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Abstract
The paper describes a multimodal approach to the automated
recognition of Alzheimer’s dementia in order to solve the
ADReSS (Alzheimer’s Dementia Recognition through Sponta-
neous Speech) challenge at INTERSPEECH 2020. The pro-
posed method exploits available audio and textual data from the
benchmark speech dataset to address challenge’s two subtasks,
a classification task that deals with classifying speech as demen-
tia or healthy control speech and the regression task of deter-
mining the mini-mental state examination scores (MMSE) for
each speech segment. Our approach is based on evaluating the
predictive power of different types of features and on an exhaus-
tive grid search across several feature combinations and differ-
ent classification algorithms. Results suggest that even though
TF-IDF based textual features generally lead to better classifi-
cation and regression results, specific types of audio and read-
ability features can boost the overall performance of the classi-
fication and regression models.
Index Terms: Cognitive Decline Detection, Computational
Linguistics, Natural Language Processing, Speech Processing

1. Introduction
Alzheimer’s Disease (AD) is the most common underlying
cause of dementia, a neurodegenerative disease that leads to
behavior and personality changes, such as decline in cognitive
abilities and memory loss. AD is age-related and due to recent
population trends suggesting large increases in elderly popula-
tion [1], development of efficient methods for AD early detec-
tion and management has become of utmost importance.

The ADReSS (Alzheimer’s Dementia Recognition through
Spontaneous Speech) challenge [2] at INTERSPEECH 2020 [3]
deals with automatic detection of AD from audio recordings and
corresponding transcripts of subjects participating in a picture
description task. The challenge defines two subtasks: Subtask
1 is a binary classification, i.e., to determine whether a patient
has dementia or not, and SubTask 2 aims to determine the mini-
mental state examination scores (MMSE) for each patient, i.e.,
a regression task.

The related work on AD classification reports accuracies of
up to around 80% when best features are selected from a large
set of linguistic and audio features [4, 5], or just linguistic fea-
tures [6]. The accuracy in most cases decreases to below 70% in
studies that consider only audio features [7], an exception being
a study by Haider et al. [8], where the best accuracy of 78.7% is
reported when an active data representation (ADR) feature ex-
traction method is employed. When it comes to the regression
task of determining the MMSE, we are aware of just one study
that tackled it, reporting a mean absolute error (MAE) of 3.83
[5].

Due to findings from the related work and a relatively small
size of the training set (108 training examples), our approach to

both tasks was based on an extensive grid search over all possi-
ble feature combinations for each of the several pre-chosen clas-
sifiers and regressors1. These feature sets include several audio
features (e.g., MFCC, ADR...) and a diversity of text features,
covering different aspects of text transcripts (e.g., semantic fea-
tures such as unigrams, syntactic features based on universal
dependencies, which are in recent natural language processing
research replacing the traditional part-of-speech tags and lan-
guage dependant parsers, and statistical features indicating the
readability of the text). The main contributions of this paper are
as follows:

• Systematic evaluation of 16 distinct feature sets engi-
neered from the audio signals and text transcripts and
an insight into how they can be combined in the most
efficient way.

• Deployment of novel universal dependency based fea-
tures, and additional readability features for automated
AD detection (i.e. ARI [9], GFI [10] and SMOG [11]).

• Development of a number of dementia AD classification
and regression models with good performance and an
available code for all experiments.

2. Methodology
Our core methodology consists of three parts, feature engineer-
ing (Section 2.1), choosing the learning algorithms (Section 2.2)
and selection of the best feature combinations (Section 2.3).

2.1. Feature engineering

Features employed in the conducted experiments can be roughly
divided into four distinct types, audio features, TF-IDF fea-
tures, readability features and embeddings.

2.1.1. Audio features

All audio features were generated from the normalised audio-
chunks, i.e., the .wav files extracted from the audio recordings
of the AD and non-AD patient’s speech after applying voice
activity detection [2]. The following feature sets were con-
structed:

• Mean MFCC: means of first 13 mel-frequency cepstral
coefficient features averaged across all audio recordings
of each patient’s speech. Window width of 25 ms and a
stride of 10 ms were used in the extraction.

• ADR: an active data representation cluster based method
for feature extraction [8] employed on Geneva minimal-
istic acoustic parameter set (eGeMAPS) and MFCC

1Code for the experiments is available under the MIT license at
https://github.com/matejMartinc/ADReSSchallenge.
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features. Note that in our implementation, the self-
organising maps (SOM) [12] clustering was replaced by
a more widely used k-means clustering, with k=30.

• Average duration of audio recordings of each patient.

In addition, we also tested predictive power of mean root-
mean-square, zero-crossing rate, spectral bandwidth, rolloff and
centroid of audio samples, and the ADR feature extraction
method on the emobase, ComParE 2013 and Multi-Resolution
Cochleagram (MRCG) feature sets, as in [8], but did not use
them in further experiments due to bad performance.2

2.1.2. TF-IDF features

TF-IDF features, which have been used in previous AD detec-
tion studies [13], were generated from the transcriptions of au-
dio recordings3 by generation of word and character n-gram to-
kens and employing bag-of-words vectorization and term fre-
quency - inverse document frequency (TF-IDF) weighting on
the derived tokens. The following tokens were used in vector-
ization and TF-IDF weighting:

• Unigram tokens, i.e., single words

• Bigram tokens, i.e., sequences of two adjacent words

• Char4gram tokens, i.e., sequences of four adjacent
characters

• Suffix tokens, i.e., word suffixes of length 3

• POS tag bigrams, i.e., sequences of two adjacent part-
of-speech tags

• Grammmatical dependency (GRA) features modelling
grammatical relations between words in the input text,
generated by the organizers of the challenge [2].

• Universal dependency (UD) features, i.e., a sequential
representations of grammatical relations generated using
the Stanford universal dependency parser [14]. For each
word in the text, a tuple containing the type of grammat-
ical relation (e.g., a determiner, nominal subject...) and
the distance between the word at hand and its related
word is generated. Unigrams, bigrams and trigrams of
these tuples are used in our experiments.

2.1.3. Embeddings

Since related work reports promising results when word embed-
dings are used for AD detection [6, 15], we test several doc2vec
embedding representations [16], namely doc2vec text repre-
sentations generated from transcript texts, doc2vec POS tags
representations generated from transcript POS tag sequences,
doc2vec GRA representations generated from GRA features and
doc2vec UD representations generated from UD feature se-
quences. We only use doc2vec UD features in further exper-
iments, others were discarded due to bad performance.

2.1.4. Readability features

We experiment with several readability features. The hypoth-
esis is that readability measures capture the complexity of lan-
guage, which can be related to AD (AD patients display a de-
crease in the syntactic complexity of language [17] and have

2The Logistic regression classifiers leveraging each of these fea-
ture sets did not outperform the majority baseline in the 10-fold cross-
validation setting on the train set.

3Parts of the transcriptions that refer to the interviewer, and not the
patient, were not used.

trouble in understanding the meaning of more complex words
[18]):

• Gunning fog index (GFI) [10] was designed to estimate
the years of formal education a person needs to under-
stand the text on the first reading. It is calculated as
GFI = 0.4( totalWords

totalSentences + 100 longWords
totalSentences ), where long-

Words are words longer than 7 characters.

• Automated readability index [9] (ARI) was also de-
signed to return values corresponding to the years of ed-
ucation required to understand the text and is calculated
as ARI = 4.71( totalCharacters

totalWords ) + 0.5( totalWords
totalSentences )− 21.43

• The SMOG grade (Simple Measure of Gobbledy-
gook) [11] is a readability formula mostly used
for checking health messages and is calculated as

SMOG = 1.0430
√

num3Syllables 30
totalSentences3.1291,

where the num3Syllables is the number of words with
three or more syllables.

