
nicative efficiency or adequacy. While they found that people with 
aphasia have significantly different proposition density than controls, 
there was no clear relationship between proposition density and aphasia 
severity. This was due to people with fluent aphasia having low AQs, but 
inflated proposition density, while people with nonfluent aphasia would 
have equally low AQs and low proposition density. However, Bryant 
et al. (2013) found a significant positive relationship between AQ and 
proposition density, but the frequency of aphasia type in that sample 
was not reported, making it possible that most of those participants had 
nonfluent aphasia. These findings highlight the difficulty of using 
quantitative discourse analysis. There are complex, multidimensional, 
and collinear relationships between microstructural variables, aphasia 
type, and overall language ability, which are difficult (or impossible) to 

capture with traditional univariate statistics. For this reason, dimension 
reduction, multivariate, or machine learning methods may be well- 
suited for discourse analysis. 

For example, Stark and Fukuyama (2021) used two dimension 
reduction techniques to investigate the relationship between discourse 
prompt type and microstructural variables in speech produced by those 
with and without aphasia. This work demonstrated that produced 
microstructural speech features are largely dissociable depending on the 
type of discourse prompt used for speech elicitation. Casilio and col
leagues (2019) used factor analysis to reduce the dimensionality of 27 
auditory-perceptual ratings of connected speech samples from Apha
siaBank. They found four factors (paraphasia, logopenia, agrammatism, 
and motor speech) that emerged which explained 79 % of the variance 
in the connected speech samples. However, predicting AQ using 
discourse features was not the main aim of those studies. 

Finally, from a neuroanatomical perspective, a large body of work 
has been conducted to map lesion features to specific discourse qualities, 
aphasia subtypes, or language measures such as sentence processing, 
naming, word comprehension, and semantic knowledge (Fridriksson 
et al., 2018; Fridriksson et al., 2016; Hillis et al., 2017; Kristinsson et al., 
2020; Magnusdottir et al., 2013; Riccardi et al., 2022; Riccardi et al., 
2020; Riccardi et al., 2019; Riccardi et al., 2023; Schwen Blackett et al., 
2022). Regarding discourse specifically, Mirman and colleagues (2019) 
used lesion-symptom mapping to investigate the neural correlates of 
discourse-elicited articulatory and grammatical deficits. They found that 
these discourse deficits were related to damage to motor and frontal 
cortices, and that those deficits were correlated with aphasia severity 
(AQ) and WAB fluency scores. These works highlight that various as
pects of language performance can be mapped to brain damage in spe
cific areas, and, in the context of the current study, begs the question of 
whether inclusion of lesion features can aid in the estimation of aphasia 
severity above and beyond discourse features alone. 

In sum, the research on microstructural speech features elicited from 
discourse production has established that: 1) different prompts elicit 
different speech features, 2) some of these features are related to damage 
in specific areas of the brain, 3) these features cluster together in ways 
that differ between aphasia subtypes and can distinguish people with 
aphasia from controls, and 4) some of these features are clearly corre
lated with aphasia severity (AQ) while others, like proposition density, 
have a more complex relationship with aphasia severity. Given the 
complex relationships between speech features with each other and with 
aphasia severity, a relevant question is whether machine learning 
techniques can be used to quantify and predict aphasia severity (AQ) 
using speech microstructure. If WAB-R AQ can be quantified from 
discourse prompts that are short (<5 min), more naturalistic, and can be 
administered by non-clinicians, then it is a good proof-of-concept that 
these discourse tasks can be used as brief, yet quantitative, language 
evaluations in situations when full administration of longer tests is un
desirable or unfeasible. This would be especially useful for rural or at- 
risk populations. For example, researchers or clinicians may want a 
quantitative estimate of a person’s AQ as part of a ’check-in’ or longi
tudinal assessment, but the person does not have a means of trans
portation, or a trained clinician is unavailable to administer the WAB-R. 
Discourse samples can be quickly and easily recorded remotely, even by 
a non-clinician, and then used to estimate AQ, while simultaneously 
collecting the rich data that accompanies recordings of connected 
speech. 

Here, we used expositional, narrative, and procedural discourse tasks 
in a group of 71 stroke survivors with available structural neuroimaging 
scans. Our first aim was to use a machine learning approach with 
microstructural speech features to predict aphasia severity (WAB-R AQ). 
A second aim was to examine how the inclusion of lesion features im
pacts model performance. Lesion features may provide additional in
formation about AQ beyond speech features, boosting estimation 
accuracy. While this may be less clinically useful if structural MRI 
collection and analysis is not feasible, it is a valuable question to 

N. Riccardi et al.                                                                                                                                                                                                                                



NeuroImage: Clinical 42 (2024) 103602

3

consider in the context of understanding the neurobiology of language 
post-stroke. If lesion features significantly boost model estimation, it 
would mean that structural MRI is capturing information about aphasia 
severity above and beyond what is being captured by discourse micro
structure. If lesion features do not aid model performance, then it in
dicates that discourse features alone are able to capture variance in 
WAB-R scores. A final aim was to investigate feature weights in the 
predictive models to determine which discourse or lesion features are 
most informative for the estimation of AQ. This would provide novel 
information about what features, in a machine learning context, are 
capturing the most information related to aphasia severity and how 
these features may differ according to the discourse prompt being used. 
We used Support Vector Regression (SVR) to predict AQ and assess 
feature importance. 

