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This article presents a cultural-developmental framework for the analysis of chil-
dren’s mathematics in collective practices and illustrates the heuristic value of the
framework through the analysis of videotaped episodes drawn from a middle-school
classroom. The framework is presented in 2 related parts. The first targets the chil-
dren’s emerging mathematical goals in collective practices, with a particular focus on
the complex role that artifacts play in children’s emerging goals. The second part fo-
cuses on children’s developing mathematics that takes form in their goal-directed ac-
tivities: (a) Microgenetic analyses concern the process whereby children structure
cultural forms like artifacts to serve particular functions as they accomplish emerging
mathematical goals; (b) sociogenetic analyses concern the spread or travel of mathe-
matical forms and associated functions within a community of individuals; and (c)
ontogenetic analyses concern the interplay between the forms that children use and
the functions that they serve over the course of children’s development. The analyses
of the classroom episodes points to the promise (and limitations) of the framework as
a method for furthering our understanding of the interplay between social and devel-
opmental processes in children’s mathematics.

A growing body of classroom-based research in mathematics education is con-
cerned with understanding the role of artifacts in processes of teaching and learn-
ing. In her classroom-based research, Ball (1993), for example, pointed to the way
in which the use of one kind of artifact—the area of geometrical shapes—provides
a representational context to explore properties of fractions. Lampert (1986)
pointed to the utility of currency as support for teaching and learning about
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multidigit arithmetic. Cobb and his associates (e.g., Cobb, Wood, Yackel, &
McNeal, 1992) analyzed the way artifacts, like educational manipulatives, support
children’s developing understanding of numeration and place value. And Sfard
(2002/this issue) targeted the dynamics of meaning making as children structure
communications with one another relative to particular artifacts. Across these ap-
proaches to the analysis of artifacts, we find that authors point to ways in which arti-
facts both enable and constrain opportunities for teaching and learning. In this arti-
cle, I build on treatments of artifacts and children’s mathematics in an analysis of
teaching and learning in episodes drawn from a middle-school classroom, Kay
McClain’s and Paul Cobb’s stats project class.

The stats project class is a component of Cobb and colleagues’ research and
curriculum development effort. The sequence of instructional activities that Cobb
and colleagues have crafted support student and teacher integrated exploration of
what are often segregated topics in middle-school statistics, topics like central ten-
dency, proportional reasoning, and data representation. A key ingredient of the
stats project class activities was the use of computer “minitools,” a software pro-
gram that afforded students and teacher a means to structure inquiry about data sets
through the generation and modification of statistical displays. As teacher, Kay
McClain drew students into inquiry involving the software; students supported
and took issue with one another’s conjectures and arguments in what appear to be
pedagogically significant ways.

Like other contributors to this volume I consider the role that artifacts, such as
software-linked statistical displays, play in processes of teaching and learning in
collective practices like that of the stats project class. However, I take a different
analytic turn. [ introduce a framework that has taken form in my prior work on the
interplay between cultural and developmental processes in children’s mathematics
(Saxe, 1991, 1999; Saxe, Dawson, Fall, & Howard, 1996; Saxe, Gearhart, & Selt-
zer, 1999; Saxe, Guberman, & Gearhart, 1987). A fundamental assumption of the
approach is that novel cognitive developments are rooted in goal-directed activi-
ties. I show how the framework enables analyses of the complex role that artifacts
play in children’s emerging mathematical goals as well as analyses of children’s
developing mathematics as they structure and accomplish these goals.

AN OVERVIEW OF THE ANALYTIC APPROACH

Collective practices are recurring, socially organized activities that involve the en-
gagement of multiple participants. They are pervasive in children’s and adults’ ev-
eryday lives. They include play of games like Monopoly or chess as well as less for-
mal activities like making store purchases or selling lemonade. In collective
practices, joint tasks are accomplished—the completion of a game or the sale of
goods—through the interrelated activities of individuals. In such joint accomplish-
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ments, individual and collective activities are reciprocally related. Individual activ-
ities are constitutive of collective practices. At the same time, the joint activity of
the collective gives shape and purpose to individuals’ goal-directed activities.! |
use two related strands of analysis in an effort to understand the role of artifacts in
developmental processes in the episodes drawn from the stats project class.

The first strand is a frame for analyzing children’s emerging mathematical
goals in collective practices. I point to the way in which goals emerge in relation to
the structure of activities, social interactions, artifacts, and the prior understand-
ings that students bring to the stats project class.

The second strand is a frame for analyzing the development of children’s math-
ematics. I consider three broad kinds of developmental processes. Each of these in-
volves an interplay between cultural or material forms and the functions that they
afford in individual activity. The first involves the short term process whereby in-
dividuals structure forms into means to accomplish goals in activity
(microgenesis). The second involves the spread in use of particular forms as means
for structuring and accomplishing goals in a community of individuals
(sociogenesis). The third involves the interplay over the course of individual de-
velopment between the use of forms and functions that they serve in structuring
and accomplishing goals (ontogenesis). Using the episodes from the stats project
class, I illustrate these kinds of developmental processes and show how their inter-
relations are central to understanding children’s mathematics.

FIRST STRAND: EMERGING MATHEMATICAL GOALS IN
THE DYNAMICS OF CLASSROOM PRACTICES

The view that children’s mathematics is a product of their own goal-directed
sense-making activities is widely held by developmental psychologists (Piaget,
1970; Vygotsky, 1978, 1986). Despite the importance of the idea, we have few ef-
forts at systematic analysis of the processes whereby mathematical goals take form
and are accomplished in collective practices. This is a challenging analytic task,
one that must be at the heart of a treatment of learning and development.

In this section, I sketch a frame for understanding children’s emerging goals,
drawing on the stats project class episodes related to the Batteries [1-49] and AIDS
[50-153] episodes. I begin the effort by identifying four dimensions of children’s
activities, considering the way in which each is implicated in children’s emerging

"Prior analyses using the framework have focused on practices of candy selling by children in
Brazil’s northeast (Saxe, 1991), economic exchange by individuals in a remote cultural group in Papua
New Guinea (Saxe, 1982), mother—child engagement with activities involving numbers in middle- and
working-class communities in the United States (Saxe, Guberman, & Gearhart, 1987), and children’s
play of a board game involving mathematics (Saxe & Guberman, 1998).
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goals. The dimensions include activity structures, social interactions, artifacts, and
the mathematical understandings that children bring to collective practices.