• Number of unique words (NUW), normalized with the
number of all words in the transcript.

Besides the readability features above, we also experi-
mented with Flesch reading ease [19], Flesch-Kincaid grade
level [19] and Dale-Chall [20] readability formulas, which were
not used in further experiments due to bad performance.

2.2. Learning algorithms

Classification experiments were conducted by using four dis-
tinct classification algorithms from the Scikit library [21],
namely Xgboost [22] (with 50 gradient boosted trees with max
depth of 10), Random forest (with 50 trees of max depth of 5),
SVM (with linear kernel and 2 box constraint configurations, 10
and 100) and Logistic regression (LogR) (with 2 distinct regu-
larization configurations, 10 and 100). Regression experiments
were conducted by using four distinct regression algorithms,
namely Xgboost, SVM, Random forest and Linear regression
(LinR). For Xgboost, SVM and Random forest same hyperpa-
rameters were used as for classification, while for LinR we used
default parameters.

2.3. Exploration of feature space and model selection

Our approach is based on the early future-level fusion between
different types of audio and textual features and relies on iden-
tification of feature combinations with the best synergy effect
(see Figure 1). In order to do that, an extensive grid search
across 65,535 combinations of 16 different feature sets (i.e., 4
audio, 7 TF-IDF, 1 embeddings and 4 readability feature sets)
for each of the learning algorithms was conducted on the train
set in a 10-fold cross-validation (CV) setting. For classification,
accuracy is used for the performance evaluation, and for regres-
sion, root mean square error (RMSE) is used, same as for the
official challenge evaluation [2].

The ADReSS challenge allows for submission of 5 distinct
test set prediction tries. Therefore we identify 5 best perform-
ing classification models with non-identical predictions on the
test set according to the grid search results. Their predictions on
the test set are used for a majority vote ensemble, the output of
which is used as one of the submissions. The other four submis-
sions are test set predictions of the four best performing classi-
fication models. 5 submissions for regression are generated by
first identifying 4 best performing regression models that do not
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Figure 1: Exploration of the feature space. Four types of fea-
tures are combined by a concatenation of feature vectors (i.e.,
early feature-level fusion) and a grid search across all feature
combinations is conducted. The best performing models em-
ploying best feature combinations are used for generating pre-
dictions on the test set, which are finally used for the ensembling
(late prediction-level fusion).

produce identical predictions on the test set and then calculat-
ing the mean of the predicted MMSE scores of these four best
performing models in order to produce the fifth submission.

3. Experimental setting
In this Section we quickly overview the dataset and present the
experiments conducted and results achieved in the scope of the
ADReSS challenge. The Section is divided into three parts,
Dataset (Section 3.1) Feature evaluation (Section 3.2) and Ex-
perimental results (Section 3.3).

3.1. Dataset

The dataset consists of recordings and transcripts of Cookie
Theft picture descriptions by 78 AD and 78 non-AD partici-
pants of the Boston Diagnostic Aphasia Exam [23] and is bal-
anced in terms of gender and age. Altogether the dataset con-
tains 4,076 normalized speech segments, on average 24.86 per
participant, and one transcript per each participant. It is split
into a train set containing 108 examples and the test set contain-
ing 48 examples. For details, see [2].

3.2. Feature evaluation

In this experiment we explore the classification and regression
performance of distinct feature sets in the 10-fold CV setting
on the train set. SVM with box constraint of 10 was used in the
feature evaluation experiments. Results for classification are
presented in Figure 2. In general, TF-IDF features outperform
all other feature types and among them, the best features are
Char4grams that by themselves achieve the accuracy of 86.4%.
While all TF-IDF feature sets lead to accuracy of about 70%
or more, other types of features generally achieve accuracies
between 50% and 60%, the only exception being ARI, which
achieves accuracy just slightly above 60%. The worst perform-
ing feature is another readability measure, GFI, achieving accu-
racy just slightly above the chance level (51.8%). Among the
audio features, the best performing are MFCC features (accu-
racy of 57.6%) and the worst are ADR features generated on
the eGeMAPs (accuracy of 54.7%).

The feature performance on the regression task is some-
what consistent with the performance on the classification task
(See Figure 3). TF-IDF features outperform other feature types
and Char4grams are again the best features (achieving RMSE
of 5.32). Also, ARI is again the best readability feature. On
the other hand, MFCC features, which showed the best perfor-
mance among audio features in the classification setting, are
the worst features in the regression setting (achieving RMSE of
8.66). The best performing audio feature is the mean duration
of the audio clips.

3.3. Experimental results

Results of the five best performing classification and regression
models are presented in Table 1. The best classification accu-
racy of 77.8% on the official test set was achieved when a LogR
model with a regularization strength (C) of 10 was trained on
GFI, NUW, Duration, Char4gram, Suffix, POS tag and UD fea-
tures. The same model also achieved the best accuracy in the
CV setting, a much higher accuracy of 92.7%. On the other
hand, for regression, the best RMSE score of 4.4388 on the test
set was achieved by the SVM model with the box constraint of
10 trained on NUW, Bigram, Char4gram, Suffix, POS tag and
GRA features, which performed the worst out of the four best
regression models in the CV setting. While the ensemble of
models produced the worst classification result on the test set,
it ranked as second best on the regression task, although its per-
formance was still much worse than the performance of the best
model.

4. Discussion
The large discrepancies between the CV and test set classifi-
cation performances suggest all the models overfitted, since all
the models performed worse on the official test set than in the
CV setting. The same can be said for four out of five regres-
sion models. Overfitting could be to some extent explained with
the small size of the train set and might be limited by reducing
the number of features. The one exception to the overfitting is
the best performing regression model, which achieved a better
RMSE score on the test set than in the CV setting. A more thor-
ough error analysis would be required to explain this deviation.

Logistic/linear regression and SVMs with linear kernels
proved better than Xgboost and Random forest models for both
tasks. Some previous studies [24] suggest that these models
work especially well on textual features and this could also ex-
plain their good performance on the tasks at hand, where textual
TF-IDF features are the best performing features.

Besides the best performing textual features (Char4grams)
and POS tags, which appear in most of the best classification
and regression feature combinations, GFI and NUW also appear
in 5 out of 9 best combinations, which suggests that readability
measures add some useful information to the models. Interest-
ingly, UD features only appear in best configurations for classi-
fication. When it comes to audio features, the best performing
feature for classification appears to be Duration (appearing in 3
out of 5 best combinations) and the best performing feature for
regression is MFCC ADR, appearing in 3 out of 4 best combi-
nations. The doc2vec UD embedding features did not appear in
any of the best combinations, most likely due to a very small
train set which prohibits the successful training of an efficient
embedding model.

Overall, our results outperform the baseline by a large mar-
gin [2] and are slightly worse than the results reported in the
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Figure 2: SVM (with box constraint of 10) classification performance with different features.

Figure 3: SVM (with box constraint of 10) regression performance with different features.

Table 1: Results of the Cross validation (CV) and official test set experiments in terms of accuracy and RMSE.

Classification
Feature set Model CV score Test set score

GFI,NUW,Duration,Character 4-grams,Suffixes,POS tag,UD LogR (C=100) 0.927 0.7708
Duration,Character 4-grams,Suffixes,POS tag,UD SVM (C=10) 0.918 0.7500
NUW,Duration,Unigram,Suffixes,POS tag,UD LogR (C=10) 0.917 0.7500
GFI,Duration,Unigram,Bigram,Suffixes,POS tag,UD SVM (C=10) 0.908 0.7500
duration,Unigram,Bigram,Suffixes,POS tag,UD LogR (C=10) 0.907 /
Ensemble / / 0.7292

Regression
Feature set Model CV score Test set score

GFI,NUW,MFCC ADR,Bigram,Character 4-grams,Suffixes,POS tag LinR 5.008 5.1878
GFI,NUW,MFCC ADR,Character,4-grams,Suffixes,POS tag LinR 5.021 5.4312
GFI,MFCC ADR,Character 4-grams,Suffixes,POS tag LinR 5.032 5.4483
NUW,Bigram,Character 4-grams,Suffixes,POS tag,GRA SVM (C=10) 0.505 4.4388
Ensemble / / 5.0574

related work [4, 5], which have been achieved on a much larger
and also unbalanced DementiaBank’s Pitt corpus [25].