2. Materials and methods 

2.1. Participants 

Speech recordings were obtained from 71 unilateral left-hemisphere 
chronic (>12 months post-stroke, mean = 60 months, range = 12 – 237) 
stroke survivors by the Center for Study of Aphasia Recovery (C-STAR), 
as part of a multi-day data collection battery (see Spell et al. (2020)). 
Demographics are shown in Table 1. Participants were a mean of 61.7 
years old (range = 29 – 80, SD = 10.7). Participants were screened for 
conditions other than stroke via self and/or caregiver report of no his
tory or diagnosis of dementia and or neurological disorders. The battery 
included structural and functional neuroimaging, administration of the 
WAB-R (Kertesz, 2007) by licensed speech-language pathologists, 
discourse collection, and other cognitive and language testing. Although 
beyond the scope of the current manuscript, other measures collected 
include Philadelphia Naming Test (Roach et al., 1996), Northwestern 
Assessment of Verbs and Sentences (Thompson, 2012), health history 
questionnaires, Pyramids and Palm Trees (Howard & Patterson, 1992), 
and various in-house tasks designed to measure language abilities 
(Riccardi et al., 2022; Riccardi et al., 2020; Riccardi et al., 2019). 

Mean WAB-R AQ score was 65.9 (range = 14.5 – 100, SD = 23.5). 
Aphasia subtype was based on WAB-R AQ classification. Among these 
participants, 10 did not suffer from aphasia, while the rest had different 
types of aphasia: Broca’s (28), Anomic (14), Conduction (11), Global 
(4), Wernicke’s (3), and Transcortical Motor (1). A classification of ‘no 
aphasia’ was defined by the recommended cutoff of an AQ greater than 
93.8 (Kertesz, 2007). The 10 participants without aphasia suffered left 
hemisphere stroke but did not have self-reported or clinician-identified 
language problems. We included them in the analysis as it provides the 
statistical models with information about lesion/discourse features that 
are associated with high AQ. All participants signed informed consent, 
and the research was approved by the University of South Carolina 
Institutional Review Board. 

2.2. Behavioral data 

At intake, each participant was prompted by a clinician to narrate the 
Cinderella story, describe how to make a peanut butter and jelly (PBJ) 
sandwich, and explain the sequence of events shown in a picture, 
referred to as Broken Window, according to AphasiaBank prompt di
rections (Macwhinney et al., 2011). Their discourse was video recorded. 
For each of the discourse tasks, graduate students trained by certified 
speech-language pathologists generate transcripts, separate utterances 
into communication units and code the transcripts for specific linguistic 
variables (e.g., word repetitions, semantic and phonemic paraphasias, 
fillers, etc.) using the CHAT transcription format for automatic analyses 
by the CLAN program. All transcripts were then rated by second trained 
study staff member, and a final consensus was made on any disagree
ments before running any CLAN analyses on the transcripts. Inter and 
intra rater reliability is completed every spring on 10 % of all transcripts 

Table 1 
Participant information, sorted by WAB-R Aphasia Type.  