Activity Structures

Collective practices are routine social activities constituted by patterned ways that
individuals participate with one another—a patterning that I will refer to as an “ac-
tivity structure.” Key properties of activity structures include routine phases or cy-
cles of activity, norms and sometimes explicit rules for behavior, and emerging role
relations between participants.

The idea of an activity structure helps us interpret the goals that emerge for indi-
viduals in collective practices. For example, the goals that emerge for individuals
in chess are different from those that emerge for a customer and cashier complet-
ing a transaction at a store. In chess, the activity structure typically involves two
opponents taking turns through the opening, the middle, and the end of the game,
who are constrained by chess-specific rules and norms for etiquette (e.g., time
spent on a move). Such goals are quite different from those that emerge in making
a purchase at a store, in which the activity structure involves selection of commod-
ities, offering payment, and return of change, if required.

Collective practices and their associated activity structures are historically situ-
ated, taking shape and gradually shifting in their organization in a complex of eco-
nomic, social, and political circumstances, which themselves are in motion. In the
case of the stats project class, we find evidence of an activity structure related to
mathematics instruction that has emerged over the history of schooling in Western
societies. It is a structure that is aligned well with the movement toward a particu-
lar brand of educational reform. In contrast to “traditional” practices that favor
teacher exposition and student drill, the activity structures valued in reform-ori-
ented classrooms support student inquiry and understanding. In such structures,
the teacher takes on the role of facilitator, working to problematize student contri-
butions in inquiry-oriented activities. The stats project class is an exemplar of such
a reform-oriented classroom.

A norm that is central to the reform-oriented activity structure in the stats
project class is that student contributions must, in fact, display reasoning. Let us
consider the way the norm is sustained and in this process how it is integral to
the activity structure of the stats project class and to children’s emerging mathe-
matical goals.

Positions Require Data-Based Justifications
We find consistent evidence of the norm that student contributions required

data-based justifications in the stats project class. Kay (the teacher) promoted this
norm, and students’ mathematical goals took form in relation to it.
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In the Batteries episode, for example, we find that students were offered turns
by Kay that invited their elaboration of positions and justifications for their posi-
tions. In taking positions, students created goals of identifying cut points in the dis-
play in order to analyze the relative merits of either the Tough Cell or Always
Ready batteries.

Consider the structure of collective activity in which Ceasara asked the teacher
to manipulate the range tool on the display depicted in Figure 1 in the Appendix
(article by McClain, this issue). Ceasara showed how she came to conclude that Al-
ways Readies were the best choice. In her talk and references to the display (Figure
1 in the Appendix), Ceasara showed that 7 of the top 10 batteries were Always
Ready [8-12]. The interchange between Ceasara and Kay was one in which the
norm for making justifications explicit was interwoven with Ceasara’s goals to
quantify, partition, and compare values.

8. Ceasara: OK. You go to the longest lasting battery on the pink.
OK, and then, narrow it down to the top 10. Count of 10.

9. Kay: Count of 10; OK, I was wondering if I was supposed to do
that. OK.

10. Ceasara: And I was saying see like there’s 7 green that last longer.

11. Kay: OK, the greens are the Always Ready, so let’s make sure we
keep up with which set is which, OK?

12. Ceasara: OK, the Always Ready is more consistent with the 7 right
there, and then like 7 of the Tough ones, they’re like the...further
back...I was just saying ’cuz like all 7, seven out of 3—7 out of 10
of the greens were the longest, and there was...

Here, Ceasara’s contribution shows evidence of the position-requires-justification
norm, as she worked to support her claim that the “Always Ready is more consis-
tent,” an activity in which she structures and accomplishes a sequence of goals. At
the same time, Kay supported Ceasara’s reconstitution of the norm by providing an
occasion for Ceasara to make public a particular strategic approach. Subsequently,
Jason provided another example of how the norm supports a set of goals. In
critiquing Ceasara’s position, he made public his case that one should be wary of ar-
bitrary cut points. By sliding the range tool slightly to the left, Jason showed that the
difference between the number of Always Ready or Tough Cell batteries above the
threshold line was inconsequential [18].

18. Jason: Ah, see, still, the pink ones, the Tough Cell, has more higher
ones, like even though it does have more in the end? There’s a
bunch of close ones in the pink right next, almost in that area. And
so then if you put all those in, you’d have 7. (See Figure 1 in the
Appendix.)
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Finally, Blake took a different perspective. He shifted the criterion for ade-
quacy with his demonstration that if the line was set at 80 in the display, two of the
Always Ready batteries fell below the threshold, whereas none of the Tough Cell
batteries fell below this threshold [30].

30.Blake: Now, see, there’s still green ones behind 80, but all of the Tough
Cellis above 80. So I'd rather have a consistent battery that I know that’1l get
me over 80 hr than one that just try to guess.

Again, in Blake’s elaborated contribution, we find more evidence of a collective
norm for justification and reanalysis, a norm that both sustained the reform-ori-
ented activity structure and supported Blake’s own creation of particular mathe-
matical goals.

The AIDS episodes contain additional evidence that the norm that contributions
should include data-based justifications enables the reform-oriented participation
structure, a norm that at the same time has implications for students’ emerging
goals. Indeed, in each subepisode, students’ efforts to evaluate the adequacy of the
inscriptions involve justification. In AIDS Subepisode 2, for example, Jamie of-
fered a justification in his efforts to identify the relative “majorities of numbers” in
the old and new treatment conditions through a partitioning of the data as repre-
sented in Inscription 1 in the Appendix [52-57].

52. Jamie: I think it’s a pretty adequate way of showing information because
you can see where the range is starting and ending and you can see where the
majority of the numbers are.