5. Conclusions
In this paper we have presented a multimodal approach to the
ADReSS (Alzheimer’s Dementia Recognition through Spon-
taneous Speech) challenge. The proposed method relies on
a feature-level fusion between different feature types and an
extensive grid search across all feature combinations, and ex-
ploits both audio and textual data for the automatic detection of
Alzheimer’s dementia.

The results suggest that a multimodal approach leads to bet-

ter performance than unimodal approaches but also suggest cau-
tion about using many different features due to the overfitting
risk. Besides testing new features (e.g., clinical features such
as concept counts), our future work will therefore be focused
on reducing the number of features in order to avoid overfitting,
while still sustaining the predictive performance of the classifi-
cation and regression models.
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Abstract

Disfluencies and language problems in Alzheimer’s Disease

can be naturally modeled by fine-tuning Transformer-based

pre-trained language models such as BERT and ERNIE. Us-

ing this method, we achieved 89.6% accuracy on the test set

of the ADReSS (Alzheimer’s Dementia Recognition through

Spontaneous Speech) Challenge, a considerable improvement

over the baseline of 75.0%, established by the organizers of

the challenge. The best accuracy was obtained with ERNIE,

plus an encoding of pauses. Robustness is a challenge for large

models and small training sets. Ensemble over many runs of

BERT/ERNIE fine-tuning reduced variance and improved ac-

curacy. We found that um was used much less frequently in

Alzheimer’s speech, compared to uh. We discussed this inter-

esting finding from linguistic and cognitive perspectives.

Index Terms: Alzheimer’s disease, disfluency, BERT, ERNIE,

ensemble

1. Introduction

Alzheimer’s disease (AD) involves a progressive degeneration

of brain cells that is irreversible [1]. Therefore, early diagno-

sis and intervention is essential. One of the first signs of the

disease is deterioration in language and speech production [2].

Case studies of the writings of the British Novelist Iris Murdoch

indicated that lexical and syntactic changes occurred in the early

stage of her AD [3]. Similarly, a study of President Ronald Re-

gan’s non-scripted news conferences found decreases in unique

words and increases in conversational fillers and non-specific

nouns well before his diagnosis of AD [4].

It is desirable to use language and speech for AD detection

[5]. The ADReSS challenge of INTERSPEECH 2020 is “to

define a shared task through which different approaches to AD

detection, based on spontaneous speech, could be compared”

[6]. This paper describes our effort for the shared task.

1.1. Studies of speech and language in AD and AD detection

There is an extensive literature on the characteristics of lan-

guage and speech production in people with AD at various

stages of the disease. Summaries of the studies can be found

in [7, 8, 9]. Language impairment in AD is most evident in

lexical, semantic, and pragmatic aspects. For example, people

with AD often produce semantically ”empty” words (e.g., thing,

stuff ) [10], use fewer information-bearing nouns and especially

verbs [11], and their discourse appears to be disorganized [12].

Other aspects (syntax, phonology, and articulation) are believed

to be relatively well preserved until late stages of the disease

[13], though this conclusion is controversial [14, 15].

Many language problems cause disfluency in connected

speech. Disfluencies are also common in normal spontaneous

speech [16]. There are various types of disfluencies such as

repetitions, false starts, repairs, filled and unfilled pauses. The

phonetic consequence of speech disfluency has been well stud-

ied [17]. English has two common filled pauses, uh and um.

There is a debate in the literature as to whether uh and um are

intentionally produced by speakers [18, 19]. From sociolinguis-

tic point of view, women and younger people tend to use more

um vs. uh than men and older people [20, 21]. It has also been

reported that autistic children use um less frequently than nor-

mal children [22, 23], and that um occurs less frequently and is

shorter during lying compared to truth-telling [24]. It will be in-

teresting to examine whether the use of uh and um in AD speech

is different from normal speech. We did a preliminary investiga-

tion on this question, which is reported in Section 2. Although

disfluencies are a part of normal speech, there is a boundary be-

tween normal and abnormal disfluencies. The boundary resides

in a high dimensional space, determined by many interrelated

factors such as pauses, repetitions, linguistic errors, discourse

incoherence, etc. Classification of AD and normal speech re-

quires a model that can capture these factors.

There is a considerable literature on AD detection from

continuous speech [25, 26]. This literature considers a wide

variety of features and machine learning techniques. [27] used

370 acoustic and linguistic features to train logistic regression

models for classifying AD and normal speech. [28] found that

acoustic and linguistic features were about equally effective for

AD classification, but the combination of the two performed

better than either by itself. Neural network models such as

Convolutional Neural Networks and Long Short-Term Memory

(LSTM) have also been employed for the task [29, 30, 31], and

very promising results have been reported. However, it is diffi-

cult to compare these different approaches, because of the lack

of standardized training and test data sets. One objective of the

ADReSS challenge is to overcome this obstacle [6].

1.2. Pre-trained LMs and Self-attention

Modern pre-trained language models such as BERT [32] and

ERNIE [33] were trained on extremely large corpora. These

models appear to capture a wide range of linguistic facts includ-

ing lexical knowledge, phonology, syntax, semantics and prag-

matics. Recent literature is reporting considerable success on a

variety of benchmark tasks with BERT and BERT-like models.1

We expect that the language characteristics of AD can also be

captured by the pre-trained language models when fine-tuned to

the task of AD classification.

1https://gluebenchmark.com
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BERT and BERT-like models are based on the Transformer

architecture [34]. These models use self-attention to capture as-

sociations among words. Each attention head operates on the el-

ements in a sequence (e.g., words in the transcript for a subject),

and computes a new sequence of the weighed sum of (trans-

formed) input elements. There are various versions of BERT

and ERNIE. There is a base model with 12 layers and 12 at-

tention heads for each layer, as well as a larger model with 24

layers and 16 attention heads for each layer. Conceptually the

self-attention mechanism can naturally model many language

problems in AD mentioned in Section 1.1, including repetitions

of words and phrases, use of particular words (and classes of

words), as well as pauses. We proposed a method to encode

pauses in a word sequence to enable BERT-like models to take

advantage of disfluencies involving pauses, described in Sec-

tion 3.1.

Previous studies have found that when fine tuning BERT

for downstream tasks with a small data set, the model has a high

variance in performance. Even with the same hyperparameter

values, distinct random seeds can lead to substantially differ-

ent results. [35] conducted a large-scale study on this issue.

They fine-tuned BERT hundreds of times while varying only

the random seeds, and found that the best-found model signif-

icantly outperformed previous reported results using the same

model. In this situation, using just one final model for predic-

tion is risky given the variance in performance during training.

We propose an ensembling method to address this concern.

2. Data and analysis

2.1. Data

The data consists of speech recordings and transcripts of de-

scriptions of the Cookie Theft picture from the Boston Diag-

nostic Aphasia Exam [36]. Transcripts were annotated using

the CHAT coding system [37]. We only used word transcripts,

the morphological and syntactic annotations in the transcripts

were not used in our experiments.

The training set contains 108 speakers, and the test set con-

tains 48 speakers. In each data set, half of the speakers are

people with AD and half are non-AD (healthy control subjects).