ID WAB-R AQ WAB-R Aphasia Type Days Post- 
Stroke 

Age Gender 

1013 91.8 Anomic 730 44 Male 
1014 85.8 Anomic 5432 60 Male 
1026 88.8 Anomic 1552 48 Female 
1028 91.3 Anomic 371 71 Male 
1029 77.2 Anomic 476 69 Male 
1033 80.3 Anomic 442 76 Male 
1046 82.3 Anomic 578 58 Male 
1049 82.7 Anomic 421 69 Female 
1059 91.3 Anomic 3035 71 Female 
1065 85 Anomic 381 75 Male 
1069 92.6 Anomic 2332 64 Male 
1099 79.9 Anomic 1323 66 Female 
1103 86.5 Anomic 417 71 Male 
1104 82.2 Anomic 485 60 Male 
1002 72.2 Broca’s 2722 58 Male 
1004 52.1 Broca’s 444 60 Male 
1005 41 Broca’s 4363 56 Male 
1006 45.9 Broca’s 7115 71 Male 
1008 37.6 Broca’s 425 70 Female 
1012 40.6 Broca’s 2706 50 Male 
1015 52.9 Broca’s 2439 55 Male 
1016 36.3 Broca’s 829 66 Male 
1030 73.9 Broca’s 502 43 Male 
1031 57.8 Broca’s 884 73 Male 
1035 54.8 Broca’s 4334 43 Female 
1036 53 Broca’s 400 50 Male 
1039 56.3 Broca’s 1952 54 Male 
1040 65.5 Broca’s 446 37 Female 
1044 53.7 Broca’s 3349 66 Male 
1050 27.7 Broca’s 691 68 Female 
1062 64 Broca’s 6335 64 Female 
1063 25.4 Broca’s 1744 76 Female 
1064 57.9 Broca’s 470 62 Male 
1072 67 Broca’s 2022 62 Female 
1080 71.4 Broca’s 787 78 Male 
1081 30.5 Broca’s 3004 49 Male 
1082 71.7 Broca’s 1445 59 Male 
1096 77.4 Broca’s 427 63 Male 
1101 56.2 Broca’s 472 80 Female 
1102 44.5 Broca’s 1659 44 Male 
1106 32.4 Broca’s 6579 76 Male 
1112 63 Broca’s 369 58 Female 
1001 63.4 Conduction 2530 74 Female 
1023 39.8 Conduction 1170 69 Female 
1024 79.2 Conduction 802 29 Female 
1034 68.9 Conduction 927 69 Male 
1041 60.5 Conduction 4571 76 Male 
1045 86 Conduction 1432 51 Male 
1056 51.1 Conduction 453 52 Female 
1060 63.1 Conduction 540 75 Female 
1077 57.7 Conduction 363 59 Female 
1079 88 Conduction 721 61 Female 
1114 51.9 Conduction 1459 57 Female 
1017 25.2 Global 2544 53 Male 
1051 31.3 Global 1094 49 Male 
1058 14.5 Global 630 65 Female 
1092 25.3 Global 518 67 Female 
1073 96.4 No Aphasia 4822 54 Female 
1074 96.8 No Aphasia 4696 42 Female 
1076 97.8 No Aphasia 2667 67 Female 
1078 99.1 No Aphasia 4092 67 Male 
1085 98.4 No Aphasia 3619 66 Male 
1088 100 No Aphasia 3130 71 Female 
1093 95.4 No Aphasia 517 65 Female 
1097 99.2 No Aphasia 1635 62 Male 
1098 98 No Aphasia 1984 65 Male 
1119 98 No Aphasia 561 78 Female 
1087 78.2 Transcortical Motor 448 60 Male 
1003 33.9 Wernicke’s 2362 63 Male 
1047 30.3 Wernicke’s 750 66 Male 
1089 67.8 Wernicke’s 366 57 Male  
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(see Spell et al. (2020)). Using Computerized Language ANalysis (CLAN) 
software (MacWhinney, 2000), we first ran the MOR command to 
analyze the morphosyntax and grammatical relations of all utterances in 
the transcripts. We then ran the EVAL command, which extracts a 
number of those indices for evaluating language in people with aphasia 
(Table 2). Examples of five of these completed CHAT transcripts are 
provided in the Supplementary Materials. All resulting indices were used 
as features in the machine learning algorithm, as our statistical approach 
(Section 2.5) was designed to automatically remove uninformative 
features during training of the model. See (Table 3). 

2.3. MRI data acquisition and preprocessing 

MRI data were obtained with a Siemens 3 T Trio System with a 12- 
channel head coil and a Siemens 3 T Prisma System with a 20-channel 
coil. Participants underwent two anatomical MRI sequences: (i) T1- 
weighted imaging sequence with a magnetization-prepared rapid- 
gradient echo (MPRAGE) turbo field echo (TFE) sequence with voxel 
size = 1 mm3, field of view (FOV) = 256 × 256 mm, 192 sagittal slices, 
9◦ flip angle, repetition time (TR) = 2,250 ms, inversion time (TI) = 925 
ms, echo time (TE) = 4.15 ms, generalized autocalibrating partial par
allel acquisition (GRAPPA) = 2, and 80 reference lines; and (ii) T2- 
weighted MRI with a 3D sampling perfection with application opti
mized contrasts by using different flip angle evolutions protocol with the 
following parameters: voxel size = 1 mm3, FOV = 256 × 256 mm, 160 
sagittal slices, variable flip angle, TR = 3,200 ms, TE = 212 ms, and no 
slice acceleration. The same slice center and angulation were used as in 
the T1 sequence. 