In Subepisode 3, we find inscribed in text (Inscription 2) a justification that Kay
read [75]: “The new drug was better than the old. The majority of the old ones
are behind 550, and the majority of the new drug was in front of 550.” In
Subepisode 4, Will had difficulties expressing a warrant for his recommendation
for the new treatment. However, a careful analysis of his talk reveals his ap-
proach [113-118]. He appeared to argue that more than one half of the cases lay
below the cut point of 525 for the old treatment; in contrast, this was not the
case for the new treatment. In comparing distributions, Will appeared to note
that the absolute number of cases was immaterial— the relative properties were
what mattered.

In sum, the activity structure of the stats project class is aligned with our current
era of educational reform. It is a structure in which the students accomplished
much of the critical analysis, while Kay acted as an enabler, working to make visi-
ble and support the classroom discussion of valued ideas. It is a structure of activ-
ity that has implications for students’ emerging mathematical goals, implications
that differ from those of traditional classrooms. In making public their approach to
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analysis, children like Ceasara, Blake, and Jason externalize their thinking, a pro-
cess that supports revisiting prior goals and means for accomplishing them.

Social Interactions

Social interactions figure prominently in the goals that individuals structure in prac-
tices. In the give and take of conversation, one individual’s contribution is not only
anobject of interpretation for another. Another’s move may be a call for action, lead-
ing to a consideration of grounds for agreement or opposition and a new sequence of
goals. In the stats project class, there were many occasions in which interactive
moves of participants created occasions for the emergence of mathematical goals.

In the Batteries episode, Ceasara’s early goal appeared to be to produce an ar-
gument supporting the Always Ready batteries, a goal that appeared to be sparked
by a question from Kay to which we don’t have access [1-12].

Kay: OK, Ceasara.
Ceasara: Could you put the range on?
Kay: What do you want me to change it to?
Ceasara: Oh, not that, I mean like...[inaudible]
Kay: I'm sorry I’m not understanding.
Ss: The blue thing.
Kay: Ah, count within the range. Sorry. Didn’t hear you. Big
voice.
8. Ceasara: OK. You go to the longest lasting battery on the pink.
OK, and then, narrow it down to the top 10. Count of 10.
9. Kay: Count of 10; OK, I was wondering if I was supposed to do
that. OK [places blue range bars in data].
10. Ceasara: And I was saying see like there’s 7 green that last longer.
11. Kay: OK, the greens are the Always Ready, so let’s make sure we
keep up with which set is which, OK?
12. Ceasara: OK, the Always Ready is more consistent with the 7 right
there, and then like 7 of the Tough ones, they’re like the further
back...I was just saying ’cuz like all 7, seven out of 3...7 out of 10
of the greens were the longest, and there was...

Nk v =

Subsequently, Jamie responded to Kay’s request to restate Ceasara’s argument [ 14,
15] with reference to the battery display, leading Jamie to create goals involving the
reconstruction of Ceasara’s rationale that, of the top 10 batteries, 7 were Always
Ready.

14. Jamie: I understand.
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15. Kay: You understand? OK, Jamie, I"m not sure I do. So could you
say it for me?

Kay’s statement also provoked Jason to consider a new goal: the “what if”” conse-
quence of Ceasara’s argument [18]—he showed that if the range tool was nudged
slightly to the left on the display, the “effect” of battery type disappeared. Jason’s
finding led Kay to question Ceasara about her initial rationale for choosing the top
10 [19], whereupon Ceasara generated new goals to reconstruct a rationale for her
cut point in a multiturn exchange with Kay [19-23].

19. Kay: So you’re saying if I open this out a little bit. Well, maybe,
Ceasara, you can explain to us why you chose 10. That would be
really helpful.

20. Ceasara: All right, there was 10 of the Always Ready, and there
was 10 of the Tough. So that’s 20 and half of 20 is 10, so that’s how
I chose it.

21. Kay: But why would it be helpful for us to know about the top 10?
Why did you choose that? Why did you choose 10 instead of 12?

22. Ceasara: Because I was trying to go with the half.

23. Kay: Ah. OK. Blake?

The AIDS episode contains many occasions in which mathematical goals were
linked to interactional moves of participants. In Kay’s introductory move (the first
subepisode), she asked the class to consider whether the displays were “an ade-
quate way to represent this data and if we actually understand what folks are do-
ing” [50]. Subsequent uptakes reflected students’ efforts to accommodate the
question as they created varied data analytic goals. For example, Jaime—the first
student to respond to Kay—focused on the range and relative majorities of cases
[52].

52.Jamie: I think it’s a pretty adequate way of showing information because
you can see where the range is starting and ending and you can see where the
majority of the numbers are.

In Kay’s subsequent moves, she brought forward the contributions of particular
students as she revoiced (and restructured) their justifications for particular posi-
tions. We can find instances of such revoicing, bringing contributions forward in
Kay’s pedagogical moves in interactions with Kiri [80, 81].

80. Kiri: Because 550 is in the middle of the whole thing, like the
whole, the whole scale. 550 is in the middle. It might not be the
middle of the data, but it’s the middle of the whole scale.
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81. Kay: Oh. So it’s like the middle of the range, not necessarily the
middle of the... Megan?

We also afind similar revoicing in Kay’s uptake on Marissa’s contribution [92, 93].

92. Marissa: I would think the second one would be more confusing
because it has, since the old program has more numbers than the
new program.

93. Kay: Oh. So it looks like that there’s more. They had 56 that were
above 525, and they only had 37?

Such questioning may well have been a catalyst for subsequent data analytic goals
for these (and other) students as Kay brought forward or made efforts to clarify stu-
dent contributions.

Kay also questioned others’ justifications, offering students opportunities to
dig deeper, structuring new goals related to creating rationales for their claims.
Thus, Kay asked about the criteria for the cutoff points that Caesara used to justify
her battery choice [19].

19. Kay: So you’re saying if I open this out a little bit. Well, maybe, Ceasara
you can explain to us why you chose 10. That would be really helpful.

She put a similar question to Blake, asking him to justify his battery choice [30, 31]:

30. Blake: Now see there’s still green ones behind 80, but all of the
Tough Cellis above 80. So I’d rather have a consistent battery that
I know that’ll get me over 80 hr than one that just try to guess.
31. Kay: Why? Why were you picking 80?