Both data sets were provided by the challenge. The organiz-

ers also provided speech segments extracted from the record-

ings using a simple voice detection algorithm, but no transcripts

were available for the speech segments. We didn’t use these

speech segments. Our experiments were based on the entire

recordings and transcripts.

2.2. Processing transcripts and forced alignment

The transcripts in the data sets were annotated in the CHAT

format, which can be conveniently created and analyzed us-

ing CLAN [37]. For example: “the [x 3] bench [: stool].” In

this example, [x 3] indicates that the word ‘the’ was repeated

three times, [: stool] indicates that the preceding word, ”bench”

(which was actually produced), refers to stool. Details of the

transcription format can be found in [37].

For the purpose of forced alignment and fine tuning, we

converted the transcripts into words and tokens that represent

what were actually produced in speech. ‘w [x n]’ were replaced

by repetitions of w for n times, punctuation marks and various

comments annotated between ‘[]’ were removed. Symbols such

as (.), (..), (...), <, >, / and xxx were also removed.

The processed transcripts were forced aligned with speech

recordings using the Penn Phonetics Lab Forced Aligner [38].
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Figure 1: The word cloud on the left highlights words that are

more common among control subjects than AD; the word cloud

on the right highlights words that are more common among AD

than control.

Table 1: Subjects with AD say uh more often, and um less often.

uh um

Control (non-AD) 130 51

Dementia (AD) 183 20

The aligner used a special model ‘sp’ to identify between-word

pauses. After forced alignment, the speech segments that be-

long to the interviewer were excluded. The pauses at the begin-

ning and the end of the recordings were also excluded. Only the

subjects’ speech, including pauses in turn-taking between the

interviewer and the subject, were used.

2.3. Word frequency and uh/um

From the training data set, we calculated word frequencies for

the Control and AD groups respectively. Words that appear 10

or more times in both groups are shown in the word clouds

in Figure 1. The following words are at least two times more

frequent in AD than in Control: oh (4.33), =laughs (laughter,

3.18), down (2.66), well (2.42), some (2.2), what (2.16), fall

(2.15). And the words that are at least two times more fre-

quent in Control than in AD are: window (4.4), are (3.83), has

(3.0), reaching (2.8), her (2.62), um (2.55), sink (2.3), be (2.21),

standing (2.06).

Compared to controls, subjects with AD used relatively

more laughter and semantically “empty” words such as oh, well,

and some, and fewer present particles (-ing verbs). This is con-

sistent with the literature as discussed in Section 1.1. Table 1

shows an interesting difference for filled pauses. The subjects

with AD used more uh than the control subjects, but their use

of um was much less frequent.

2.4. Unfilled pauses

Durations of pauses were calculated from forced alignment.

Pauses under 50 ms were excluded, as well as pauses in the

interviewer’s speech. We binned the remaining pauses by dura-

tion as shown in Figure 2. Subjects with AD have more pauses

in every group, but the difference between subjects with AD and

non-AD is particularly noticeable for longer pauses.

3. BERT and ERNIE Fine-tuning

3.1. Input and Hyperparameters

Pre-trained BERT and ERNIE models were fine-turned for the

AD classification task. Each of the N = 108 training speak-

ers is considered a data point. The input to the model consists

2163



Pause duration

N
u
m

b
e
r 

o
f 
p
a
u
s
e
s

0
2
0
0

4
0
0

6
0
0

8
0
0

<0.5s 0.5s−1s 1s−2s >2s

Control

Dementia

Figure 2: Subjects with AD have more pauses (in all duration

bins).

of a sequence of words from the processed transcript for every

speaker (as described in Section 2.2). The output is the class of

the speaker, 0 for Control and 1 for AD.

We also encoded pauses in the input word sequence. We

grouped pauses into three bins: short (under 0.5 sec); medium

(0.5-2 sec); and long (over 2 sec). The three bins of pauses

are coded using three punctuations “,”, “.”, and “. . . ”, respec-

tively. Because all punctuations were removed from the pro-

cessed transcripts, these inserted punctuations only represent

pauses. Two examples of the input text are given below:

1. S136 (AD): well your , sink is being run over , the . water

, the stool the kid’s standing on , is , falling and he’s

getting , cookies from a jar , the ... lady’s washing ...

dishes . the ... girl’s reaching for a cookie ... could ,

there , be . more , i don’t . think so .

2. S062 (non-AD): well there’s a kid , stealing cookies from

the cookie jar and his stool’s about to topple over his ,

his sister’s . asking for one the ... cookie jar is open

of course the cupboard’s open . the , mother’s drying

dishes the sink is overflowing . there are some , dishes

on the side board . window’s open i don’t ... know , what

else you want , there are curtains in the window i don’t

know if there’s any .

We used Bert-for-Sequence-Classification2 for fine tuning.

We tried both “bert-base-uncased” and “bert-large-uncased,”

and found slightly better performance with the larger model.

The following hyperparameters (slightly tuned) were chosen:

learning rate = 2e-5, batch size = 4, epochs = 8, max input length

of 256 (sufficient to cover most cases). The standard default to-

kenizer was used (with an instruction not to split “...”). Two

special tokens, [CLS] and [SEP], were added to the beginning

and the end of each input.

ERNIE fine-tuning started with the “ERNIE-large” pre-

trained model (24 layers with 16 attention heads per layer). We

used the default tokenizer, and the following hyperparameters:

learning rate = 2e-5, batch size = 8, epochs = 20 and max input

length of 256.

3.2. Ensemble Reduces Variance in LOO Accuracy

When conducting LOO (leave-one-out) cross-validation on the

training set, large differences in accuracy across runs were ob-

served, as illustrated in Figure 3. The black lines in Figure 3

were computed over 50 runs of BERT3p (top) and 50 runs of

ERNIE0p and 50 runs of ERNIE3p (bottom). 0p indicates that

no pause was encoded, and 3p indicates that three lengths of

2https://github.com/huggingface/transformers
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Figure 3: We computed 50 estimates of leave-one-out (LOO) ac-

curacy for BERT with pauses (top) and ERNIE with and without

pauses (bottom). There is a wide variance in both cases (black).

The proposed ensemble method (purple) improves the mean and

reduces variance. Pauses are useful. Solid lines (with pauses)

are better than dashed lines (without pauses).

pauses were encoded. Each run reports a leave-one-out (LOO)

accuracy. Everything was the same across runs except for ran-

dom seeds. Over the 50 runs, LOO accuracy ranged from 0.75

to 0.86 for BERT3p, from 0.78 to 0.87 for ERNIE3p, and from

0.77 to 0.85 for ERNIE0p. The large variance suggests perfor-

mance on unseen data is likely to be brittle. Such brittleness

is to be expected given the large size of the BERT and ERNIE

models and the small size of the training set (108 subjects).

To address this brittleness, we introduced the following en-

semble procedure. From the results of LOO cross validation,

we calculated the majority vote over 50 runs for each of the

N = 108 subjects, and used the majority vote to return a single

label for each subject. Tables 2-3 and Figure 3 show that this en-

semble procedure improves the mean and reduces the standard

deviation over estimates based on a single run.

To make sure that the ensemble estimates would generalize

to unseen data, we tested the method by selecting N = 5, N =

15, ..., runs from the 50 runs reported in Figure 3. The results

in the first row of Table 2 summarize 100 draws of N = 5 runs.

The second row is similar, except N = 15. All of the rows

in Table 2 have better means and less variance than the black

line in Figure 3. Table 3 is like Table 2, except the means are

even better with ERNIE than BERT. From Table 3 and Figure 3,

we can also see that results with pauses are better than results

without pauses.

4. Evaluation

Under the rules of the challenge, each team is allowed to sub-

mit results of five attempts for evaluation. Predictions on the

test set from the following five models were submitted for eval-

uation: BERT0p, BERT3p, BERT6p, ERNIE0p, and ERNIE3p.