Lesions were defined in native space by a neurologist in MRIcron 
(Rorden et al., 2012) on individual T2-weighted images. Preprocessing 
started with coregistration of the T2-weighted images to match the T- 
weighted images, allowing the lesions to be aligned to native T1 space. 
Images were warped to standard space using enantiomorphic (Nachev 
et al., 2008) segmentation-normalization (Ashburner & Friston, 2005) 

custom Matlab script (https://github.com/rordenlab/spmScripts/b 
lob/master/nii_enat_norm.m) to warp images to an age-appropriate 
template image found in the Clinical Toolbox for SPM (https://www. 
nitrc.org/scm/?group_id=881). The normalization parameters were 
used to reslice the lesion into standard space using linear interpolation, 
with subsequent lesion maps stored at 1 × 1 × 1-mm resolution and 
binarized using a 50 % threshold. (Because interpolation can lead to 
fractional probabilities, this step confirms that each voxel is categori
cally either lesioned or unlesioned without biasing overall lesion vol
ume.) Normalized images were visually inspected to verify quality. 

2.4. Lesion feature extraction 

The lesion incidence map is shown in Fig. 1. The average lesion 
volume was 112,736 mm3 (SD = 84,360 mm3). The resulting images 
were parcellated according to the Johns Hopkins University atlas (Faria 
et al., 2012; Mori et al., 2005; Wakana et al., 2004). For each participant, 
the percent of voxels damaged within each of these regions was calcu
lated, and areas that were undamaged in all participants were removed 
from further analysis, resulting in 64 lesion features considered in this 
study (Supplementary Materials). 

2.5. Machine learning approach 

Our goal was to predict the AQ of a participant based on their 
discourse and/or lesion features with the help of machine learning. Two 
key design choices in developing a machine learning system are the 
learning algorithm and the feature set. We chose linear Support Vector 
Machines (SVM) which is a popular machine learning method that is 
known to perform well on relatively small datasets, (Mahmoud et al. 
2021) and is resistant to overfitting. An appropriate subset of given 
features was selected through recursive feature elimination and 
cross-validation. Specifically, we used leave-one-out (LOO) to split the 
participants into a set of 70 for training and 1 for testing. Using the 70 
samples in the training set, all the features were ranked using recursive 
feature elimination. We then selected a combination of top features 
through cross-validation as follows. By employing LOO again, the 
training set of 70 samples was further split into 69 for training and 1 for 
validation. By training the SVM on the 69 samples, we predicted the AQ 
for the one in the validation set. This is done 70 times with each 
participant in the validation set once. The predicted AQ values were 
compared against the true AQ values to compute an R2 score. This 
process was repeated for each combination of top-k features, with k 
limited to 10. When the features are highly correlated, as in the current 
study, a feature set close to the square root of the sample size is often 
ideal for SVM (Hua et al., 2005), and the inclusion of too many features 
in a relatively small sample can lead to overfitting. The feature combi
nation with the highest R2 score was then used to train the model with 

Table 2 
The list of discourse features extracted for each of the prompts. The last 16 
features starting from Nouns to WordErrors are included as both absolute 
numbers and relative percentages, amounting to a total of 45 discourse features 
per prompt.  

Name Description 

Duration Total duration of discourse (sec) 
Total Utts Total utterances 
MLU Utts Total #utterances for calculating MLU below 
MLU Words Mean number of words per utterance 
MLU Morphs Mean number of morphemes per utterance 
FreqTypes Number of word types used 
FreqTokens Number of unique words used 
FreqTTR Ratio of types to tokens 
Words/Min Words per minute 
Verbs/Utt Number of verbs per utterance 
Density Proposition idea density 
Retracing Number of self-corrections during speech 
Repetition Number of word repetitions 
Nouns Words that were nouns 
Prep Words that were prepositions 
Adj Words that were adjectives 
Adv Words that were adverbs 
Conj Words that were conjunctions 
Det/Art Words that were determiners or articles 
Pro Words that were pronouns 
Aux Words that were auxiliaries 
Verbs Words that were verbs 
3S Verbs that were 3rd person singular 
1S/3S Verbs with same form for first/third person 
Past Verbs that were past tense 
PastPart Verbs that were past participles 
PresPart Verbs that were present participles 
Plurals Nouns that were plural 
WordErrors Sound, verbal, or mixed paraphasias  

Table 3 
Results summary for predicted AQ compared to observed AQ for each model. 
The Lesion Only column has only a single model, where all lesion features (and 
no discourse features) were included.  