It was not only the interactive moves by Kay that supported particular kinds of
data analytic goals in students’ activities. Sometimes children structure goals in re-
lation to one another’s contributions, an atmosphere that was supported by Kay’s
efforts to engage students with one another’s arguments. Thus, in the Batteries epi-
sode, Ceasara’s recommendation for the Always Ready [12] was critiqued by Jason
[18].

18. Jason: Ah, see, still, the pink ones, the Tough Cell, has more higher ones,
like even though it does have more in the end? There’s a bunch of close ones
in the pink right next, almost in that area. And so then if you put all those in,
you’d have 7.
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Ceasara’s recommendation for the Always Ready batteries [12] also was
revoiced by Jamie [16]:

16. Jamie: She’s understanding, I mean she’s saying that out of 10 of the bat-
teries that lasted the longest, 7 of them are green, and that’s the most number,
so the Always Ready batteries are better, because more of those batteries
lasted longest.

Also, Jamie questioned Blake’s statement about the consistency of the Always
Ready batteries [34-39].

34. Jamie: Um, why wouldn’t the Always Ready batteries be consis-
tent?

35. Blake: Well, because all your Tough Cell is above 80, but you still
have 2 that are behind 80 in the Always Ready.

36. Jamie: [ know, but that’s only 3 out of 10.

37. Blake: No, but see, they only did, what 10 batteries? So the 2 or 3
will add up. They’1l add up to more bad batteries and all that.

38. Kay: Oh,Isee; as you get more and more batteries, it’s going to get
more bad ones if that’s representative. OK, is that—Jamie?

39. Jamie: So why wouldn’t that happen with the Tough Cell batter-
ies?

Whether between peers or between teacher and students, in the give and take of in-
teraction, individuals may be pressed in ways that lead them to create new goals in
activity, goals that they may not have created on their own.

Artifacts

Artifacts are human constructions. They include material and symbolic forms that
permeate our daily lives. In collective practices, some artifacts become valued and
used. Such is the case with the Battery display and the AIDS inscriptions. In my re-
marks that follow, I point to the way in which a few of the many and varied artifacts
in the stats project class have implications for the kinds of data analytic goals that
children create in activity.

The Tough Cell and Always Ready Display

In the Batteries episode, Kay and her students focused on the batteries display arti-
fact. The display, as depicted in Figure 1 in the Appendix, has a number of distinc-
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tive properties that are consequential for the character of children’s emerging goals.
Batteries are represented as 20 distinct cases and cases are grouped by type, Always
Ready (green, lower distribution) and Tough Cell (pink, upper distribution). These
properties afford particular kinds of data analytic goals.

Most of the justifications that students offered for their positions were based on
counts of batteries, a form of justification afforded by the case-by-case data repre-
sentation in the display. Recall that Ceasara argued that Always Ready batteries
were best, because, of the top 10 performing batteries, 7 were Always Ready [12].
Jason argued that Caesara’s claim ignored the fact that a slight move in the cutoff
point would lead to a tie between Always Ready and Tough Cell, 7 and 7 [18].

18. Jason: Ah, see, still, the pink ones, the Tough Cell, has more higher ones,
like even though it does have more in the end? There’s a bunch of close ones
in the pink right next, almost in that area. And so then if you put all those in,
you’d have 7.

Also, Blake argued that if one shifted the cut point to 80, the Tough Cell should be
preferred because 2 Always Ready batteries lasted less than 80 hr, whereas none of
the Tough Cell lasted less than 80 hr [30]. These arguments subsequently were in-
corporated in the contributions of Jessica [42] and Sequora [48].

42. Jessica: | was just going to say that well, even though, 7 of the 10 longest
lasting batteries are the Always Ready ones, the 2 lowest are also Always
Ready and if you were using those batteries for something important then you
might end up with one of the bad batteries and could [inaudible].

48. Sequora: She said that if, even though that the highest 7 were Always
Ready batteries, the lowest ones were always the Always Ready batteries.
And if you had something important to do then you could end up with the
ones that were the lowest. You know, it’d jeopardize whatever you were
gonna do.

Further support for the argument that properties of artifacts have implications
for students’ goals comes from a thought experiment: Consider what might have
occurred had a different display artifact been used than the case-by-case represen-
tation of the data display. Like the case-by-case bar chart, a box-and-whisker plot
(Figure 1a) would provide access to cases, although the broad distributional char-
acteristics of populations would be highlighted, not specific cases. Thus, in reason-
ing and argumentation, individuals might well create goals related to the
exploration of central tendency in addition to extreme cases. Means and standard
deviations (Figure 1b) would “hide” individual cases, perhaps precluding goals
that led to arguments of consistency in terms of frequencies; indeed, such a display
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FIGURE 1 (a) A box-and-whisker plot of the battery data; (b) means, standard deviations,
range (minimum, maximum), and number of cases of the battery data.

might well support arguments based on central tendency. Furthermore, some
might have pushed for the need for other displays, ones that allowed for explora-
tion of the marked differences between the standard deviations of the two popula-
tions. Of course, the problem with such a thought experiment is that the
interpretability of the representations as those of battery life would very likely be
problematic for children in the stats project class. Box-and-whisker plots and
means and standard deviations are compact representations. Both forms of repre-
sentation are many steps removed from the raw data values. It is no accident that
Cobb and colleagues used the case-by-case data presentation in their software as a
design feature of their curriculum (see Sfard & McClain, 2002/ this issue).

The T-Cell Counts in the AIDS Displays

A comparative analysis of the AIDS inscriptions presented in Figures 9 through 12
in the Appendix provides additional support that the character of the artifacts have
implications for the emergence of particular kinds of mathematical goals.

In the AIDS experiment, the two comparison groups (new treatment and old
treatment) contained unequal numbers of patients or an “unbalanced” design
(new treatment = 46, old treatment = 186). This is unlike the batteries design, in
which groups contained the same number of values (Always Ready = 10, Tough
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Cell = 10). In the various inscriptions, the unbalanced property of the AIDS so-
lutions is revealed or hidden depending on whether case frequencies are cited.
For example, no frequencies are cited in Inscriptions 1, 2, and 5 (presented in
Figures 9, 10, and 12, respectively, in the Appendix). Instead, AIDS Inscription
1 shows graphically where “most” of the numbers are in each population. AIDS
Inscription 2 indicates that the “majority” of the new treatment cases were
greater than a cut point and the “majority” of the old treatment cases were less
than the same cut point. AIDS Inscription 5 shows a separation of cases into
quartiles and the cut points for each quartile. In contrast, the frequencies less
than and greater than specified cut points are cited in Inscriptions 3 and 4 (pre-
sented in Figures 10 and 11, respectively, in the Appendix). Each reveals that in
the old treatment, 56 lie above and 130 lie below the cut point, whereas in the
new treatment, 9 cases are less than the same cut point and 37 are greater than
that cut point.

