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The 2 episodes featured in this issue provide a rich setting in which to investigate not
only the influence but also the confluence of students’ and teacher’s understandings
on the quality of whole class discussions. In particular, I focus on the communication
between the students and myself as the teacher in the classroom. This unique perspec-
tive allows me to offer insights into the teacher’s decision-making process and how
those decisions influenced the opportunities for learning. As part of the analysis I con-
sider the role of tools in both supporting and constraining communication in the class-
room. The analysis therefore makes explicit the tensions in teaching by highlighting
the importance of the teacher’s understanding of the students’ offered explanations
and justifications and the mathematics that is to be taught.

Students’ actions and constructions are influenced by a teacher’s actions and construc-
tions, and vice versa. But neither is totally dependent on or independent of the other.

Research on effective teaching often characterizes the teacher’s classroom deci-
sion-making process as informed by the mathematical agenda but constantly being
revised and modified in action based on students’ contributions (cf. Ball, 1990,
1993; Carpenter & Fennema, 1991; Cobb, Yackel, & Wood, 1991; Lampert, 1990;
Maher, 1987; Simon, 1997; Simon & Schifter, 1991; A. C. Thompson, 1992). In
particular, Ball (1993) described her teaching as keeping an ear on the students and
an “eye on the mathematical horizon” (p. 185). Lampert used the metaphor of a
dance instructor who “dances with a learner so that the learner will know what it
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feels like to be interacting with someone who knows how to do what he or she is try-
ing to learn how to do” (p. 42). Elsewhere, my colleague and I (McClain & Cobb,
2001) have described teaching as “pursuing a potentially revisable agenda as in-
formed by inferences about students’ beliefs and understandings” (p. 237). Each of
these characterizations takes account of the students’ contributions while attending
to mathematics. Attempting to balance the tension inherent in simultaneously at-
tending to students’ offered solutions and the mathematical agenda is the hallmark
of deliberately facilitated discussions (cf. McClain, in press). These discussions in-
volve a plethora of decisions that must be made both before and while interacting
with students. The image that results is that of the teacher constantly judging the na-
ture and quality of the students’ contributions against the mathematical agenda to
ensure that the issues under discussion offer means of supporting students’ devel-
opment. This view of mathematical discussions stands in stark contrast to
open-ended sessions where all students are allowed to share their solutions without
concern for potential mathematical contributions.

A critical resource for the teacher in this process is therefore the means of support
available to help her achieve her mathematical agenda. This support manifests itself
in the form of the instructional tasks and the tools available for solving the tasks. For
this reason tools, notation systems, and student-generated inscriptions all serve an
important role in the mathematics classroom. However, itis not the tool (or the nota-
tion or the inscription) in isolation that offers support for the teacher. It is instead the
students’ use of the tools and the meanings that they come to have as a result of this
activity (Kaput, 1994; Meira, 1995, 1998; van Oers, 1996). In this way, the tool is not
seen as standing apart from the activity of the student.

The two episodes featured in this volume provide a rich setting in which to in-
vestigate not only the influence but also the confluence of students’ and teacher’s
understandings of tools and inscriptions on the quality of whole-class discussions.
In particular, I will focus my analysis on the two computer-based tools for analysis
and the students’ informal inscriptions and how they became constituted in the
course of classroom discussions. In doing so I will focus on communication be-
tween the students and myself as the teacher in the classroom, and how the tools
and inscriptions both supported and constrained that communication. The analysis
will therefore make explicit the tensions in teaching by highlighting the impor-
tance of the teacher’s understanding of the students’ offered explanations and jus-
tifications and the mathematics that is to be taught.

When focusing on students’ offered explanations and justifications, the teacher
is seen to actively guide the mathematical development of both the classroom
community and individual students (Ball, 1993; Cobb, Boufi, McClain, &
Whitenack, 1997; Cobb, Wood, & Yackel, 1993; Lampert, 1990). This guiding
necessarily requires a sense of knowing in action on the part of the teacher as he or
she attempts to capitalize on opportunities for mathematical learning that emerge
from students’ activity and explanations. With this comes the responsibility of
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monitoring classroom discussions, engaging in productive mathematical dis-
course, and providing direction and guidance as judged appropriate. Similar peda-
gogical issues were addressed by Lampert in her discussion of the teacher’s role in
guiding mathematical argumentation as a “zigzag” between conjectures and refu-
tations. This characterization of the role of the teacher is also evident in Simon’s
(1995) account of the “mathematics teaching cycle,” which highlights the relation
between teachers’ knowledge, their goals for students, and their interaction with
students. Teachers who approach teaching as a generative problem-solving activ-
ity—in the course of which they modify their goals, their understandings of stu-
dents’ thinking and of mathematics, and the means they use to support students’
mathematical development—contribute to the improvement of classroom practice
(cf. Ball, 1990; Carpenter & Fennema, 1991; Cobb et al., 1991; Franke, Carpenter,
Levi, & Fennema, 1998; Maher, 1987; Shulman, 1986; Simon & Schifter, 1991;
A. G. Thompson, 1992). A focus on the importance of students’ contributions also
highlights the importance of norms that constitute the classroom participation
structure (Erickson, 1986; Hershkowitz & Schwartz, 1999; Lampert; Sfard, 2000;
Simon & Blume, 1996; Voigt, 1995; Yackel & Cobb, 1996). The importance at-
tributed to classroom norms stems from the contention that students reorganize
their specifically mathematical beliefs and values as they participate in and con-
tribute to the establishment of these norms (cf. Bowers & Nickerson, 1998;
Lampert; Simon & Blume; Voigt).

The importance of a strong knowledge of content in teaching mathematics
has been acknowledged by a variety of scholars (Ball, 1989, 1993, 1997;
Bransford, Brown, & Cocking, 2000; Grossman, 1990; Grossman, Wilson, &
Schulman, 1989; Ma, 1999; Morse, 2000; National Research Council, 2001;
Schifter, 1995; Shulman, 1986; Sowder, Philipp, Armstrong, & Schappelle,
1998; Stein, Baxter, & Leinhardt, 1990). In doing so they emphasized the impor-
tance of a deep understanding of the mathematics one will teach so that deci-
sions made in action about appropriate avenues of exploration can be framed
against a relatively sophisticated understanding of the mathematical concepts to
be explored. Teachers therefore need to have a strong sense of what constitutes
the mathematical basis of each investigation that they conduct in their class-
room. The work of Carpenter and his colleagues in cognitively guided instruc-
tion (Carpenter & Fennema, 1992; Carpenter, Fennema, & Franke, 1996;
Fennema, Carpenter, Franke, & Carey, 1993) points to the importance of teach-
ers understanding not only the mathematics that they teach but also their stu-
dents’ mathematics. It is only in understanding their students’ ways of reasoning
that teachers can develop instruction that supports their students’ development.
This approach to instruction can be contrasted with an enactment model where
curricular materials are introduced in a lock-step manner as outlined by the de-
veloper. This latter form of instruction assumes that the materials attend to the
students’ diverse ways of reasoning and varied levels of understanding. Instead,
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teachers who attend to students take account of their activity on a daily and on-
going basis as they modify their instructional plan. To teach in this manner,
teachers have to find ways to make students’ learning visible in the course of on-
going classroom discussions and assignments. To benefit from these varied as-
sessments, teachers need knowledge of the range and variety of solutions and
strategies students might use in task situations. Simon (1996) supported this
premise by noting that “it stands to reason that instruction that is sensitive to stu-
dents’ knowledge and their processes of learning is likely to be more effective”
(p. 37).