Prompt Discourse Discourse þ Lesion Lesion Only 

Broken Window r = 0.79 
RMSE = 14.53 
MAE = 10.44 

r = 0.76 
RMSE = 15.47 
MAE = 11.29 

~ 

Cinderella r = 0.75 
RMSE = 15.50 
MAE = 12.14 

r = 0.83 
RMSE = 12.94 
MAE = 9.53 

~ 

PBJ r = 0.70 
RMSE = 16.75 
MAE = 13.47 

r = 0.72 
RMSE = 16.56 
MAE = 12.95 

~ 

All Combined r = 0.83 
RMSE = 13.09 
MAE = 9.77  

r = 0.82 
RMSE = 13.29 
MAE = 10.03 

r = 0.64 
RMSE = 18.53 
MAE = 14.69  
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70 samples to predict the AQ for the one in the test set. We capped 
predicted AQ values at 100, and set the minimum to 20. Observed AQs 
below 20 are rare in clinical studies (Walker et al., 2022), and differ
ences in numerical AQ below this cutoff are unlikely to be clinically 
relevant. This process was repeated with each participant in the test set 
once. Note that with this procedure, we avoid ‘peeking’, and no infor
mation about the left-out participant is used for feature selection. We 
then computed Pearson’s correlation (r), root mean squared error 
(RMSE), and mean absolute error (MAE) between predicted AQ and 

observed AQ to evaluate estimation accuracy. The SVM model uses a 
hyper-parameter C for regularization. We varied C from 0.01 to 100 and 
chose the C that yielded the highest correlation coefficient. 

We conducted analyses with (1) Discourse features only from each of 
the three prompts individually, and the combined set of features from 
the three prompts, (2) Lesion features combined with the discourse 
features in (1), and (3) lesion features only. 

Fig. 1. Lesion incidence map (max = 54).  

Fig. 2. AQ prediction using only discourse features; A) Broken Window, B) Cinderella, C) PBJ, and D) all features combined.  
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3. Results 

Table 2 and Figs. 2-4 summarize the results. For each prompt, and for 
all sets of features (discourse only, discourse + lesion, lesion only), the 
correlation between predicted and actual AQ was significant (all p’s <
0.001, Pearson’s r range 0.64 – 0.83). 

We used a two-tailed Hotelling’s t-test for dependent correlations 
(Weiss, 2011) to examine whether any of the models were significantly 
better at predicting AQ. This test compares the Pearson’s r between 
predicted and observed AQ for a given pair of models (e.g., Cinderella 
vs. Broken Window), while considering that the values come from the 
same group of participants. All features combined was significantly 
better than PBJ (t(68) = 2.89, p =.005). No other pairwise tests were 
significant. 

When lesion features were added to discourse features, the perfor
mance for BrokenWindow, PBJ, and all features combined was not 
altered significantly. However, lesion features significantly boosted the 
performance of Cinderella, as determined by a Hotelling’s t-test for 
dependent correlations (t(68) = -2.05, p =.04). 

The lesion-feature only model was significantly outperformed by all 
models except for PBJ (with or without lesion) and Cinderella without 
lesion features (all p’s < 0.05). We also calculated the 10 most infor
mative features for each model (Table 4). Inspecting these features al
lows us to examine how informative linguistic features change 
depending on the prompt type. 

4. Discussion 

Here, we used features extracted from discourse analysis to quantify 
aphasia severity. Using these features, we were able to build models that 

Fig. 3. AQ prediction using discourse plus lesion features.  

Fig. 4. AQ prediction using only lesion features.  
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provided person-specific aphasia severity estimates, with predicted AQ 
scores being significantly correlated with observed AQ. We also inves
tigated which discourse or lesion features are most predictive of AQ. 
From these top features, we can draw conclusions about: 1) which lin
guistic (or lesion) features are most important for estimating aphasia 
severity, and 2) differences in how the language system is taxed by 
different prompt types. 

4.1. Prompt types and discourse features 

Using only discourse features, Broken Window had the highest pre
diction accuracy, while PBJ was numerically the lowest. Although this 
difference was not significant, it aligns well with the findings of Stark 
(2019), who suggested that PBJ has lower syntactic demands than 
narratives or expositional picture description tasks, even when 
inspecting discourse output from healthy adults. The top features for the 
PBJ model demonstrate that it captures somewhat different linguistic 
properties than Broken Window and Cinderella, especially related to the 
use of prepositions, which turned out to be the only feature selected 100 
% of the time when combining all discourse features into a single model. 
This result is consistent with Stark and Fukuyama (2021), who found 
that prepositions were one of the main features that separated PBJ from 
other prompt types (expositional, narrative) when examining discourse 
output using between-class analysis, a dimension reduction technique. 

Some patterns emerged relating to the task demands of expositional 
picture sequence description in the Broken Window prompt. First, the 
total number of different word types used, percent of nouns, and total 
utterances were important features, demonstrating that it encourages 
participants to display their general mastery of language by eliciting the 
use of different types of words and more utterances (Dalton & 
Richardson, 2015). This is perhaps also reflected in the importance of 
the determiners and articles feature, which may reflect preservation of 
grammar during speech (Matchin et al., 2020; Zhang & Hinzen, 2022). 