To compare with three pauses, 6p represents six bins of pauses,

encoded as: “,” (under 0.5 sec), “.” (.5-1 sec); “..” (1-2 sec), “. .

.” (2-3 sec), “. . . .” (3-4 sec), “. . . . .” (over than 4 sec). The
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Table 2: Ensemble improves LOO (leave-one-out) estimates of

accuracy; better means with less variance.

BERT with Three Pauses

N mean ± sd min - max

5 0.837 ± 0.010 0.815 - 0.861

15 0.840 ± 0.011 0.815 - 0.861

25 0.839 ± 0.011 0.815 - 0.870

35 0.838 ± 0.010 0.824 - 0.861

45 0.839 ± 0.011 0.824 - 0.861

Table 3: Ensemble also improves LOO for ERNIE (with and

without pauses). LOO results are better with pauses than with-

out, and better with ERNIE than BERT.

ERNIE with Three Pauses ERNIE with No Pauses

N Mean ± Std Min - Max Mean ± Std Min - Max

5 0.845 ± 0.013 0.806 - 0.880 0.828 ± 0.016 0.796 - 0.870

15 0.851 ± 0.008 0.833 - 0.870 0.831 ± 0.012 0.796 - 0.861

25 0.853 ± 0.007 0.833 - 0.870 0.833 ± 0.010 0.815 - 0.861

35 0.854 ± 0.007 0.824 - 0.861 0.836 ± 0.009 0.815 - 0.852

45 0.854 ± 0.007 0.833 - 0.861 0.834 ± 0.008 0.815 - 0.861

dots are separated from each other, as different tokens.

Following the method proposed in Section 3.2, we made

35 runs of training for each of the five models, with 35 ran-

dom seeds. The classification of each sample in the test set was

based on the majority vote of 35 predictions. Table 4 lists the

evaluation scores received from the organizers.

The best accuracy was 89.6%, obtained with ERNIE and

three pauses. It is a nearly 15% increase from the baseline of

75.0% [6].

ERNIE outperformed BERT by 4% on input of both three

pauses and no pause. Encoding pauses improved the accuracy

for both BERT and ERNIE. There was no difference between

three pauses and six pauses in terms of improvement in accu-

racy.

5. Discussion

The group with AD used more uh but less um than the control

group. In speech production, disfluencies such as hesitations

and speech errors are correlated with cognitive functions such

cognitive load, arousal, and working memory [24, 39]. Hesi-

tations and disfluencies increase with increased cognitive load

and arousal as well as impaired working memory. This may ex-

plain why the group with AD used more uh, as a filled pause and

hesitation marker. More interestingly, they used less um than the

control group. This indicates that unlike uh, um is more than a

hesitation marker. Previous studies have also reported that chil-

dren with autism spectrum disorder produced um less frequently

than typically developed children [22, 23], and that um was used

less frequently during lying compared to truth-telling [24, 40].

All these results seem to suggest that um carries a lexical sta-

tus and is retrieved in speech production. One possibility is that

people with AD or autism have difficulty in retrieving the word

um whereas people who are lying try not to use this word. More

research is needed to test this hypothesis.

From our results, encoding pauses in the input was helpful

Table 4: Evaluation results: Best accuracy (acc) with ERNIE

and three pauses (3p). Pauses are helpful: three pauses (3p)

and six pauses (6p) have better accuracy than no pauses (0p).

Precision Recall F1 Acc

non-AD AD non-AD AD non-AD AD

Baseline[6] 0.670 0.600 0.500 0.750 0.570 0.670 0.625

BERT0p 0.742 0.941 0.958 0.667 0.836 0.781 0.813

BERT3p 0.793 0.947 0.958 0.750 0.868 0.837 0.854

BERT6p 0.793 0.947 0.958 0.750 0.868 0.837 0.854

ERNIE0p 0.793 0.947 0.958 0.750 0.868 0.837 0.854

ERNIE3p 0.852 0.952 0.958 0.833 0.902 0.889 0.896

for both BERT and ERINE fine-tuning for the task of AD clas-

sification. Pauses are ubiquitous in spoken language. They are

distributed differently in fluent, normally disfluent, and abnor-

mally disfluent speech. As we can see from Figure 2, the group

with AD used more pauses and especially more long pauses

than the control group. With pauses present in the text, the self-

attention mechanism in BERT and ERNIE may learn how the

pauses are correlated with other words, for example, whether

there is a long pause between the determiner the and the fol-

lowing noun, which occurs more frequently in AD speech. We

think this is part of the reason why encoding pauses improved

the accuracy. Both BERT and ERNIE were pre-trained on text

corpora, with no pause information. Our study suggests that it

may be useful to pre-train a language model using speech tran-

scripts (either solely or combined with text corpora) that include

pause information.

6. Conclusions

Accuracy of 89.6% was achieved on the test set of the ADReSS

(Alzheimer’s Dementia Recognition through Spontaneous

Speech) Challenge, with ERNIE fine-tuning, plus an encoding

of pauses. There is a high variance in BERT and ERNIE fine-

tuning on a small training set. Our proposed ensemble method

improves the accuracy and reduces variance in model perfor-

mance. Pauses are useful in BERT and ERNIE fine-tuning for

AD classification. um was used much less frequently in AD,

suggesting that it may have a lexical status.
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alzheimer’s disease using neural network language models,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5841–
5845.

[30] F. D. Palo and N. Parde, “Enriching neural models with targeted
features for dementia detection,” in ACL, 2019.

[31] K. L. de Ipiña, U. M. de Lizarduy, P. M. Calvo, B. Beitia,
J. Garcia-Melero, M. Ecay-Torres, A. Estanga, and M. Faúndez-
Zanuy, “Analysis of disfluencies for automatic detection of mild
cognitive impartment: a deep learning approach,” 2017 Inter-

national Conference and Workshop on Bioinspired Intelligence

(IWOBI), pp. 1–4, 2017.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[33] Y. Sun, S. Wang, Y. Li, S. Feng, H. Tian, H. Wu, and H. Wang,
“Ernie 2.0: A continual pre-training framework for language un-
derstanding,” arXiv preprint arXiv:1907.12412, 2019.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in neural information processing systems, 2017, pp.
5998–6008.

[35] J. Dodge, G. Ilharco, R. Schwartz, A. Farhadi, H. Hajishirzi,
and N. Smith, “Fine-tuning pretrained language models: Weight
initializations, data orders, and early stopping,” arXiv preprint

arXiv:2002.06305, 2020.

[36] E. K. H. Goodglass and B. Barresi, Boston Diagnostic Aphasia

Examination – Third Edition. Philadelphia: Lippincott Williams
& Wilkins, 2001.

[37] B. MacWhinney, The CHILDES Project: Tools for Analyzing

Talk. 3rd Edition. Mahwah, NJ: Lawrence Erlbaum Associates,
2000.

[38] J. Yuan and M. Liberman, “Speaker identification on the scotus
corpus,” The Journal of the Acoustical Society of America, vol.
123, p. 3878, 2008.

[39] M. Daneman, “Working memory as a predictor of verbal fluency,”
Journal of Psycholinguistic Research, vol. 20, pp. 445–464, 1991.

[40] S. Benus, F. Enos, J. Hirschberg, and E. Shriberg, “Pauses in de-
ceptive speech,” in Speech Prosody 2006, 2006.