What are the consequences for the display of frequencies for children’s emerg-
ing mathematical goals? For those inscriptions in which frequencies are cited nu-
merically, students may well create goals that involve finding additive differences,
framing and structuring a problem solution as the additive difference between the
success of the old treatment (56 cases) and the success of the new treatment (37
cases): 56 — 37 = 19 cases. To adjust for differences in sample size (the old treat-
ment contains 186 cases whereas the new treatment contains 46 cases) requires
that students create goals that would entail a proportional comparison. They would
need to create goals that would allow for a determination of which proportion is
greater: 56/186 (old treatment) or 37/46 (new treatment). For those inscriptions
that provide summary statements about central tendency that do not include fre-
quencies (e.g., “most,” “majority,” or graphical depictions), the functional equiva-
lent of a proportional comparison can be produced without necessarily engaging in
construction goals that involve proportionality. For example, in Inscriptions 1, 2,
and 5 (Figures 9, 10, and 12 in the Appendix), which refer to most or the majority
of cases in subsamples, the design may be treated as if it were balanced and the
problem solved as it if were an additive one. Marissa [92] voiced this explicitly
when she pointed out that Inscription 3 (Figure 10 in the Appendix) was confusing
because of the numbers.

92. Marissa: I would think the second one would be more confusing
because it has, since the old program has more numbers than the
new program.

93. Kay: Oh. So it looks like that there’s more. They had 56 that were
above 525, and they only had 37?

Indeed, adequate comparisons can be produced for Inscriptions 1, 2, and 5 (Figures
9, 10, and 12, respectively, in the Appendix) without creating goals that involve
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multiplicative operations, such as structuring a proportional contrast between the
data points, 56 and 186 versus 37 and 46.

Prior Understandings

The understandings that children bring to the activity of data analysis are the
ground from which children create particular goals. To illustrate, consider four dif-
ferent kinds of understandings that children might use to structure mathematical
goals in the batteries activity.

The Batteries Display as Depicting Individual Cases

Some students may not understand principles of hierarchical classification as they
pertain to data analysis. Such a student would tend to focus on individual cases, not
distinguishing an independent variable and values that such a variable can take on
(Always Ready and Tough Cell). Thus, with such an analytic posture, a student may
create goals to consider cases and the length of burning time, not a systematic com-
parison across subgroups.

The Display as Depicting Groups Composed of
Individual Cases

Some students may coordinate superordinate and subordinate classifications in
conceptual activities involving data analysis, but those classifications may be lim-
ited to populations at hand. In this case, we may find that students consider the dis-
play as a depiction of battery lives of two groups of 10 batteries, Always Ready and
Tough Cell, but limit their definitions of their tasks to the batteries at hand.

Some evidence of this understanding is manifested in the remarks of Ceasara
[8—12], previously cited. In her activity early in the episode, Ceasara compared the
top 10 batteries across the Tough Cell and Always Ready group and appeared to
limit her comparison to the batteries at hand. Jason, also previously cited, noted the
arbitrariness of Ceasara’s cut point [18]. Students’ remarks suggest that their clas-
sifications are limited to the particular populations, without a proportional extrap-
olation to the universe of Always Ready and Tough Cell batteries.

The Display as Depicting Groups Sampled From Two
Populations of Cases

Some students may be competent in proportional thinking with respect to data anal-
ysis and may begin to consider problems of inference. Blake appeared to use this
type of understanding in his interactions with Jamie when he justified his position
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related to consistency, arguing that the 2 or 3 bad Always Ready batteries below the
80 cut point would “add up” as the sample size increased [34—37]. Blake brought to
the task a set of understandings that led him to structure quite different analytic
goals than others.

34. Jamie: Um, why wouldn’t the Always Ready batteries be consis-
tent?

35. Blake: Well, because all your Tough Cell is above 80, but you still
have 2 that are behind 80 in the Always Ready.

36. Jamie: I know, but that’s only 3 out of 10.

37. Blake: No, but see, they only did, what, 10 batteries? So the 2 or 3
will add up. They’ll add up to more bad batteries and all that.

The Display as Depicting Two Groups Sampled (n = 10)
From Two Populations Where n Is a Variable

A student conceivably could have come to the stats project class with some intu-
itions that might be the basis for an emerging understanding of sampling distribu-
tions. In this case, the display might be conceptualized as one of many possible
samples where n = 10, and that sample would in turn be related to a sampling distri-
bution of many samples of 10 drawn from two universes of Tough Cell and Always
Ready batteries. Such an analytic posture would be grounds for the generation of a
quite different set of goals related to experimental reasoning.

Emerging Goals in the Batteries and AIDS Episodes

So far, my effort has been to show that particular kinds of mathematical goals
emerge for children in relation to structures of activity, social interactions, valued
artifacts, and children’s prior understandings. Although the focus on goals is key to
an analysis of children’s developing mathematics in practices, in itself it does not
provide a framework for analyzing developmental processes that are implicated in
the individual’s construction of these goals and that flow from the individual’s ef-
forts to elaborate and accomplish them.

SECOND STRAND: DYNAMICS OF DEVELOPMENT IN
COLLECTIVE PRACTICES

Next, I shift my focus to issues of development. I target the micro-, socio-, and
ontogenesis of students’ mathematical activities. Each kind of development has its
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roots in activity as individuals use forms, like the statistical display used in the Bat-
teries episodes, to serve varied functions involving data analysis as they structure
and accomplishemerging goals. However, although rooted in the same or similar ac-
tivities, the constructs target differing kinds of developmental processes.
Microgenesis is concerned with how particular forms (like the display) and the func-
tions that forms afford are turned into means to accomplish emerging goals in activi-
ties. Sociogenesis is concerned with the appropriation and spread of forms in com-
munities, a social process that occurs as individuals appropriate one another’s
efforts. Ontogenesis is concerned with the shifting relations between the forms used
and the functions that they serve in individual activity over an individual’s develop-
ment. I show that a coordinated analysis of these three dimensions of activity is im-
portantin explaining students’ mathematics as ittakes formin the stats projectclass.