Proposition density – a measure of content richness - being chosen in 
100 % of Broken Window models was somewhat surprising. Past 
research has shown that while expositional tasks elicit the most diverse 
language, as measured by TTR, they elicit the lowest amount of content 
richness (measured by propositional density) of the 3 task types (expo
sitional, narrative, procedural; Stark (2019)). However, its inclusion in 
the model suggests that, while picture description may not elicit 
particularly high proposition density, proposition density in an indi
vidual person’s expositional discourse sample provides information 
about their aphasia severity. This finding can also be linked to Fromm 
et al. (2016), who found that proposition density differed in people with 
aphasia compared to controls, but that there was no straightforward 
relationship between proposition density and aphasia severity. This was 
due to fluent and non-fluent participants having equivalent AQ but 
dissimilar proposition density. The multivariate, machine learning 
approach used in the current manuscript was able to leverage infor
mation captured by proposition density, in combination with other 
features, to predict AQ. A caveat here being that proposition density in 
the current manuscript was informative for an expositional task, while 
the findings of Fromm et al. (2016) were from a narrative task (see 
further discussion in Limitations). Finally, word errors were also 
important for Broken Window models, reflecting the naming processes 
elicited by picture description tasks (e.g., having to name various objects 
or characters in the picture). 

Similar to Broken Window, an important feature elicited by 
Cinderella for predicting AQ was the number of different word types 
used. However, results suggest that the usage of the past tense is what 
separates Cinderella from the other prompt types, with past tense and 
past participle use being among the most important features for pre
dicting AQ in Cinderella-based models. Several studies have found that 
production and comprehension of past tense can be especially difficult 
for people with aphasia (Faroqi-Shah & Friedman, 2015; Jonkers & de 
Bruin, 2009; Ullman et al., 2005). Cinderella, a narrative recall task, 

Table 4 
Top 10 features for each model. In parenthesis, the first number is the percent of times that feature was chosen as a top 10 (across 71 LOO cross validation folds), and 
the second number is the median rank that feature had. e.g., FreqTypes (100, 1) means that the number of different types of words used was a top 10 feature 100% of 
the time and had a median importance rank of #1.  

Broken Window Cinderella PBJ All Prompts Combined 

% Det/Art (100, 1) FreqTypes (100, 1) % Prep (100, 1) % Prep-PBJ (100, 2) 
Total Utts (100, 3) % PastPart (100, 2) MLU Morphs (100, 2) # WordErrors-BW (82, 3) 
% Nouns (100, 4) % Past (100, 3) # Prep (100, 5) # Nouns-BW (70, 1) 
Density (100, 6) % Nouns (100, 4) % 3S (100, 8) % Nouns-Cind (70, 6) 
% Word Errors (99, 7) % PresPart (97, 6) # Nouns (99, 3) % Conj-BW (66, 9) 
Freq Types (97, 4) Words/Min (92, 5) Words/Min (99, 6) MLU Utts-BW (59, 7) 
MLU Utts (97, 7) # Repetition (85, 9) % Nouns (94, 6) % Past-BW (51, 10) 
Words/Min (87, 9) % Det/Art (80, 8) MLU Words (77, 6) % Det/Art-PBJ (48, 10) 
% 1S/3S (61, 10) # PresPart (70, 7) Verbs/Utt (49, 10) MLU Utts-Cind (38, 12) 
% Adj (58, 

8) 
MLU Morphs (56, 10) % Past (49, 10) % Det/Art-BW (34, 14)    

Lesion Only þ Broken Window þ Cinderella þ PBJ þ All Prompts Combined 
Superior Longitudinal Fasciculus 

(100, 1) 
Superior Longitudinal 
Fasciculus (100, 1) 

% Nouns (100, 3) Superior Longitudinal Fasciculus 
(100, 1) 

% Nouns-Cind (100, 4) 

External Capsule (100, 2) Density (100, 2) % PastPart (100, 4) MLU Morphs (100, 2) FreqTypes-Cind (99, 2) 
Middle Occipital Gyrus (100, 3) % WordErrors (99, 3) FreqTypes (97, 1) % Prep (100, 3) % Prep-PBJ (97, 3) 
Splenium of Corpus Callosum (99, 

4) 
External Capsule (99, 4) Middle Fronto-orbital Gyrus 

(97, 5) 
# Nouns (100, 4) Superior Longitudinal 

Fasciculus (94, 1) 
Fusiform Gyrus (99, 5) % Det/Art (93, 5) Superior Longitudinal 

Fasciculus (90, 2) 
Middle Occipital Gyrus (100, 8) Posterior Superior Temporal 

Gyrus (72, 8) 
Body of Corpus Callosum (79, 10) % Nouns (83, 6) % Past (89, 8) Retrolenticular Part of Internal 