In the following sections of this article, I first describe the methodology that
guided the retrospective analysis of the data from the teaching experiment.!
Against this background I analyze the two classroom episodes. My analysis is
grounded in both a documentation of my decision-making process as recorded in
my daily journal and a retrospective analysis of these decisions.? In the course of
my analysis I highlight the role of tools and inscriptions in both enabling and con-
straining my interactions with the students.

METHOD
Theoretical Framework

The emergent perspective is the theoretical framework that guided the detailed lon-
gitudinal analyses of the classroom teaching experiment (see Figure 1). It explicitly
coordinates sociological and psychological perspectives. The psychological per-
spective is constructivist and treats mathematical development as a process of
self-organization in which the learner reorganizes his or her activity in an attempt to
achieve purposes or goals (von Glaserfeld, 1995). The sociological perspective is
interactionist and views communication as a process of mutual adaptation wherein
individuals negotiate mathematical meaning (Bauersfeld, Krummbheuer, & Voigt,
1988). From this latter perspective, learning is characterized as the personal recon-
struction of societal means and models through negotiation in interaction. To-
gether, the two perspectives treat mathematical learning as both a process of active
individual construction and a process of enculturation into the mathematical prac-
tices of wider society. Individual and collective processes are viewed as reflexively

'The research team members involved in the teaching experiment included myself, Paul Cobb,
Koeno Gravemeijer, Maggie McGatha, Lynn Hodge, Jose Cortina, Carla Richards, and Cliff Konold.

2Although I had primary responsibility for the teaching during the classroom teaching experiment, on
numerous occasions a second member of the research team participated in whole class discussions. In
addition, additional members of the research team occasionally circulated around the room to monitor
students’ activity during small-group work.



TEACHER’S AND STUDENTS’ UNDERSTANDING 221

Social Psychological

Belief's about own role,

Classroom Social Norms others' roles, and the
@m) ocneral nature of

mathematical activity

Sociomathematical &pp Mathematical beliefs

norms and values
Classroom mathematical Mathematical interpretations
norms ‘TD and reasoning.

FIGURE 1 The emergent perspective.

related in that one does not exist without the other (Cobb, Perlwitz, & Underwood,
1994). The arrows in Figure 1 are intended to indicate this reflexive relationship.

This coordination of the social and psychological perspectives within the emer-
gent perspective is highlighted by the two columns shown in Figure 1 (cf. Cobb &
Yackel, 1996). The entries in the column headed “Social” indicate three aspects of
the classroom microculture that we have found useful to differentiate when ana-
lyzing the classroom community. The three corresponding entries in the column
headed “Psychological” indicate three related aspects of individual students’ rea-
soning as they participate in communal classroom processes.

For the purposes of this article, I focus on the aspect of the framework that deals
with sociomathematical norms (cf. McClain & Cobb, 2001; Yackel & Cobb,
1996). Sociomathematical norms include what counts as a different mathematical
solution, a sophisticated mathematical solution, an efficient mathematical solu-
tion, and an acceptable mathematical explanation and justification (cf.
Hershkowitz & Schwartz, 1999; Lampert, 1990; Simon & Blume, 1996; Voigt,
1995). In contrast, social norms can be characterized as general norms that are nec-
essary for engaging in classroom discussions and can apply to any subject matter.
Such norms include explaining and justifying solutions, attempting to make sense
of explanations given by others, and challenging others’ thinking (Cobb & Yackel,
1996). As indicated in the figure, the psychological correlates of the
sociomathematical norms are taken to be the specifically mathematical beliefs and
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values that constitute what might be termed students’ mathematical dispositions.
In this perspective, students are seen to reorganize their understandings of what
counts as different, sophisticated, efficient, or acceptable solutions and explana-
tions as they participate in the negotiation of sociomathematical norms.

The analyses presented in this article focus on the evolution of the
sociomathematical norm of what counts as an acceptable mathematical argument,
the norms for justification for these arguments, and the role of tools in both en-
abling and constraining these arguments. However, it is important to note that a fo-
cus on the sociomathematical norm of what counts as an acceptable mathematical
argument makes assumptions about the establishment of certain social norms. It is
therefore important that both the social and sociomathematical norms were a focus
of attention by the research team throughout the teaching experiment.

Method of Analysis

The approach I took when conducting retrospective analyses of the data generated
during the teaching experiment involves a method described by Cobb and
Whitenack (1996) for analyzing large sets of classroom data. This method is an ad-
aptation of Glaser and Strauss’s (1967) constant comparative method. The initial
orientation for a retrospective analysis is provided by the tentative and eminently
revisable conjectures that the research team developed while actually conducting
the teaching experiment. The method involves continually testing and revising
conjectures while working through the data chronologically episode by episode.
This constant comparison of conjectures with data results in the formulation of
claims or assertions that span the entire data set but yet remain empirically
grounded in the details of specific episodes. For this reason, the analysis of the two
episodes featured in this issue can be used to characterize the general ways of par-
ticipating in the classroom that were normative at these particular periods of time
during the teaching experiment.

ANALYSIS OF CLASSROOM EPISODES

Before I present the analysis of the classroom episodes, it is important to provide
background information on the processes used by the research team before entering
the classroom and its importance to me as the teacher. In particular, in the months be-
fore the classroom teaching experiment, the research team mapped out a hypotheti-
cal learning trajectory that guided the development of the instructional sequence. It
was a conjecture about the learning route of the classroom community and was con-
stantly subject to change and modification based on ongoing analysis of the class-
room sessions. Integral to the trajectory were conjectures about how to support this
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development. This included design decisions about tasks and the development of
tools for analysis. As a result, the two computer-based tools were designed to offer
resources that would support emergence of the conjectured learning trajectory.

It is important to clarify that this conjecture about a learning route and the
means of supporting it guided my decision-making process as I interacted with stu-
dents daily in the classroom. For that reason, I was continually attempting to gauge
the students’ current understandings against the mathematical agenda. It was
therefore critical that I keep the envisioned mathematical endpoint as my guide. At
the end of each class session, the research team discussed the day’s events and
made any necessary revisions to the instructional sequence based on observations
of the students’ activity. This required not only that I have a deep understanding of
the mathematical purpose of each classroom task, but that I also understand stu-
dents’ solutions so as to be able to make reasoned decisions about how best to pro-
ceed. In doing so, I had to take account of tools and other resources available to
support this goal.

Batteries Episode

As will become apparent from my analysis of the Batteries episode,  initially found
it very difficult to balance these multiple agendas. As a result, I was unable to com-
municate effectively with the students during discussions. My understanding of
their understanding was confounded by my interpretation of their use of the com-
puter minitool. Because of my preconceived judgments and anticipations about so-
lutions for the task and efficient tool use,  had difficulty adjusting to theirs. I was at-
tempting to only influence instead of also be influenced by the students’ actions and
constructions (cf. Steffe & Thompson, 2000). For this reason, my preconceptions
about efficient tool use constrained my ability to capitalize on the students’ activity
with the tool.