Microgenesis?

Cultural artifacts like the battery display and T-cell count inscriptions contain no
intrinsic meaning, mathematical or otherwise. Instead of a mathematical object, the
battery display might just as well be conceived of as an interesting red and green de-
sign; the AIDS Inscription 1 (Figure 10 in the Appendix) could be a depiction of
mountain peaks. The assumption that guides the analysis here is that artifacts take
on mathematical meaning only in activity, as individuals organize them as means to
accomplish particular mathematical goals. This transformation of an artifact into a
means to accomplish a goal is a microgenetic process, one in which objects that are
not inherently mathematical entities become organized as such in purposeful activ-
ity. To analyze microgenetic processes, I focus on the Batteries episode and con-
sider three related aspects of students’ activities linked to the display form—stu-
dents’ generation of means, goals, and the conceptual operations whereby they
create these means and goals. Consider some illustrative instances—one involving
Ceasara and Blake.

Ceasara’s activity early in the Batteries episode can be understood as a
microgenetic construction [12], exemplifying the interplay in activity between the
emergence of means and goals. In making her case for the Always Ready batteries,

2The term microgenesis has come to be used in two ways in the conceptual and empirical literature on
cognitive development. The first meaning dates back to Vygotsky’s (1978, 1986) work in the 1930s as
well as the later writings of Werner and Kaplan (1962). These authors regarded microgenesis as a devel-
opmental process of schematization, either perceptually or conceptually—individuals move from rela-
tively diffuse to more articulated perceptions or conceptualizations over short durations (see also Saxe et
al., 1996). More recently, some authors have used microgenesis or microgenetic methods to refer to the
study of shifts in children’s strategies or cognitive structures over very short periods of time through re-
peated presentations of similar problems (see, e.g., Miller & Coyle, 1999; Siegler, 1989, 1996, 1997). In
this analysis, I use a variation of the first meaning.
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Ceasara “specialized” the display form into a means of supporting a recommenda-
tion. She did so by isolating the top 10 and noting the differing extensions of the
two targeted top-10 subgroups—the Always Ready (of which there are 7) versus
the Tough Cell (of which there are 3).

Inherent in her elaboration of means is an elaboration of goals. The display af-
fords a function of comparing the Always Ready and Tough Cell batteries with re-
gard to frequencies of burning times, and this function is realized in the
comparison goals that she structured—to isolate the top performers and then com-
pare their frequencies.

Ceasara’s elaborations of means and goals are grounded in and related through
a conceptual activity of partitioning and ordering operations. She appeared to con-
ceptualize a superordinate class of batteries and two partitioned subclasses—the
Always Ready and the Tough Cell—and to also cross-partition these 20 batteries as
either longer lasting (n = 10) or not longer lasting (n = 10). She then ordered the ex-
tensions of the longer lasting batteries. These conceptual operations are the basis
for the mathematical coherence of her microgenetic constructions of means and
goals. Figure 2 contains a schematic of the microgenetic construction.

Blake presented a microgenetic process that supported quite a different out-
come, but the broad parameters are similar. Consider his interchange with Kay
as he illustrated a partitioning of the data in the display with the range tool
[24-33].

24. Blake: Can you put the representative value up there please?
25. Kay: I sure will.

Function , ,
( data becoming goal to create supported recommendation

analysis) /
partitioning

and ordering
becoming means to support recommendation

activity

Form
(display)

FIGURE 2  Schematic of some Ceasara’s microgenetic construction.
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26. Blake: Will you put it on 80?

27. Kay: I don’t know if I can get it.

28. Blake: That’s close.

29. Kay: Is thatclose enough [drags red value bar into data as shown in
Figure 5 in the Appendix]?

30. Blake: Now, see, there’s still green ones behind 80, but all of the
Tough Cell is above 80. So I'd rather have a consistent [emphasis
added] battery that I know that’ll get me over 80 hr than one that
just try to guess.

31. Kay: Why? Why were you picking 807

32. Blake: Well, because most of Tough Cell batteries were all over
80.

33. Kay: Ah. OK. So it’s like a lower limit for you. OK. Questions for
Blake? Yes, Jamie?

In Blake’s activity, the display form also became a means to support a recommen-
dation (goal). By creating a cut point at 80, he showed that Always Ready batteries
were the worst performing batteries. Like Ceasara, he also appealed to consistency,
a linguistic form that became a means to support his argument. However, Blake’s
use of the term consistency was different from Ceasara’s. Ceasara used consistency
to refer to the more frequent occurrence of one battery type above a cut point [12].
For Blake, consistency referred to an individual battery, as in a battery that is of
“better quality” [40]. Although the word is the same, the function that the word
serves and the goals that it is used to support are quite different.

40. Blake: Well, because the way that those 10 batteries show on the chart
that they’re all over 80 that means that it seems to me that they would have a
better quality [emphasis added].

Blake also provided evidence of another microgenetic process, one that in-
volves a multiplicative extension of the partitioning operation. He treated the dis-
play form as a representation of cases drawn from a larger universe of batteries.
Blake used the relative frequencies in the Always Ready and Tough Cell displays
as a means to argue for the value of the Tough Cell by extending the products of his
partitioning as a proportional relation to a larger universe of Always Ready and
Tough Cell samples [35-37].

35. Blake: Well because all your Tough Cell is above 80, but you still
have 2 that are behind 80 in the Always Ready.

36. Jamie: [ know, but that’s only 3 out of 10.

37. Blake: No, but see, they only did, what, 10 batteries? So the 2 or 3
will add up. They’1l add up to more bad batteries and all that.
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Treating the display in proportional terms, Blake turned the display into a means for
extrapolating to additional samples of batteries, further supporting his data analytic
goal.