Capsule (99, 7) 
# WordErrors-BW (61, 6) 

Retrolenticular Part of Internal 
Capsule (77, 6) 

# Repetition (75, 8) % Det/Art (87, 6) Words/Min (97, 6) # Nouns-BW (61, 8) 

Superior Corona Radiata (77, 9) % Adj (39, 10) Posterior Superior Temporal 
Gyrus (85, 7) 

MLU Words (97, 8) Middle Fronto-orbital Gyrus 
(54, 9) 

Lenticular Fasciculus (75, 8) Posterior Superior Temporal 
Gyrus (32, 10) 

Caudate (59, 9) % WordErrors (96, 6) % Past-Cind (51, 10) 

Middle Fronto-orbital Gyrus (68, 7) Lenticular Fasciculus (30, 13) # WordErrors (30, 11) # Prep (39, 10) % Det/Art-BW (25, 18)  
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forces participants to use the past tense in their retelling of the 
Cinderella story, while Broken Window and PBJ can be completed using 
the present tense. 

The findings demonstrate that, while each prompt can be used to 
predict AQ, the top ten features differ – providing insights about the 
unique linguistic demands of each prompt type. Indeed, combining all 
features from all prompts into a single model yielded numerically the 
highest AQ prediction accuracy, suggesting that the prompts make 
unique contributions to aphasia severity estimation. However, this 
comes with the drawback that there is less consistency among the top 
ten features chosen (evidenced by lower percentages and more variable 
median ranks for the top ten features), due to the expanded feature se
lection space. This could be ameliorated by simply using each discourse 
model individually, and then averaging the predicted AQs together for 
each participant. This maintains top ten feature consistency from each 
prompt type, while also allowing each prompt to contribute to predic
tion. We tested this averaging method in a supplementary analysis 
(Supplementary Materials, Fig. 1), and it yielded prediction accuracies 
virtually identical to the results generated from combining all features 
from all prompts into a single model (Fig. 2D and 3D). 

4.2. Lesion features and aphasia severity 

We also investigated the relative importance of the lesion features in 
AQ assessment. The superior longitudinal fasciculus (SLF) was the most 
frequently selected top ranked feature when only lesion features was 
used. Moreover, SLF is among the most frequently selected top two 
features even in the discourse plus lesion models. The SLF is a white 
matter tract that connects portions of the occipital, posterior temporal, 
and parietal lobes to the frontal cortex (Bernal & Altman, 2010; Kamali 
et al., 2014). Our finding that the SLF is an important feature for pre
dicting aphasia severity aligns with previous research demonstrating 
that degradation of the SLF in a variety of etiologies has been linked to 
impaired language or executive abilities that contribute to language 
(Madhavan et al., 2014; Nagae et al., 2012; Rizio & Diaz, 2016; Shinoura 
et al., 2013). 

The other features chosen 100 % of the time as a top 10 feature in the 
lesion-only model, the external capsule (EC) and middle occipital gyrus 
(MOG), are somewhat surprising as they are not considered classic 
‘language areas’ in most neurobiological models (Desai & Riccardi, 
2021; Hickok & Poeppel, 2004). However, EC integrity has been 
implicated in executive dysfunction (Nolze-Charron et al., 2020), and is 
considered by some to be a part of the ventral language stream (Axer 
et al., 2013), although this is debated. EC tracts are also adjacent to 
portions of SLF (Schmahmann et al., 2009), raising the possibility that 
these two pathways are commonly damaged together in stroke affecting 
the middle cerebral artery. It is also possible that the EC contributes to 
language via subcortical connections that support language either 
directly or through domain-general processes (Kuljic-Obradovic, 2003; 
Sharif et al., 2022). The MOG, on the other hand, may be related to 
visual identification of items and objects near the ‘beginning’ of the 
ventral language stream (Fridriksson et al., 2016; Hickok & Poeppel, 
2004; Hickok & Poeppel, 2016). People with MOG damage may perform 
poorly on visual aspects of the WAB-R such as object naming or picture 
description, making it an informative feature when predicting aphasia 
severity. 