Classroom activity structure. Before I proceed with the analysis, it is im-
portant to clarify the classroom activity structure. This structure was composed of
three general phases, often spanning more than one class period. The first of these
involved the introduction of the task. Because the research team decided to use ar-
chival data in the teaching experiment, we judged that it would be important for the
students and myself to talk through what the research team came to call the data cre-
ation process (cf. Tzou, 2000). In effect, we wanted the students to elaborate the de-
sign specifications that would yield the data they were to analyze. This aspect of the
classroom typically was characterized by students clarifying for themselves the
question to be answered or dilemma to be resolved and the ramifications of the data
collection procedures on their analysis. During these discussions, the students
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would create a list of attributes on which they would want to generate measures to
answer the question. This was followed by discussions of how to collect the data,
what measures would be appropriate, and how to account for differences in data
collection procedures. This process proved important in grounding the students’
activity in the context of a situation that had real consequences.

My initial interpretation of this phase of the classroom activity structure en-
tailed my telling the students a story about a situation that ultimately would require
the needed analysis. In these instances, the students often recounted incidents from
their personal experience but did not actually engage in the process of data cre-
ation. After these discussions, I presented the data the students were to analyze and
attempted to support their understanding of the process by which the data were
generated by offering an explanation. Because they had not engaged in working
through the data creation process, their analyses often lacked grounding in the con-
text of the question at hand.

As an example, in introducing the batteries task, I asked the students if they
were familiar with different brands of batteries. I followed by asking them if
they knew what most battery companies “claimed.” After some suggestions, one
student noted that most of them claim to last the longest. Another student stated
that some of them had to be lying if they all claimed to last the longest. There
was an extensive discussion about this and students even talked about the “small
print” that companies use when they explain how the batteries were tested. I
then asked the students to make suggestions as to how we might test batteries to
determine their longevity. They responded by suggesting that the different
brands of batteries be placed in similar devices and timed to see how long the
device would run.

Although I engaged the students in a conversation related to batteries and how
we might test them, the students did not discuss what data would be needed to
make a good decision (e.g., data on the time that the batteries lasted). I imposed
those criteria. As a result, their framing of the task was not grounded in a process of
data creation that would generate measures to be used in answering the question at
hand. They only responded to my questions about how to test for longevity. This in
turn contributed to some of the students’ subsequent inability to situate their analy-
sis in the context of the investigation.

The second phase of the classroom activity structure involved the students
working in pairs or small groups at the computers to analyze the data. During this
phase, some of my colleagues and I would circulate among the groups of students
to monitor their work. It is important to clarify that during this time my role was
not to intervene and correct students’ errors or to suggest strategies for the particu-
lar task. It was, instead, to gain an understanding of the varied and diverse ways
students were approaching the task so that I could plan for the subsequent whole
class discussion. To this end, I would identify students whose solutions, when dis-
cussed, could support the emergence of the mathematical agenda. This might en-
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tail comparing and contrasting two or more solutions or discussing a sequence of
solutions intended to build toward a mathematical endpoint.

The third and final phase of the classroom activity structure entailed a discus-
sion and critique of the students’ analysis. During this phase, my role was to delib-
erately facilitate the discussion by selecting students to share their solutions and
highlighting aspects of those solutions that were mathematically significant. Si-
multaneously, I was attending to the negotiation of norms for argumentation. This
highlights the importance of the relation between the negotiation of classroom so-
cial and sociomathematical norms and the students’ mathematical development.

Each of the three phases of the classroom activity structure depended on effec-
tive communication between the students and myself. As will become apparent
from my analysis of the Batteries episode, my understandings and interpretations
of the students’ explanations and tool use often interfered with this communica-
tion.3 I was unable to adjust my interpretations to accommodate the students’ ways
of reasoning with the tool. For this reason, the discussions failed to provide an ef-
fective venue for productive mathematical discussions.

Instructional intent of the batteries task. Before introducing the batteries
data, I worked to understand the instructional intent of the task. This was necessary
to guide my decision-making process as I interacted with the students. This not only
involved an understanding of how the task fit in the instructional sequence as out-
lined by the conjectured learning trajectory, but it also involved making anticipa-
tions about how students might reason on the task and subsequently structure the
data as they worked with the computer minitool. Because this was only the second
task presented using the first minitool, a primary goal included supporting students’
ability to act on the bars in the minitool as data. The research team wanted to ensure
that the students’ activity take on the characteristics of genuine data analysis in-
stead of simply manipulating numbers in an attempt to complete an assignment. For
this reason, situations were chosen in the initial investigations such that the attrib-
ute measured had a sense of linearity (e.g., braking distances of cars and length of
time a battery lasted). We conjectured that the bars would therefore be a linear rep-
resentation of the measure.

A second aspect of this goal was that the students would find ways to character-
ize the data that attended to the question. This was based on our analysis of
preassessment data which indicated that the students typically calculated the mean
when comparing two sets of data. Our goal was to create a perturbation in this way
of thinking and initiate shifts toward ways of reasoning that focused on features of
the data sets including variability. This was supported by features on the computer

3These interpretations were based on analysis of my daily reflective journal.
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minitool that allowed the students to order and partition the data. The goal was
then that the students would come to reason about the characteristics of the data
values as they made comparisons across the data sets. The research team also had
an overarching goal of supporting students’ ability to reason multiplicatively
about data (cf. Harel & Confrey, 1994; P. W. Thompson, 1994; Thompson &
Saldanha, 2000). Multiplicative reasoning is distinguished from reasoning
additively. As an illustration, in reasoning additively, students might focus on the
absolute frequency of the data in particular intervals (e.g., 15 cars are going faster
than the speed limit and 30 are going slower). In contrast, in reasoning
multiplicatively, students might focus on the relative frequency or proportion of
the data (e.g., one third of the cars are going faster than the speed limit). As a result
of our noting the importance of this distinction, I had anticipated that students
might partition the data sets using the tool and reason about proportions of the data
that fell within or above a certain range or cut point. These would be solutions that
I would want to capitalize in the course of whole class discussion.

The features on the computer minitool were designed to support this type of
reasoning. In particular, the range tool was designed to allow students to capture a
subset of the data values to make decisions about the range or variability. The
value bar was intended to offer students a means of partitioning the data, identify-
ing the median, or estimating the mean. Our intent was that the students would use
these features of the minitool as they reasoned about how to structure the data to
make a judgment or comparison. In this way, the tool offered a means of support-
ing the mathematical agenda.

Classroom analysis.  As the students worked at the computers on their anal-
yses, I circulated among the groups to identify students whose ways of reasoning
would support the emergence of the aforementioned goals. In doing so, I took a
“snapshot” of their activity and attempted to determine how they were proceeding
with their analysis as I made decisions about how to organize the whole class dis-
cussion. From my brief exchange with Ceasara and her partner, [ inferred that they
had partitioned the data set with the range tool feature on the computer minitool and
reasoned about proportions of each brand of battery on either side of the cut point.
judged this to be an efficient and sophisticated way to approach this task and one
that supported my mathematical goals. I therefore selected Ceasara to share in
hopes of highlighting this solution method in the whole class discussion. My judg-
ment about their solution was based, in part, on the way Ceasara and her partner had
organized the data with the computer minitool. They had used the range tool to
identify the top 10 values as shown in Figure 2 (see also Figure 4 in the Appendix,
article by McClain, this issue).