Particularly noteworthy in children’s activities is the property of emergence in
microgenetic processes. The data display can only become a means to support a
particular recommendation if that recommendation is known at the outset. But in
the case of experimental data analysis, the recommendation is not known at the
outset. At the same time, a recommendation needs a data-based justification to
support it. However, a means emerges in activity and is not given at the outset. The
Batteries and AIDS episodes provide repeated evidence of a bootstrapping in pro-
cesses of microgenesis, a bootstrapping between the form and “received” function
of artifacts as they were organized and reorganized into mathematical means and
goals though conceptual activity.

Sociogenesis

Sociogenesis involves the process of emergence and travel of new and valued forms
in the history of a practice. Like microgenetic processes, sociogenetic processes are
pervasive in activity. The sociogenesis of mathematical activity occurs as individu-
als appropriate means that others have generated for accomplishing goals, folding
these means into their own microgenetic constructions in collective practices.

In the stats project class, children produced uptakes on one another’s contribu-
tions that sometimes entailed using the same or similar word forms. Good exam-
ples include the use of expressions like “majority” and “most of the numbers” in
the AIDS clips. Consider, for example, Jamie’s contribution [52]:

52. Jamie: I think it’s a pretty adequate way of showing information
because you can see where the range is starting and ending and you
can see where the majority of the numbers are.

59. Jamie: Where most of the numbers were.

Sheena [64] also used of the term majority:
64. Sheena: Yeah, like right in there, that’s where the majority of it is.
Derrick [60] referred to a similar notion:

60. Derrick: Where most of the numbers are...

Finally, the written artifact in Inscription 2 (Figure 10 in the Appendix) also re-
ferred to a majority.



294  SAXE

75. Kay: The new drug was better than the old. The majority of the old ones
are behind 550, and the majority of the new drug was in front of 550.

Another example of a word that was appropriated or used in different ways by
children is the term consistency. This term was used by Ceasara [12], Blake [30],
and Jamie [34]. Let’s consider consistency in a little more detail as the word ini-
tially was used by Ceasara and later appropriated by Blake to serve a different
function.

Ceasara introduced the term in her claim that she would prefer the more consis-
tent battery, where consistency is a group characteristic [12]. She preferred Always
Ready because they were consistently high (7 of the top 10). Blake brought the
word forward late in the clip, when he indicated that he also preferred a consistent
battery. Here, in contrast, consistency was used to indicate a characteristic of an in-
dividual battery—one of “good quality” that didn’t have a burn time below 80
[30]. Nonetheless, there apparently was enough overlap in the ways the words
were used to preserve the coherence of the classroom discourse, even though there
was uptake by Jamie showing that she was confused by Blake’s intended meaning
[33-34].

33. Kay: Ah. OK. So it’s like a lower limit for you. OK. Questions for
Blake? Yes, Jamie?

34. Jamie: Um, why wouldn’t the Always Ready batteries be consis-
tent?

Were consistency to become a marked term in the stats project class with a technical
meaning for the group, we might well find continued discourse to “fix”” a meaning.
If this became identified as a value in the community in discussing the characteris-
tics of data inscriptions, we might well find that consistency becomes an artifact
that has important implications for students’ data analytic goals.

Another sociogenetic process in the classroom involves students’ use of cut
points to justify their positions. Initially, Ceasara argued for a cut point that should
be determined by the top 10 [12]. Later, Jason argued that the cut point distorted
the minor differences across distributions, pointing out that moving the cut point
only slightly led to the same number of each battery type above the cut point [18].
Finally, Blake argued for the use of a cut point at the lower end of the distribution,
pointing out that if the cut point were set at 80, two of the Always Ready but none of
the Tough Cell batteries would fall below it [30].

The sociogenesis of mathematical activity in the stats project class was sup-
ported not only in peer uptakes on one another’s arguments, but also by Kay her-
self as she revoiced student contributions. For example, she restated Jason’s
remarks about the arbitrariness of cut points, redirecting the remark back to
Ceasara [19].
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19. Kay: Soyou’resaying if I open this out a little bit. Well, maybe, Ceasara,
you can explain to us why you chose 10. That would be really helpful.

She also revoiced Blake’s argument for setting a cut point at 80 [38].

38. Kay: Oh, I see; as you get more and more batteries, it’s going to get more,
more bad ones if that’s representative.

On these occasions, children’s arguments lived beyond their own constructions,
becoming means for Kay to accomplish her own pedagogical goals. In her transfor-
mation of the voices of others into means to accomplish her own goals, Kay took on
a powerful role in shaping the classroom discussion.

Ontogenesis

Children, over time, develop new functions for forms in their activities. They also
may appropriate new forms, using them for earlier understood functions. The inter-
play between the forms and functions over the course of children’s developments is
a process of ontogenetic change and key to understanding children’s developing
mathematics in collective practices.

Of course, the most useful source of data for ontogenetic analyses is to follow
individuals as they grow older, sampling changes in the ways that individuals
structure and accomplish recurring problems. This is not possible given the avail-
able corpus of episodes in the stats project class. It is possible to remark on some
prototypical approaches that students used in the episodes and whether these ap-
proaches might be ordered over individual children’s developments. Consider two
general functions described earlier for which the battery display could be used that
may well constitute a very general developmental trajectory.

In the stats project class, many students appeared to use the display to accom-
plish a descriptive function. Using the batteries display form, students were count-
ing the number of batteries that were above a cut point or the number of batteries
that were below a cut point without clear regard for how such comparisons would
generalize to a universe of batteries. The anomaly was Blake, who, to defend his
position for the Tough Cell batteries, created a multiplicative relation as he consid-
ered the extrapolation of the current sample of Tough Cell and Always Ready bat-
teries to additional samples [35-37].

35. Blake: Well, because all your Tough Cell is above 80, but you still
have 2 that are behind 80 in the Always Ready.

36. Jamie: I know, but that’s only 3 out of 10.

37. Blake: No, but see, they only did, what, 10 batteries? So the 2 or 3
will add up. They’ll add up to more bad batteries and all that.
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In this effort, Blake created a new function for the display form, a function that dif-
fered from other children’s functions. Blake used the form to serve as a basis for ex-
trapolation of a proportional relation as he accomplished the goal of supporting his
preference for the Tough Cell batteries. What marks Blake’s approach is the multi-
plicative extrapolation of the partitioning to unobserved cases.