2166



To BERT or Not To BERT: Comparing Speech and Language-based

Approaches for Alzheimer’s Disease Detection

Aparna Balagopalan1, Benjamin Eyre1, Frank Rudzicz2,3,4,5, Jekaterina Novikova1

1Winterlight Labs Inc, Toronto, ON
2University of Toronto, ON

3 Vector Institute for Artificial Intelligence, Toronto, ON
4Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON

5Surgical Safety Technologies, Toronto, ON
aparna@winterlightlabs.com, benjamin@winterlightlabs.com, frank@cs.toronto.edu,

jekaterina@winterlightlabs.com

Abstract

Research related to automatically detecting Alzheimer’s
disease (AD) is important, given the high prevalence of AD and
the high cost of traditional methods. Since AD significantly
affects the content and acoustics of spontaneous speech, natu-
ral language processing and machine learning provide promis-
ing techniques for reliably detecting AD. We compare and
contrast the performance of two such approaches for AD de-
tection on the recent ADReSS challenge dataset [1]: 1) us-
ing domain knowledge-based hand-crafted features that cap-
ture linguistic and acoustic phenomena, and 2) fine-tuning Bidi-
rectional Encoder Representations from Transformer (BERT)-
based sequence classification models. We also compare mul-
tiple feature-based regression models for a neuropsychological
score task in the challenge. We observe that fine-tuned BERT
models, given the relative importance of linguistics in cognitive
impairment detection, outperform feature-based approaches on
the AD detection task.
Index Terms: Alzheimer’s disease, ADReSS, dementia detec-
tion, MMSE regression, BERT, feature engineering, transfer
learning.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that causes problems with memory, thinking, and be-
haviour. AD affects over 40 million people worldwide with
high costs of acute and long-term care [2]. Current forms of
diagnosis are both time consuming and expensive [3], which
might explain why almost half of those living with AD do not
receive a timely diagnosis [4].

Studies have shown that valuable clinical information in-
dicative of cognition can be obtained from spontaneous speech
elicited using pictures [5]. Several studies have used speech
analysis, natural language processing (NLP), and ML to dis-
tinguish between healthy and cognitively impaired speech of
participants in picture description datasets [6, 7]. These serve
as quick, objective, and non-invasive assessments of an in-
dividual’s cognitive status. However, although ML meth-
ods for automatic AD-detection using such speech datasets
achieve high classification performance (between 82%-93% ac-
curacy) [6, 8, 9], the field still lacks publicly-available, bal-
anced, and standardised benchmark datasets. The ongoing
ADReSS challenge [1] provides an age/sex-matched balanced
speech dataset, which consists of speech from AD and non-AD
participants describing a picture. The challenge consists of two

key tasks: 1) Speech classification task: classifying speech as
AD or non-AD. 2) Neuropsychological score regression task:
predicting Mini-Mental State Examination (MMSE) [10] scores
from speech.

In this work, we develop ML models to detect AD from
speech using picture description data of the demographically-
matched ADReSS challenge speech dataset [1], and compare
the following training regimes and input representations to de-
tect AD:

1. Using domain knowledge: with this approach, we ex-
tract linguistic features from transcripts of speech, and
acoustic features from corresponding audio files for bi-
nary AD vs non-AD classification and MMSE score re-
gression. The features extracted are informed by previ-
ous clinical and ML research in the space of cognitive
impairment detection [6].

2. Using transfer learning: with this approach, we fine-
tune pre-trained BERT [11] text classification models at
transcript-level. BERT achieved state-of-the-art results
on a wide variety of NLP tasks when fine-tuned [11].
Our motivation is to benchmark a similar training pro-
cedure on transcripts from a pathological speech dataset,
and evaluate the effectiveness of high-level language rep-
resentations from BERT in detecting AD.

In this paper, we evaluate performance of these two methods
on both the ADReSS train dataset, and on the unseen test set.
We find that fine-tuned BERT-based text sequence classifica-
tion models achieve the highest AD detection accuracy with
an accuracy of 83.3% on the test set. With the feature-based
models, the highest accuracy of 81.3% is achieved by the SVM
with RBF kernel model. The lowest root mean squared error
obtained for the MMSE prediction task is 4.56, with a feature-
based L2 regularized linear regression model.

The main contributions of our paper are as follows:
• We employ a domain knowledge-based approach and

compare a number of AD detection and MMSE regres-
sion models with an extensive list of pre-defined linguis-
tic and acoustic features as input representations from
speech (Section 5 and 6).

• We employ a transfer learning-based approach and
benchmark fine-tuned BERT models for the AD vs non-
AD classification task (Section 5 and 6).

• We contrast the performance of the two approaches on
the classification task, and discuss the reasons for exist-
ing differences (Section 7).
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Table 1: Basic characteristics of the patients in each group in
the ADReSS challenge dataset are more balanced in compari-
son to DementiaBank.

Dataset Class

AD Non-AD

ADReSS Train Male 24 24
Female 30 30

ADReSS Test Male 11 11
Female 13 13

DementiaBank [17] - Male 125 83
Female 197 146

2. Background

2.1. Domain Knowledge-based Approach

Previous work has focused on automatic AD detection from
speech using acoustic features (such as zero-crossing rate, Mel-
frequency cepstral coefficients) and linguistic features (such as
proportions of various part-of-speech (POS) tags [12, 6, 8])
from speech transcripts. Fraser et al. [6] extracted 370 linguistic
and acoustic features from picture descriptions in the Dementia-
Bank dataset, and obtained an AD detection accuracy of 82%
at transcript-level. More recent studies showed the addition of
normative data helped increase accuracy up to 93% [8, 13] .

Yancheva et al. [14] showed ML models are capable of pre-
dicting the MMSE scores from features of speech elicited via
picture descriptions, with mean absolute error of 2.91-3.83.

Detecting AD or predicting MMSE scores with engineered
features of speech and thereby infusing domain knowledge into
the task has several advantages, such as more interpretable
model decisions and potentially lower resource requirement
when paired with conventional ML models. However, there are
also disadvantages, e.g. a time consuming feature engineering
process, and a risk of missing highly relevant features.

2.2. Transfer Learning-based Approach

In the recent years, transfer learning in the form of pre-trained
language models has become ubiquitous in NLP [15] and has
contributed to the state-of-the-art on a wide range of tasks. One
of the most popular transfer learning models is BERT [11],
which builds on Transformer networks [16] to pre-train bidirec-
tional representations of text by conditioning on both left and
right contexts jointly in all layers.

BERT uses powerful attention mechanisms to encode
global dependencies between the input and output. This al-
lows it to achieve state-of-the-art results on a suite of bench-
marks [11]. Fine-tuning BERT for a few epochs can potentially
attain good performance even on small datasets. However, such
models are not directly interpretable, unlike feature-based ones.

3. Dataset

We use the ADReSS Challenge dataset [1], which consists of
156 speech samples and associated transcripts from non-AD
(N=78) and AD (N=78) English-speaking participants. Speech
is elicited from participants through the Cookie Theft picture
from the Boston Diagnostic Aphasia exam [5]. In contrast
to other speech datasets for AD detection such as Dementia-
Bank’s English Pitt Corpus [17], the ADReSS challenge dataset
is matched for age and gender (Table 1). The speech dataset is
divided into standard train and test sets. MMSE [10] scores are
available for all but one of the participants in the train set.

4. Feature Extraction

The speech transcripts in the dataset are manually transcribed as
per the CHAT protocol [18], and include speech segments from
both the participant and an investigator. We only use the portion
of the transcripts corresponding to the participant. Additionally,
we combine all participant speech segments corresponding to a
single picture description for extracting acoustic features.

We extract 509 manually-engineered features from tran-
scripts and associated audio files (see Appendix A for a list
of all features). These features are identified as indicators of
cognitive impairment in previous literature, and hence encode
domain knowledge. All of them are divided into 3 categories:

1. Lexico-syntactic features (297): Frequencies of vari-
ous production rules from the constituency parsing tree
of the transcripts [19], speech-graph based features [20],
lexical norm-based features (e.g. average sentiment va-
lence of all words in a transcript, average imageability
of all words in a transcript [21]), features indicative of
lexical richness. We also extract syntactic features [22]
such as the proportion of various POS-tags, and similar-
ity between consecutive utterances.