Aphasia severity, as measured by the WAB-R, is measured using 
three principal criteria: production (spontaneous speech and naming), 
comprehension, and repetition. Production accounts for 60 % of one’s 
AQ score, with repetition and comprehension comprising an additional 
20 % each. The discourse production task nominally includes only 
production (with perhaps some overlap with repetition), and hence 
might be expected to perform relatively poorly in estimating AQ. The 
success of discourse tasks in predicting AQ suggests that discourse pro
duction is a rich and multi-faceted task, while also aligning well with the 
WAB-R’s relatively heavier weighting of production skills compared to 

comprehension. 
While it is somewhat surprising that adding lesion features to the 

discourse models did not boost the accuracy of aphasia severity esti
mation, it demonstrates the effectiveness of discourse tasks in estimating 
AQ. The discourse prompts require some of the same language skills that 
are measured by WAB-R (e.g., picture description and object naming), 
which was sufficient for discourse tasks to have a high predictive value, 
as suggested above. Lesion features, on the other hand, are compara
tively more ‘indirect’ representatives of language ability. When 
considering the future use of discourse features to estimate aphasia 
severity, it is a net positive that lesion features do not contribute 
significantly above and beyond discourse features. If discourse features 
alone could not estimate aphasia severity and MRI scans were required, 
then it would negate the advantage of the discourse method as less 
demanding in terms of resources. 

4.3. Limitations and future directions 

One limitation, which holds true for many discourse-related in
vestigations, pertains to the discussion of findings in comparison to 
other studies that used different discourse prompts or extracted different 
speech features. Although it is typically agreed that there are three 
‘families’ of discourse tasks (expositional, narrative, procedural), there 
are many different flavors within each family which may lead to dis
crepancies between studies. For example, although we used Broken 
Window as our expositional prompt, the use of a different expositional 
prompt, such as Cat Rescue, may produce different results. In
vestigations such as Stark and Fukuyama (2021) have demonstrated that 
different prompts within a given family tend to elicit similar speech 
features, but our specific findings using Broken Window, Cinderella, and 
PBJ may not hold true for other expositional, narrative, or procedural 
prompts, respectively. Future studies could seek to replicate our findings 
with other prompts. 

Another difficulty in comparing results between studies are the 
compositions of participant samples. For example, our study included 
‘controls’ (survivors of stroke with no language impairment), while 
other studies may only include those with aphasia. There are also dif
ferences between studies in the proportion of the various aphasia sub
types, as well as mean AQ scores, which are factors that may have 
complex relationships with discourse features. Future work could seek to 
replicate and expand these findings in diverse cohorts of people with 
aphasia. 

Here, our focus was on using mostly microstructural discourse fea
tures to estimate aphasia severity. Adding macro-level features such as 
main concept analysis or demographic features could boost the model 
prediction (Johnson et al., 2022). Regarding anatomical features, it is 
possible that other measures of brain health, such as resting state con
nectivity (Kristinsson et al., 2021) or brain age (Busby et al., 2023; 
Kristinsson et al., 2022) could also be useful estimators of aphasia 
severity. Understanding how these factors relate to aphasia severity 
could improve our understanding of the neuroanatomical and behav
ioral correlates of aphasia. It could also lay the groundwork for new 
behavioral or neurostimulation-based interventions, or for building 
models designed to predict long-term language recovery trajectories 
post-stroke, as opposed to AQ at a single time point. 

Clinical use of discourse-based aphasia severity estimation relies on 
improved automation of transcription and coding of impaired speech in 
the coming years, as current automated transcription methods perform 
relatively poorly in people with aphasia (Mahmoud et al., 2023). 
Another goal for future work would be to develop a’pre-trained’ model, 
which could be trained on a large amount of discourse from people with 
aphasia, and then disseminated to researchers and clinicians for aphasia 
quotient estimation without the need for them to develop or train their 
own models. These steps towards automation and ease-of-use would be 
necessary before discourse-based aphasia quotient estimation could be 
used in clinical settings. 
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Future work could also investigate how, instead of prompts, other 
naturalistic discourse paradigms could be used to assess language abil
ities and their neural correlates (Birba et al., 2022; Riccardi & Desai, 
2022). Finally, in the current study, even though the prediction was 
accurate overall with Pearson’s correlation between measured and 
predicted AQ near 0.8, and the models were accurate for the majority of 
the participants, they were relatively inaccurate for a handful of cases. 
Understanding the characteristics of individuals that lead to lower 
model prediction performance may help improve models even further. 

5. Conclusion 

The present study showed that microstructural features elicited from 
three AphasiaBank discourse prompts can be used to estimate aphasia 
severity. Even a single prompt, containing only a few minutes (or 
sometimes less than a minute) of speech output, was sufficient to esti
mate AQ reasonably well for most individuals. Each prompt elicited 
different informative features, demonstrating potential differences be
tween prompts. Lesion features can also be used to estimate aphasia 
severity, although with lower accuracy than the discourse-based models. 
An important role for superior longitudinal fasciculus integrity in 
aphasia severity is suggested. Discourse-based aphasia severity estima
tion is promising as a supplemental language measurement that is 
ecologically valid and less resource-intensive. The current study pro
vides important first steps towards mapping how discourse features can 
quantify aphasia severity. 
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