Iinterpreted their use of the range tool as a way to partition the data. In doing so,
I assumed that Ceasara and her partner had reasoned about proportions of each
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FIGURE 2 Battery data with range tool shown capturing the top 10 values.

data set that fell within a certain range. However, when Ceasara gave her explana-
tion, it was clear that I had misinterpreted their activity. This could be attributable
in part to my brief interaction with the students, but also in part to the fact that I had
interpreted their activity in a manner that fit with how I would attempt to analyze
the data. As a result, Ceasara’s explanation was unanticipated. This was a pivotal
event, placing me in the position of first ensuring that I understood the students’
solution and then reacting to their explanation. I was therefore no longer able to
proactively orchestrate the whole class discussion.

Although it could be argued that Ceasara and her partner did in fact partition the
data with the range tool, the particular argument Ceasara offered did not fit with
my interpretation of an argument based on partitioning. Ceasara stated that she
used the range tool to identify the top 10 batteries out of the 20 that were tested and
noted that Always Ready were more consistent with 7 out of the top 10 [12]. For
me, this would involve attention to the proportion of each data set that fell within a
certain range. However, the choice of the top 10 was, for Ceasara, a valid basis for
selecting Always Ready as the better battery. I, however, was further confused by
her use of the term consistent while simultaneously focusing on the top 10. At this
point I was wondering if I understood her correctly. For that reason, I asked Jamie
to explain her understanding of Ceasara’s solution to me [14—16].

14. Jamie: I understand.
15. Kay: You understand? OK, Jamie, I'm not sure I do. So could you
say it for me?
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16. Jamie: She’s understanding, I mean she’s saying that out of 10 of
the batteries that lasted the longest, 7 of them are green, and that’s
the most number, so the Always Ready batteries are better, because
more of those batteries lasted longest.

Jamie’s interpretation of Ceasara’s explanation also did not fit with mine. I
was now focused on Ceasara’s use of the term consistent. For me, this implied a
smaller range. This was not, however, the explanation that Jamie gave of
Ceasara’s solution, nor did it fit with the notion of consistency. Jamie’s explana-
tion centered on the number of batteries within the top 10. At this point in the
discussion, I felt that I was faced with either imposing my interpretation of how
to more effectively use the range tool or simply calling on another student with-
out attending to Ceasara’s solution method. Fortunately, Jason was able to pose
a question that allowed me to explicate my concern. Jason noted that if Ceasara
had chosen to use the range tool to capture the next “bunch of close ones” (e.g.,
the next 4 batteries) then there would have been 7 of each brand represented
within the range tool [18]. At this point, I built off of Jason’s question and at-
tempted to get Ceasara to justify her choice of the “top 10” instead of, say, 14
[19]. However, when she responded that her selection of the top 10 data values
was based on “trying to go with half,” I was unable to think of a question to
challenge her further [23].

As I deliberated about how to proceed, Blake raised his hand to say that he
solved the task a different way. He had used the value bar to partition the data at 80
hr and had reasoned about the parts of each set that fell above 80 hr [26] as shown
in Figure 3 (see also Figure 5 in the Appendix).

In doing so, he had judged Tough Cell to be the better brand because he would
“rather have a consistent battery that I know that’ll get me over 80 hr than one that
just try to guess” [30]. I followed up by asking Blake why he chose 80 hr as a cut
point [31]. He stated that his choice was based on the fact that “most of Tough Cell
batteries were all over 80 [32]. I interpreted him as viewing 80 hr as a lower limit
[33].

In attempting to tease out important differences between Ceasara’s and Blake’s
explanation, I frame both explanation in terms of Toulmin’s scheme for argumen-
tation (see Figure 4).

Ceasara and her partner analyzed the data and reached the conclusion that the Al-
ways Ready batteries were better [12]. When asked to give a warrant, or to explain
how they reached their conclusion, Ceasara stated that she looked at the top 10 of the
20 batteries [20]. Jason prompted me to ask Ceasara for a backing, or a justification
for her warrant. The backing she offered was that she “was trying to go with the half”
[22]. A similar exercise with Blake’s explanation finds his conclusion different. He
chose Tough Cell [30]. Blake’s warrant or explanation for his conclusion was that
“all of the Tough Cellis above 80 [30]. When asked to provide a backing or a justifi-
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cation for his warrant, he explained “I’d rather have a consistent battery that I know
that’ll get me over 80 hr than one that just try to guess” [30].

A comparison of the two backings offered offers an opportunity to highlight an
important shift that occurred in the course of the discussion. Although the students
understood Ceasara’s procedure (looked at the top half of the data and noted which
brand had the most results there), her choice of the top 10 did not appear to be a
valid statistic for everyone. In particular, Jason argued that if you modified the po-
sition of the range tool and chose the top 14 batteries instead of the top 10, you
would have seven of each brand because the next 4 batteries are Tough Cell [18].
Choosing the top 10 was an arbitrary choice, not valid for the investigation at hand.
Blake, on the other hand, gave a rationale for choosing 80 hr that appeared to be
valid for all of the students. He wanted batteries that he could be assured would last
a minimum of 80 hr [30]. In particular, his backing was grounded in the situa-
tion-specific imagery of the longevity of the batteries.

In this discussion, the students were beginning to negotiate what constituted a
sufficient backing or acceptable mathematical argument in this classroom. Al-
though I made no attempt to clarify the need for a backing that is grounded in the
context of the investigation, this does emerge from Jason’s challenge. Jason
wanted to know what was significant about choosing 10: why not 14? I, however,
was able to capitalize on Jason’s comment by questioning Ceasara about her
choice of 10 [18]. In addition, the challenge by Jason also prompted me to ask
Blake to justify his decision to partition the data at 80 hr [31].

The exchange continued with Jamie questioning Blake’s choice of Tough Cell
as more consistent [34]. Jamie claimed that Always Ready was also consistent. In
retrospect, it appears that Jamie and Blake were using different criteria for judging
consistency. In doing so they were focusing on different features of the computer
minitool. To clarify this difference, it is necessary to explain that on the previous
task another student, Will, first introduced the term consistent. Students had been
asked to judge the comparative safety of two makes of cars by looking at the brak-
ing distances of 10 of each make. Will had based his argument on consistency stat-
ing that it would be important to know, each time you applied the brakes, about
how long it would take to stop. Therefore, the more consistent data set was the
better make of car. He had used the range tool to identify the extreme data values in
each data set to determine the range and then to make comparisons. In the batteries
task, Ceasara and her partner had structured the data using the same feature on the
computer minitool and had reasoned that because 7 out of 10 Always Ready were
in the top 10, it was more consistent. Although Jamie’s recasting of Ceasara’s solu-
tion did not involve the use of the term consistent [16], it appears that in her con-
versation with Blake she was referring to the data structured as in Ceasara’s
solution (e.g., with the range tool as shown in Figure 2). Evidence of this can be
found in her reference to “only 3 out of 10” [36], which is the number of Always
Ready batteries falling outside of the captured range. However, Blake was arguing
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for Tough Cell based on the fact that all 10 lasted longer than 80 hr. Blake’s re-
sponse to Jamie was based on his way of structuring the data with the value bar, as
he stated, “you still have 2 that are behind 80 in the Always Ready” [35]. It is only
in retrospect that I became aware of my contribution to the lack of communication.