2. Acoustic features (187): Mel-frequency cepstral coef-
ficients (MFCCs), fundamental frequency, statistics re-
lated to zero-crossing rate, as well as proportion of vari-
ous pauses [23] (for example, filled and unfilled pauses,
ratio of a number of pauses to a number of words, etc.)

3. Semantic features based on picture description con-

tent (25): Proportions of various information content
units used in the picture, identified as being relevant to
memory impairment in prior literature [24].

5. Experiments

5.1. AD vs non-AD Classification

5.1.1. Training Regimes

We benchmark the following training regimes for classification:
classifying features extracted at transcript-level and a BERT
model fine-tuned on transcripts.

Domain knowledge-based approach: We classify lex-
icosyntactic, semantic, and acoustic features extracted at
transcript-level with four conventional ML models (SVM, neu-
ral network (NN), random forest (RF), naı̈ve Bayes (NB)1.

Hyperparameter tuning: We optimize each model to the
best possible hyper-parameter setting using grid-search 10-
fold cross-validation (CV). We perform feature selection by
choosing top-k number of features, based on ANOVA F-value
between label/features. The number of features is jointly
optimized with the classification model parameters (see Ap-
pendix C for a full list of parameters).

Transfer learning-based approach: To leverage the lan-
guage information encoded by BERT [11], we add a linear layer
mapping representations from the final layer of a pre-trained 12-
layer BERT base, uncased model to binary class labels [25] for
the AD vs non-AD classification task. The transcript-level input
to the model consists of transcribed utterances with correspond-
ing start and separator special tokens for each utterance, follow-
ing Liu et al. [26]. A pooled embedding summarizing informa-
tion across all tokens in the transcript using the self-attention
mechanism in the BERT base is used as the aggregate transcript

1https://scikit-learn.org/stable/
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representation, and passed to the classification layer [11, 25].
This model is then fine-tuned on training data for AD detection.

Hyperparameter tuning: We optimize the number of
epochs to 10 by varying it from 1 to 12 during CV. Adam opti-
mizer [27] and warmup linear learning rate scheduling [28] are
used (details in Appendix B).

5.1.2. Evaluation

Cross-validation on ADReSS train set: We use two CV strate-
gies in our work – leave-one-subject-out CV (LOSO CV) and
10-fold CV at transcript level. We report evaluation metrics
with LOSO CV for all models except fine-tuned BERT for di-
rect comparison to challenge baselines. Due to computational
constraints of GPU memory, we are unable to perform LOSO
CV for the BERT model. Hence, we perform 10-fold CV
to compare feature-based classification models with fine-tuned
BERT. Values of performance metrics for each model are aver-
aged across three runs with different random seeds in all cases.

Predictions on ADReSS test set: We generate three
predictions with different seeds from each hyperparameter-
optimized classifier trained on the complete train set, and then
produce a majority prediction to avoid overfitting. We report
performance on the challenge test set, as obtained from the chal-
lenge organizers (see Appendix E for more details).

We evaluate performance primarily using accuracy scores,
since all train/test sets are known to be balanced. We also report
precision, recall, specificity and F1 with respect to the positive
class (AD), and compare to the highest challenge baseline (LDA
classifier using language outcome measures [1]).

5.2. MMSE Score Regression

5.2.1. Training Regimes

Domain knowledge-based approach: For this task, we bench-
mark two kinds of regression models, linear and ridge, using
pre-engineered features as input. MMSE scores range from 0 to
30, and so predictions are clipped to range between 0 and 30.

Hyperparameter tuning: Each model’s performance is op-
timized using hyperparameters selected via grid-search LOSO
CV. We perform feature selection by choosing top-k features,
based on F-Scores computed from the correlation of each fea-
ture with MMSE score. The number of features is optimized
for all models. For ridge regression, the number of features is
jointly optimized with the coefficient for L2 regularization, ↵.

5.2.2. Evaluation

We report root mean squared error (RMSE) and mean absolute
error (MAE) for the predictions produced by each of the models
on the training set with LOSO CV. In addition, we include the
RMSE for two models’ predictions on the ADReSS test set. Hy-
perparameters for these models were selected using grid-search
10-fold cross validation on the training set. We compare regres-
sion performance to the best challenge baseline (decision tree
regressor using language outcome measures [1]).

6. Results

6.1. AD vs non-AD Classification

In Table 3, the classification performance with all the models
evaluated on the train set via 10-fold CV is displayed. We
observe that BERT outperforms all domain knowledge-based
ML models with respect to all metrics. SVM is the best-

performing domain knowledge-based model. However, accu-
racy of the fine-tuned BERT model is not significantly higher
than that of the SVM classifier based on an Kruskal-Wallis H-
test (H = 0.4838, p > 0.05).

We also report the performance of all our feature classifi-
cation models with LOSO CV (Table 4), and compare to the
highest challenge baseline [1]. Each of our classification mod-
els outperforms the challenge baseline, with a +10% accuracy
increase with the SVM classifer. Feature selection results in
accuracy increase of about 13% for the SVM classifier.

Results on the unseen, held-out ADReSS test set (Table 5)
follow the trend of the cross-validated performance in terms of
accuracy, with BERT outperforming the best feature-based clas-
sification model, SVM, as well as the challenge baseline.

6.2. MMSE Score Regression

Performance of regression models evaluated on both train and
test sets is shown in Table 6. Ridge regression with 25 features
selected attains the lowest RMSE on the training set amongst
our models, with 4.56 RMSE during LOSO-CV, which is 0.18
higher than the challenge baseline. The results show that fea-
ture selection can help achieve a decrease of up to 1.5 RMSE
points (and up to 0.86 MAE) for a ridge regressor. Further-
more, a ridge regressor is able to achieve an RMSE of 4.56 on
the ADReSS test set, a decrease of 0.64 from the baseline.

7. Discussion

7.1. Feature Differentiation Analysis

We extract a large number of features to capture a wide range of
linguistic and acoustic phenomena, based on a survey of prior
literature in automatic cognitive impairment detection [6, 14,
30, 31]. In order to identify the most differentiating features
between AD and non-AD speech, we perform independent t-
tests between feature means for each class in the ADReSS train-
ing set. 87 features are significantly different between the two
groups at p < 0.05. 79 of these are text-based lexicosyntactic
and semantic features, while 8 are acoustic. These 8 acous-
tic features include the number of long pauses, pause duration,
and mean/skewness/variance-statistics of various MFCC coeffi-
cients. However, after Bonferroni correction for multiple test-
ing, we identify that only 13 features are significantly different
between AD and non-AD speech at p < 9e � 5, and none of
these features are acoustic (Table 2). This implies that linguis-
tic features are particularly differentiating between the AD/non-
AD classes here, which explains why models trained on linguis-
tic features only attain performance well above random chance
(see Fig. 1 in Appendix for visualization of class separability).

7.2. Analysing AD Detection Performance Differences

Comparing classification performance across model settings,
we observe that BERT outperforms the best domain knowledge-
based model in terms of accuracy and F1-score on the train set
(10-fold CV; though accuracy is not significantly higher) and on
the test set (no significance testing possible since only single set
of performance scores are available per model; see Appendix E
for procedure for submitting challenge predictions). Based on
feature differentiation analysis (Section 7.1), we hypothesize
that good performance with a text-focused BERT model on this
speech classification task is due to the strong utility of linguis-
tic features on this dataset. BERT captures a range of linguistic
phenomena due to its training methodology, potentially encap-
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Table 2: Feature differentiation analysis results based on ADReSS train set. µAD and µnon�AD show the means of the 13 signifi-
cantly different features at p<9e-5 (after Bonferroni correction) for the AD and non-AD group respectively. We also show Spearman
correlation between MMSE score and features, and regression weights of the features associated with the five greatest and five lowest
regression weights from a ridge regressor (25 features, ↵ = 12).* next to correlation indicates significance at p<9e-5.