There is some evidence of the use of proportional reasoning in the later occur-
ring AIDS episodes by other members of the class. Indeed, of the students who
contributed to the AIDS discussion, many voiced analyses that appeared to appre-
ciate the need to structure multiplicative approaches to the analyses of the display.
They pointed out that although the old treatment was associated with cases with
greater T-cell counts, the new treatment had the greater proportion of T-cell
counts. Paul and Kay even pushed the children to adopt absolute (additive) as con-
trasted to multiplicative approaches, but they had no takers [99, 113-114].

99. Paul: I’ve got a question for everybody. Couldn’t you just argue,
hey, this shows really convincingly that the old treatment was
better, right? Because there were 56 of them, 56 scores above 525,
56 people with T-cell counts above 525, and here there’s only 37
above, so the old one just had to be better, there’s more people. I
mean, there’s 19 more people in there, so that’s the better one,
surely.

113. Kay: OK, who can help me out with that, who can say that a differ-
ent way so that I might could understand that? Will, can you say it
a different way?

114. Will: Well, in that situation it wouldn’t matter how many people
were in there because see like...

That Kay and Paul had no takers for their “absolute value” arguments suggests that
many of the children were persuaded by the relative arguments advanced by the
children who contributed to the classroom discussion.

It is noteworthy that properties of the designed artifacts in the stats project class
lessons are sequenced in such a way that parallel the ontogenetic shifts in chil-
dren’s activities. In the Batteries episode, the numbers of cases in the populations
were small and the design was balanced—the number of Tough Cell and Always
Ready batteries both equaled 10 (as depicted in the software display). Further-
more, in the Batteries episode, each case was represented as a distinct bar, a bar
that was a “motivated” representation in the sense that the greater the battery life,
the greater the length of a batteries bar. Thus, the forms of representation well sup-
port functions of considering individual cases in relation to others or computing
the two groups of 10 batteries. In contrast, in the AIDS episode inscriptions, the



COLLECTIVE PRACTICES 297

numbers of cases was relatively large and the design was unbalanced (n =46 and n
= 186 for the new and old treatments, respectively). In the AIDS episodes, students
were asked to create their own abbreviated representation of the software output,
and the adequacy of these representations was the focus of discussion so that
someone else could make a judgment about treatment—a problem of inference.
Furthermore, data were not represented as single instances but rather the represen-
tation of cases was accomplished in abbreviated ways. Thus, these data and their
representations “pulled” for a multiplicative analysis.

Putting It Together

Figure 3 contains an overview schematic of the cultural developmental framework
that I’ve sketched in my remarks. The figure portrays two children. As these two
children engage with data analytic problems that take form in the stats project class,
they structure resources (such as statistical display forms, linguistic forms of statis-
tical terms) into means of solution to accomplish emerging goals in their own
microgenetic constructions. These constructions are depicted as the ovals in the fig-
ure. Sometimes, depicted as the overlap of the ovals, the children may appropriate
the fruits of the others’s productions—the means that the other creates in his or her
microgenetic construction. As children come to appropriate one another’s efforts,
processes of microgenesis may build off of one another. Such “travel” of means to
serve sometimes similar and sometimes different functions in reciprocal appropria-
tions is the root of the sociogenesis of knowledge in collective practices. As sug-
gested by Figure 3, uptake by additional others may lead to an eventual
“institutionalization” of such means as the “received” or “reified”” convention. The
diagram also situates ontogenetic developments—shifts in the organization of indi-
viduals’ continued efforts to accomplish similar problems from one time to an-
other—in relation to micro- and sociogenetic processes. Indeed, microgenetic con-
structions may take on new qualities as individuals use familiar forms to serve
newly emerging functions or use newly introduced forms for functions that either
are familiar or will only be realized in later activity.

CONCLUDING REMARKS

A caveatis in order. In this article I supported the elaboration of key constructs with
evidence from observations drawn from selected videotaped classroom epi-
sodes—a method that is a departure from the multiple methods I regard as impor-
tant in research on cognition in collective practices. Indeed, in this exercise,  made
claims about children’s goals, the means that they used to accomplish goals, and de-
velopmental processes, citing actions and utterances in the videotaped records as
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appropriation by othersto accomplish goals

Individual A, time 1 Individual A, time 2

micro-

Individual A )
genesis

COLLECTIVE
PRACTICE

SOCIO-
genesis

micro-

Individual B genesis

Individual B, time 1 Individual B, time 2

appropriation by others to accomplish goals

FIGURE 3 General portrayal of the interplay between micro-, socio-, and ontogenetic pro-
cesses.

my sole support. Were I to design a study on collective practices like the stats pro-
ject class with a concern for the constructs that I have described, I might well have
gathered additional data sources to provide convergent evidence. This is the ap-
proach that I have taken in my research on collective practices, whether in early
studies of young children’s activities involving numbers in middle- and work-
ing-class communities in the United States (Saxe et al., 1987), the mathematics of
Brazilian candy sellers (Saxe, 1991), or recent studies on mathematics and histori-
cal change in remote Papua New Guinea communities (Saxe, Esmonde, &
Mclntosh, 2002). The framework that I have sketched in this article has its roots in
and is used to structure such multimethod analyses.

In an analysis of the means and goals that children were generating in the
stats project class, one might have found helpful supplemental information
gleaned from “debriefings” of children after targeted lessons. To support analy-
ses of micro- and ontogenetic changes in children’s representational activities, I
would have found useful interviews with students on problems closely related to
classroom life. For analyses of sociogenesis, debriefings with the silent children
would have been useful to understand the sense that they were making of their
peers’ conjectures and their teacher’s moves. In addition, surveying the children
on the sources of particular strategies would produce information on the spread
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of forms and the functions that they were used to serve in the stats project class
community.

Any video record of activity in a mathematics classroom, regardless of how
rich, is open to multiple interpretations. This issue illustrates the importance and
utility of analysts’ epistemological assumptions in framing treatments of teaching
and learning based on such records. It also illustrates the need for multiple empiri-
cal techniques to advance, support, and constrain important claims about develop-
mental processes related to ongoing classroom activity.
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