At this point in the discussion, there is every indication that Blake and Jamie are
talking past each other—there is a breakdown in communication. Blake and Jamie
have different understandings of the term consistent and are applying them to the
data structured in two different ways. I contributed to the miscommunication by
leaving both features of the minitool visible (e.g., the range tool and the value bar) as
shownin Figure 2. This constrained the students’ ability to attend to the two different
ways of reasoning about the data. Blake’s interpretation of consistency was based on
the number of data values greater than 80 hr as defined by the value bar. Jamie’s was
based on the number of data values in the top 10 as captured by the range tool.

As the conversation continued, the lack of communication was further compli-
cated by the fact that for Blake, the batteries being analyzed were a representative
sample of the population [37]. I, in fact, recast his interpretation in terms of being
representative [38]. However, Jamie, who was still focused on the top 10 batteries,
did not understand why a similar thing would not happen with the Tough Cell batter-
ies [39]. For her, the data sets, as inscribed on the computer minitool, were the popu-
lation. This appears to also be the case for both Jessica and Sequoria, who spoke
about getting “one of the bad batteries” [42] or “the ones that were lowest” [48].

Throughout this episode, there was evidence of the breakdown in communica-
tion between the students and myself. Initially, I was trying to make sense of the
offered solutions for myself. This occurred after Ceasara’s explanation [15] and
again after Blake’s [33]. In the latter case, I rephrased Blake’s decision to partition
the data at 80 hr in terms of a lower limit. In this instance I was verbalizing my un-
derstanding of Blake’s method. However, I made no attempt to ensure that other
students understood these explanations. This lack of attention to students’ under-
standing is further highlighted by analyzing the exchange between Blake and
Jamie that occurred at the end of Blake’s explanation [34—40].

34. Jamie: Um, why wouldn’t the Always Ready batteries be consis-
tent?

35. Blake: Well, because all your Tough Cell is above 80, but you still
have 2 that are behind 80 in the Always Ready.

36. Jamie: I know, but that’s only 3 out of 10.

37. Blake: No, but see, they only did, what, 10 batteries? So the 2 or 3
will add up. They’ll add up to more bad batteries and all that.

38. Kay: Oh,Isee; as you get more and more batteries, it’s going to get
more, more bad ones if that’s representative. OK, is that...Jamie?

39. Jamie: So why wouldn’t that happen with the Tough Cell batter-
ies?
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40. Blake: Well, because the way that hose 10 batteries show on the
chart that they’re all over 80 that means that it seems to me that
they would have a better quality.

Although I was aware of the sophisticated nature of reasoning about samples, I
made no attempt to ensure that either Jamie or other members of the class under-
stood Blake’s explanation.

This lack of communication is consistent throughout the first part of the episode
and is confounded by the tool use. I made no attempt to clarify which way of struc-
turing the data the students were referencing in their arguments. This is a major
contributing factor to the ineffective nature of the discussions. Because both struc-
turing features remained visible throughout the discussion, there was a continued
lack of clarity in the arguments. Students only saw the aspects of the inscription
that were pertinent to their argument.

However, as the episode came to an end, a shift occurred in my focus on stu-
dents’ understanding as I attempted to ensure that they understood Jessica’s com-
ment [43]. T also made an implicit statement to the students about their
responsibility to listen and attempt to understand others’ offered solutions when I
asked Sequoria to restate what she thought Jessica said [47]. This was motivated
by my acknowledgment of the importance of Jessica’s comment with respect to
the agenda for the lesson. Jessica focused on features of the data sets that included
attention to the extreme data values in each data set [42]. She was able to point to
characteristics of the data that would be important in deciding the better brand of
battery.

Initially, I had interpreted the students’ contributions against my more sophisti-
cated understandings of the tool and the task. I was giving too much agency to their
activity on the computer tool. As an example, when Ceasara ordered the value
bars, I saw the shape of the distribution and assumed it was transparent for her also.
In coming to understand the importance of taking account of their actions and con-
structions, I began to work much harder at making sense of their activity with the
tool instead of imposing my understandings.

Transition to the AIDS Episode

In the weeks following the Batteries episode, as the students engaged in a sequence
of data analysis tasks, I continually reflected on my activity against the background
of the students’ learning and the overall intent of the instructional sequence. This
occurred through daily journal writings and interactions with other members of the
research team. In doing so, I came to understand the importance of deliberately fa-
cilitated whole class discussions and the norms for argumentation that would sup-
port students’ active participation in these discussions. A critical feature of these
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aspects of the classroom was the role of the computer minitools in supporting my
efforts. Their design had been a result of efforts to provide means of supporting stu-
dents’ ways of reasoning statistically. For that reason, they offered a necessary re-
source for achieving the mathematical agenda. Without them, my ability to support
shifts in the students’ ways of reasoning was limited. It was therefore necessary that
I build on the affordances offered by the tools. As a result of my continually devel-
oping understandings, there was a gradual shift in my ability to get beyond my in-
terpretations of the task and focus on the interpretations of the students and their use
of the tools. In doing so, I acknowledged the importance of communication be-
tween the students and myself and the role of the tools in supporting that communi-
cation. This shift in my understanding of the importance of the students’ ways of
reasoning can be seen in the AIDS episode that occurred 23 class sessions later. In
this episode, I was able to build from the students’ analyses to advance the mathe-
matical agenda.

AIDS Episode

The task for the students in the AIDS episode varied from the one in the Bat-
teries episode. Over the course of the teaching experiment, the research team de-
cided that asking the students to choose the better brand or better treatment
focused the students’ analyses on the choice. By asking the students to think of a
way to structure and organize the data so that someone else could make a rea-
soned decision, the students were asked to investigate patterns in the data and
then decide how best to represent those to someone who would not see the data
sets in their entirety. In this way, discussions focused on features of the students’
inscriptions. However, the inscriptions that the students developed were modifi-
cations of the data as structured by using features on the second minitool. As an
example, one option the students used was the create-your-own-groups method
to determine the actual number of data values above and below a cut point. The
resulting inscription would be a line with the location of the cut point noted, the
extreme data values marked, and the number of data values appearing in each in-
terval recorded, as shown in Figure 5.

When making comparisons, students would stack these (similar to the way
they were stacked on the computer minitool) and reason across them to judge
which brand or treatment was better. This judgment would be based on how the
data were distributed to the two intervals. In most situations, it was not unusual
for all of the students to agree on a brand or a treatment and still discuss at
length the best way to represent the results of their analyses. The discussion
therefore focused on features of the students’ inscriptions. This shift towards
what we came to call a data-analyst’s perspective proved significant in support-
ing students’ ongoing data investigations.
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46 58

28 56 71

FIGURE 5 An inscription resulting from using the create-your-own-groups option.

During the introduction of the AIDS task situation, it became evident that the
students were quite knowledgeable about AIDS and understood the importance of
finding an effective treatment. Furthermore, they clarified the relation between
T-cell counts and patients’ overall health (increased T-cell counts are desirable).
They had studied AIDS in health class and were aware of social issues surrounding
treatments and the importance of a cure. After the discussion, I introduced the data
inscribed in the second computer minitool.

At this point in the instructional sequence, the research team was interested in
supporting shifts in students’ ways of reasoning toward structuring the data
multiplicatively. This particular task was selected because the two data sets con-
tained an unequal number of data points. In particular, one data set was much
larger than the other (46 patients compared with 186 patients). In earlier tasks with
unequal numbers of data points, students spent a great deal of their time deciding
which data points to ignore to have equal sample numbers. One goal of this task
was to create a situation where equalizing the sets by eliminating points was not
possible. We hoped that this would create the need for multiplicative ways to
structure the data to make a comparison, because direct additive comparisons
would be inadequate.

As the students worked in pairs on their analyses, I again monitored their activ-
ity to plan for the subsequent whole class discussion. In this particular instance, the
discussion of the data creation process and the students’ analyses encompassed the
entire class period. As a result, I was able to collect the students’ reports and in-
scriptions and use them in making decisions for the following day. In reviewing
the students’ solutions, we noticed that some students found qualitative ways to
make comparisons between the two data sets, such as referring to where the “ma-
jority” of the data were located. Other students found quantitative ways to make
the distinctions by noting the number of data values above and below a certain cut
point. Still others had structured the data into four equal groups and reasoned about
the percentages of each data set that fell above a certain T-cell value. We therefore
decided to begin with the qualitative inscriptions and move toward the quantitative
ones in hopes of shifting the students’ ways of reasoning toward inscriptions that
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made multiplicative ways of reasoning explicit. In particular, we anticipated being
able to problematize the reports that noted the number of data values above a T-cell
count of 525 or 550, because direct additive comparisons were insufficient (see
Figure 6).

As an example, just giving the count of data values above 525 (e.g., reasoning
additively) would lead one to conclude that the traditional treatment protocol was
more effective. Only when that number is taken as a proportion or a percentage of
the total can an adequate argument be made (e.g., reasoning multiplicatively).

In making these a priori decisions about how to sequence the students’ reports,
we made a conscious decision to start with qualitative comparisons and then move
to quantitative ones. Our purpose in this structuring was to start with analyses
based on perceptual patterns in the data that provided a means for all students to
engage in the critique. By building from the students’ inscriptions, we hoped to ini-
tiate shifts toward more sophisticated inscriptions, thereby providing an opportu-
nity for all students to participate. This is in contrast to introducing a
four-equal-groups inscription and spending the class period explaining it to those
who do not understand. We judged that the former alternative provided us with the
means of supporting the students’ developing understandings.

I began the whole class discussion the next day by asking the students first to
decide if they could understand each report and then decide if they thought the in-
scription was an adequate way to represent the data to enable someone who had not
seen the data sets to make a decision [50]. In doing so, I was attempting to shift the
conversations from simply providing explanations of methods to critiques. To fa-
cilitate this process, I reproduced the students’ inscriptions on chart paper. The
creation of these artifacts allowed the class to see the reports clearly and removed
ownership during the discussion. Although the authoring students might have been
able to determine which inscription was theirs, other students in the class could
have solved the task in the same way. For this reason, the students did not attend to
whose solution was being critiqued.

The discussion began with Jamie giving her assessment of the first report [56].
She determined that the report was adequate because she could tell “where the range#
isstarting and ending” and “where the majority of the numbers are” [52]. This justifi-
cation created a problem for Derrick, who did not understand what Jamie meant by
the term majority [57]. In the ensuing discussion, I authorized the turn taking as the
students attempted to answer Derrick’s question [59-74].

59. Jamie: Where most of the numbers were.
60. Derrick: Where most of the numbers are...
61. Kay: Sheena, can you help?

“In this turn, Jamie is using the term range to refer to the range of values. Students use of the term was
very casual and often conflicted with the statistical definition.
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FIGURE 6 AIDS data in second minitool partitioned at 525.
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62. Sheena: Like, when she talks about like when she says, like when
you say where the majority of the numbers were, where the, where
the point is, like, you see where it goes up?

63. Kay: I do see where it goes up.

64. Sheena: Yeah, like right in there, that’s where the majority of it is.

65. Kay: OK.

66. Derrick: The highest range of the numbers?

67. Sheena: Yeah.

68. Kay: The highest range?

69. Sheena: Oh, no.

70. Vallory: No.

71. Kay: Vallory?

72. Vallory: However many people were tested, that’s where most of
those people fitted in, in between that range. With those little...

73. Paul: You mean this range here?

74. Sheena, Jamie, and Vallory: Yes.

From the comments, it appeared that for some of the students, the inscription was a
representation of the distribution of the data. In other words, they could determine
where the data were with respect to the inscription. In particular, Jamie referred to
“where most of those people fitted in” [72]. This was important because our goal
was that the students build initial understandings of distributions from perceptual
patterns in the data.

After this discussion, I introduced the next two reports as shown in Figure 7 (see
also Figure 10 in the Appendix).

Both of the groups generating these reports initially had structured the data in a
similar manner by using the computer minitool. One had partitioned the data at
525 and the other at 550. Both had then reasoned about the number of data values
on either side of the cut point, albeit one in qualitative terms (e.g., majority) and the
other in quantitative terms [55]. At this point, Vallory asked why the one group had
chosen to partition at 550 [78]. She noted that 550 did not represent the median, so
she could not determine its importance. Here Vallory was asking for a backing for
the warrant. Again, using Toulmin’s scheme, we note that the students had ana-
lyzed the data to reach a conclusion. Their warrant consisted of looking at the num-
ber of data values above and below a T-cell count of 550. What was not obvious
from the report was the choice of 550. In other words, the report had not included a
backing for the warrant. Vallory wanted to understand why the group had decided
to partition the data at a T-cell count of 550 because it did not represent any partic-
ular value of the data set such as the median. The norm that had become
instantiated in the classroom was that of justifying in terms of the context or the
way the data were distributed. Vallory was making it clear that she could not ascer-
tain the justification from the report.
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Report #2:

The new drug was better than the old. The
majority of the old ones are behind 550 and
the majority of the new drug was in front

of 550.
Report #3:
Experimental treatment Traditional treatment
225 - 525 225 - 525
9 130
525-850 525 - 850
37 56

FIGURE 7 AIDS data as noted in Reports 2 and 3.

At this point, one of the students who had solved the task in a similar manner
noted that, when working on the computer minitool, she noticed that the data
“lined up straight on 550 [88]. I recast this as basing the cut point on a natural
break in the data [89]. This was an important concept. One of the goals of the
teaching experiment was that students would view distributions in terms of shape.
Here Megan was offering an explanation based on the shape or breaks in the data
as inscribed on the minitool. For that reason I wanted to highlight both the solution
and Megan’s explanation. Paul further clarified this choice by stating that these
students had chosen the T-cell count of 550 because the hill of one data set was
mostly below this value and the hill of the other was mostly above [90]. This is a
significant exchange because it points to a shift in the norms for argumentation.
The students would not accept an argument whose backing could not be justified in
terms of the analysis of the data.

It is important to note that Vallory asked for the backing for the choice of 550
and not 525. In looking at the inscription with a cut point at 525, it could be argued
that the data were partitioned on the basis of the midpoint of the extremes (e.g.,
finding the average of the maximum and minimum value). In previous classes, stu-
dents had attempted to use the midpoint of the two extreme data values as a statistic
for describing data sets. They called this value the “middle of the range.” I had
worked to problematize this way of reasoning, because it has no statistical value in
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terms of distributions. In this episode, however, the students accepted it as a valid
cut point because it coincided with the break in the hills. We were aware of how the
students had reasoned in creating the inscription but appropriated the inscription to
allow the opportunity to compare and contrast the qualitative and quantitative in-
scriptions shown in Figure 7 [91].

It in fact proved to be a pivotal move to juxtapose the second and third reports
(see Figure 10 in the Appendix). Although I had recast the two inscriptions as par-
titioning the data around the break in the hills [91], one group described the results
in terms of where the majority of the data fell and the other used the computer
minitool to determine the number of data values that fell above and below the cut
point. Juxtaposing these two reports made it possible to problematize the use of di-
rect additive comparisons. This was facilitated by Marissa noting that the second
of these two reports would be more confusing, “since the old program has more
numbers than the new program” [92]. I realized the importance of this contribution
and recast it so that all members of the class could focus on the possible problem
[93-95].

93. Kay: Oh. So it looks like that there’s more. They had 56 that were
above 525, and they only had 37?

94. Marissa: Soit’s like, I guess what I’'m trying to say is it’s harder to
compare them.

95. Kay: What about what Marissa said? She just said there were more
people in the old program so if you actually looked at the actual
numbers of people, you find out that they had 56 that were in this
upper range, which is where we want to be, and these only had 37.
So somebody might say the old program was better because there
were more. Jamie?

As the discussion continued, students were able to acknowledge the problematic
nature of the report but could not determine a solution. Finally, at Kyle’s direction, I
created a modified graph of the data as shown in Figure 8 (see also Figurel1 in the
Appendix).

Paul then restated the initial quandary by referring to the graph [99]. At this
point, students offered a variety of ways to reason about the numbers [101, 103,
112, and 116].

101. Blake: But then there’s more people with the old program than
there is with the new program.

102. Kay: Jason.

103. Jason: Then you see that there’s 37 is more than half over 525 and
56 is not more than half of 130...more of them on the bottom than
on the top.
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FIGURE 8 Graph created from AIDS data.

Jason: OK, you see how 37 is more than half of 9 and 37 together?
But 56 is not more than half of 30, 130, and 56 put together.
There’s more on the bottom one than on the top one.

Kay: OK, who can help me out with that, who can say that a differ-
ent way so that I might could understand that? Will, can you say it
a different way?

Will: Well, in that situation it wouldn’t matter how many people
were in there because see like...

Kay: Big voice, Will.

Will: On the bottom one you have, see what Jason was saying
there’s more than there is below 525 and so that means that that
one is better because the top one it doesn’t even have close to half
of what the one below 525 is on that one. So that means that if, if
that was the same amount of people it had like, if they both had the
same amount of people and, but, and they had the numbers and ev-
erything, and this one, the bottom one was a however much more
that of....

Blake had an intuitive understanding of the problem but was unable to clarify other
than to point to the difference in the number of patients in each program [101]. Jason
reasoned that because more than half of the patients in the experimental treatment
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protocol had T-cell counts greater than 525 and less than half of the patients in the tra-
ditional treatment protocol had T-cell counts that high, the experimental was better
[112]. The issue was reconciled when Paul suggested that the students use percent-
ages. Theirinitial conjectures were confirmed when they made these calculations.

The last report to be shared in the whole class discussion involved students
structuring the data into four equal groups, as shown in Figure 9.

After I posted the report on the white board, Blake stated that he felt it was ade-
quate because the extreme data values were similar in both data sets [127] and
“with the four equal groups, you can tell where the differences in the four groups”
[129]. In his explanation, Blake pointed to two mathematically significant issues,
both of which were of interest to me. The first concerned how to interpret the
four-equal-groups graph. Blake noted that the new treatment was better because
“the three lines for the equal groups” [135] from the experimental were above 525
compared with “only one of them” [137] for the traditional treatment. Although
Blake’s explanation was somewhat difficult to understand, I interpreted it to mean
that he noted that 75% of the experimental data (i.e., three lines) were above 525,
whereas only 25% of the traditional data (i.e., one line) were above 525. I believed
that many of the students in the class did not understand Blake’s offered explana-
tion. Therefore, teasing out the meaning of the graph was an important aspect of
the continuing discussion.

Experimental Treatment

200 300 400 500 600 700 800 900

Traditional Treatment

200 300 400 500 600 700 800 900

FIGURE 9 Inscription of the AIDS data organized into four equal groups.
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The second mathematically significant issue concerned Blake’s reference to the
fact that because the extreme data values (maximum and minimum) were nearly the
same on the two data sets, the comparison was easier [127]. This was echoed by
Marcus, who noted that in the past they had not been similar (i.e., “like kind of
crooked” and “this time it’s easier to see because it’s right under each other” [139]).
The issue of similar extreme data values had occurred on prior tasks, and in some
cases the students had stacked the two inscriptions and aligned the minimum data
values in both data sets, even when they were not the same. This was clearly prob-
lematic from my perspective, because the values were on a scale that could not sim-
ply be adjusted so that these two values were always the same. Here the students
noted that this inscription was easier to read because of the similarity in extreme data
values of the two data sets, in particular the minimum value. Although it would have
been difficult for me in this class session to pose a comparison problem where the
minimum data values were very different to make that an explicit topic of conversa-
tion, I nonetheless noted it as an issue that needed to be addressed.

Clarifying the student’s understanding of the four-equal-groups graph was there-
fore the primary consideration. As I considered how to continue, Marcus suggested
placing numbers in the intervals to indicate the number of data points ineach [139].1
found this very significant, because the purpose of the four-equal-groups graph was
toremove the numbers and thus the problems of comparing data sets of unequal size.
However, it was obvious from the comment that the intervals did not represent pro-
portions of the data for him. I therefore judged that at this point, other students were
unable to read the four-equal-groups inscription. Not only did it not represent the
data, they had no resources for recreating the data.

As the lesson continued,’ I therefore asked the students to calculate the actual
number of data points that would fall within each interval in each data set. As they
did, I wrote each of these values within the intervals of the four-equal-groups in-
scription as shown in Figure 10 (see also Figure 12 in the Appendix).

Once these numbers were visible, the students commented that the numbers did
not help because there were not the same number of people in each treatment. This
was similar to the argument that Marissa made about the third inscription [92 and
94]. I then asked the students if they knew what percentage of the data were in each
interval. In their answer, the students were able to clarify that they understood that
25% of the data set fell within each of the four intervals. It could be argued that this
was facilitated by the fact that they had just used calculators to find 25% of each
data set to place the numbers in the intervals. Nonetheless, I then noted on the in-
scription, at the students’ direction, that 75% of the patients in the new treatment
program were in the same range of T-cell counts as only 25% of the patients in the
old treatment (see Figure 11 and Figure 12 in the Appendix).

>This part of the lesson is not included in the information in the Appendix. However, to clarify my
role in this lesson, it is necessary that I extend my analysis to include an additional portion of the lesson.
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Experimental Treatment

12 121 12 12

200 300 400 500 600 700 800 900

Traditional Treatment

I 46

46 l 46' 46

200 300 400 500 600 700 800 900

FIGURE 10 Four-equal-groups inscription with number of data values noted.

For many of the students, the process of calculating the numbers and then going
back to the percentages was necessary to build an understanding to underlie the in-
scription. They needed to know where the data were behind the inscription. The
four-equal-groups inscription was not interpreted as a providing information on
the distribution of the data in the same way the first inscription was. It was there-
fore important for them to understand how the data were being represented.

Perhaps the most critical aspect of my role and that of my colleagues in this par-
ticular episode was the a priori selection and sequencing of the students’ inscrip-
tions of the data to be discussed. During this whole class discussion, a planful
attempt was made to sequence the solutions to provide a progression toward more
sophisticated ways of structuring the data. A review of the sequence of solutions
finds that the whole class discussion initially focused on reports that structured the
data by partitioning around the hills. The first two solutions offered a qualitative
distinction between the two data sets by focusing on the location of the majority of
the people. The third, however, gave a quantitative distinction that provided the
opportunity for a problem to arise from direct additive comparisons. This, in turn,
offered me the opportunity to problematize the direct additive comparisons and
shift the discussion to more sophisticated ways to reason about the data sets. The
four-equal-groups solution was then a logical next step in the progression. In this
way, the inscriptions served as tools for reorganizing the students’ activity, provid-
ing me with the means of supporting their mathematical development (Dorfler,
1993; Kaput, 1994; Meira, 1998; Pea, 1993).



244  MCCLAIN

75%
Experimental Treatment /—\
12 12| 12 12

200 300 400 500 600 700 800 900
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Traditional Treatment /_\
46 46
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46 ‘

200 300 400 500 600 700 800 900

FIGURE 11  Four-equal-groups inscription with percentages marked.

Throughout this process, there is also evidence that I am cognizant of the im-
portance of ensuring that students understand the discussion. This is supported by
the students’ understanding of their obligation to ask questions if they do not un-
derstand. This is a shift from the earlier episode, where I focused on my under-
standing. The importance of this aspect of the teacher’s role is highlighted in this
episode by the productive nature of the class discussions when ensuring that every-
one understands is an accepted norm.

DISCUSSION

The importance of the role of tools and inscriptions as a means of supporting my ef-
forts to achieve the mathematical agendais grounded ininitial decisions made by the
research team before entering the classroom. Those decisions were intended to pro-
vide resources for supporting students’ emerging understandings while taking their
initial understandings as starting points for instruction. For that reason, the research
team was guided by the premise that the computer tools would be critical in support-
ing our mathematical agenda. Students would need flexible, efficient ways to struc-
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ture and organize sets of data as they conducted their investigations. Our initial di-
lemma was centered around a concern for offering means of support while not
providing so much support that the students’ activity became that of following antic-
ipated cues.® As a result, the approach we took when designing the computer-based
tools offers particular ways of structuring data that are designed to fit with students’
current ways of understanding, while simultaneously building toward conventional
graphs (Gravemeijer, Cobb, Bowers, & Whitemack, 2000). This was intended to fa-
cilitate my ability to build from students’ contributions in the course of discussing
the students’ analyses.

The two computer tools and the instructional tasks therefore were designed to
provide resources for the teacher to use while interacting with the students. An un-
derlying premise was that, during deliberately facilitated whole class discussions
of students were analyses, these tools would provide the teacher with means of
supporting the students’ mathematical development. It is also important to note
that the research team made assumptions about the classroom participation struc-
ture that would support such development. For this reason, I was balancing atten-
tion to norms, the use of tasks, and investigations with the tools in the course of my
interactions with the students. In doing so, I was working to stay focused on the
mathematical endpoints as defined by the conjectured learning trajectory.

My overarching mathematical goal was to support students’ ways of reasoning
about data in terms of distributions structured multiplicatively. Although I viewed
this as an endpoint to be aimed for, the detailed route to the endpoint was not prede-
termined. In planning the instructional sequence, the research team had developed a
hypothetical learning trajectory that guided the development of instructional materi-
als (e.g., the tasks and the computer-based tools). However, this trajectory was con-
tinually subject to modifications based on ongoing analysis of the students’ daily
activity. As aresult, revisions were made against the background of the hypothetical
trajectory but with the information provided by informal analyses of students’ activ-
ity with the tools. Similarly, my decision-making process in the classroom was in-
formed by the mathematical agenda but constantly was revised and modified in
action based on the students’ contributions. These contributions were grounded in
the students’ use of the tools and the resultant inscriptions that they produced.

Part of my decision-making process was informed by my anticipations of the
students’ ways of reasoning on each task. Initially, I had trouble distancing myself
from my own ways of reasoning and taking account of the students’ current under-
standings. For that reason, I often imposed more sophisticated meanings on their
use of the tool, thereby creating problems in my interpretations of their analyses. I
had the advantage of seeing the endpoint of the trajectory and being able to envi-
sion how I might traverse the route via investigations on the tools. What I did not

A discussion of this quandary can be found in the Appendix and is grounded in Doerr’s (1995) dis-
tinction between expressive and exploratory computer environments.
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account for were the diverse ways of reasoning that the students used in their initial
investigations. Nor did I acknowledge that for many of these students, the activity
was not about analyzing data—it was about completing tasks in school. I was, in
fact, giving agency to the tools instead of acknowledging the importance of ac-
counting for the students’ activity as they used the tools for analysis. In addition,
the norms as they were initially constituted in the classroom did not support my ef-
forts. Only through a process of constant renegotiation did it become possible to
facilitate the type of discussions that I initially had envisioned. Only after I shifted
my focus to the students’ activity as supported by the emerging norms did the
tasks, tools, and inscription function as means of supporting my agenda.

Both Gravemeijer (1998) and Simon (1997) have talked about the cycles that
occur in the development of instructional materials and in teaching, respectively.
Gravemeijer discussed the iterative cycles of revision in designing materials that
lead toward a local instruction theory. Simon discussed how the cycle of teacher’s
knowledge, a conjectured learning trajectory, and interaction with students even-
tually support mathematical growth. The episodes described here offer a detailed
account of this process by highlighting the ongoing decision-making process of
one teacher as I interacted with my students. These decisions were informed by my
knowledge of both the students and the mathematics and were framed against the
hypothetical learning trajectory. An important part of this trajectory was grounded
in the design and development of tools for supporting its emergence.

The way of conceptualizing the teacher’s role that I have described in this ar-
ticle is not intended to make light of the extreme complexity of teaching or to be
seen as a critique of teaching. My intent, instead, is to acknowledge the com-
plexity while attempting to provide a frame for thinking about the numerous and
diverse aspects of teaching and tools for supporting those goals. In Simon’s
(1997) description of the mathematics teaching cycle, he noted the “inherent ten-
sion between responding to the students’ mathematics and creating purposeful
pedagogy based on the teacher’ s goals for student learning” (p. 76). In a similar
manner, [ am attempting to point to issues of design and pedagogy that inform
the decision-making process while acknowledging that the mathematics must be
the central focus in all decisions.
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