Feature Feature type µAD µnon�AD Correlation Weight

Average cosine distance between utterances Semantic 0.91 0.94 - -
Fraction of pairs of utterances below a similarity threshold (0.5) Semantic 0.03 0.01 - -
Average cosine distance between 300-dimensional word2vec [29] utterances and picture content units Semantic (content units) 0.46 0.38 -0.54* -1.01
Distinct content units mentioned: total content units Semantic (content units) 0.27 0.45 0.63* 1.78
Distinct action content units mentioned: total content units Semantic (content units) 0.15 0.30 0.49* 1.04
Distinct object content units mentioned: total content units Semantic (content units) 0.28 0.47 0.59* 1.72
Average cosine distance between 50-dimensional GloVe utterances and picture content units Semantic content units) - - -0.42* -0.03
Average word length (in letters) Lexico-syntactic 3.57 3.78 0.45* 1.07
Proportion of pronouns Lexico-syntactic 0.09 0.06 - -
Ratio (pronouns):(pronouns+nouns) Lexico-syntactic 0.35 0.23 - -
Proportion of personal pronouns Lexico-syntactic 0.09 0.06 - -
Proportion of RB adverbs Lexico-syntactic 0.06 0.04 -0.41* -0.41
Proportion of ADVP � > RB amongst all rules Lexico-syntactic 0.02 0.01 -0.37 -0.74
Proportion of non-dictionary words Lexico-syntactic 0.11 0.08 - -
Proportion of gerund verbs Lexico-syntactic - - 0.37 1.08
Proportion of words in adverb category Lexico-syntactic - - -0.4* -0.49

Table 3: 10-fold CV results averaged across 3 runs with differ-
ent random seeds on the ADReSS train set. Accuracy for BERT
is higher, but not significantly so from SVM (H = 0.4838, p >

0.05 Kruskal-Wallis H test). Bold indicates the best result.

Model #Features Accuracy Precision Recall Specificity F1
SVM 10 0.796 0.81 0.78 0.82 0.79
NN 10 0.762 0.77 0.75 0.77 0.76
RF 50 0.738 0.73 0.76 0.72 0.74
NB 80 0.750 0.76 0.74 0.76 0.75
BERT - 0.818 0.84 0.79 0.85 0.81

Table 4: LOSO-CV results averaged across 3 runs with different
random seeds on the ADReSS train set. Accuracy for SVM is
significantly higher than NN (H = 4.50, p = 0.034 Kruskal-
Wallis H test). Bold indicates the best result.

Model #Features Accuracy Precision Recall Specificity F1
Baseline [1] - 0.768 0.77 0.76 - 0.77
SVM 509 0.741 0.75 0.72 0.76 0.74
SVM 10 0.870 0.90 0.83 0.91 0.87
NN 10 0.836 0.86 0.81 0.86 0.83
RF 50 0.778 0.79 0.77 0.79 0.78
NB 80 0.787 0.80 0.76 0.82 0.78

sulating many important lexico-syntactic and semantic features.
It is thus able to use information present in the lexicon, syntax,
and semantics of transcribed speech after fine-tuning [32].

We see a trend of better performance while increasing the
number of folds (see SVM in Table 4 and Table 3) in cross-
validation. We postulate that this is due to the small size of the
dataset, and hence differences in training set size in each fold.

7.3. Regression Weights

To assess the relative importance of individual input features
for MMSE prediction, we report features with the 5 highest and
5 lowest regression weights in Table 2. Each value is the av-
erage weight assigned to features selected in each LOSO CV
fold using ridge regression. We also present the correlation with
MMSE score for these features, as well as their significance.We
observe that for each of these highly weighted features, a posi-
tive or negative correlation is accompanied by a positive or neg-
ative regression weight, respectively. This demonstrates that
even in the presence of other regressors, the relationship with
MMSE score remains the same for these features. We also note
that all 10 of these features are linguistic, further demonstrating
that linguistic information is particularly distinguishing when it
comes to predicting the severity of a patient’s AD.

Table 5: AD detection results on unseen, held-out ADReSS test
set presented in same format as the baseline paper [1]. Bold
indicates the best result.

Model #Features Class Accuracy Precision Recall Specificity F1

Baseline [1] - non-AD
0.750

0.70 0.87 - 0.78
AD 0.83 0.62 - 0.71

SVM 10
non-AD

0.813
0.83 0.79

0.83
0.81

AD 0.80 0.83 0.82

NN 10
non-AD

0.771
0.78 0.75

0.78
0.77

AD 0.76 0.79 0.78

RF 50
non-AD

0.750
0.71 0.83

0.71
0.77

AD 0.80 0.67 0.73

NB 80
non-AD

0.729
0.69 0.83

0.69
0.75

AD 0.79 0.63 0.70

BERT - non-AD
0.833

0.86 0.79
0.86

0.83
AD 0.81 0.88 0.84

Table 6: LOSO-CV MMSE regression results on the ADReSS
train and test sets. Bold indicates the best result.

Model #Features ↵ RMSE MAE RMSE
Train set Test set

Baseline [1] - - 4.38 5.20
LR 15 - 5.37 4.18 4.94
LR 20 - 4.94 3.72 -
Ridge 509 12 6.06 4.36 -
Ridge 35 12 4.87 3.79 4.56
Ridge 25 10 4.56 3.50 -

8. Conclusions

In this paper, we compare two widely used approaches – explicit
features engineering based on domain knowledge, and transfer
learning using a fine-tuned BERT [11] classification model. Our
results show that pre-trained models that are fine-tuned for the
AD classification task are capable of performing well, outper-
forming hand-crafted feature engineering. In the future, we will
experiment with different language representation models, and
with different tokenization and encoding strategies for transcript
representations. A direction for future work is also developing
models that combine representations from language represen-
tation models like BERT and hand-crafted features [33]. Such
feature-fusion approaches could potentially boost performance
on the cognitive impairment detection task.
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Abstract
The ADReSS Challenge at INTERSPEECH 2020 defines a
shared task through which different approaches to the auto-
mated recognition of Alzheimer’s dementia based on sponta-
neous speech can be compared. ADReSS provides researchers
with a benchmark speech dataset which has been acoustically
pre-processed and balanced in terms of age and gender, defin-
ing two cognitive assessment tasks, namely: the Alzheimer’s
speech classification task and the neuropsychological score re-
gression task. In the Alzheimer’s speech classification task,
ADReSS challenge participants create models for classifying
speech as dementia or healthy control speech. In the the neu-
ropsychological score regression task, participants create mod-
els to predict mini-mental state examination scores. This pa-
per describes the ADReSS Challenge in detail and presents a
baseline for both tasks, including feature extraction procedures
and results for classification and regression models. ADReSS
aims to provide the speech and language Alzheimer’s research
community with a platform for comprehensive methodological
comparisons. This will hopefully contribute to addressing the
lack of standardisation that currently affects the field and shed
light on avenues for future research and clinical applicability.

Index Terms: Cognitive Decline Detection, Affective Comput-
ing, computational paralinguistics

1. Introduction
Alzheimer’s Disease (AD) is a neurodegenerative disease that
entails a long-term and usually gradual decrease of cognitive
functioning [1]. It is also the most common underlying cause
for dementia. The main risk factor for AD is age, and there-
fore its greatest incidence is amongst the elderly. Given the
current demographics in the Western world, where the popula-
tion aged 65 years or more has been predicted to triple between
years 2000 and 2050 [2], institutions are investing considerably
on dementia prevention, early detection and disease manage-
ment. There is a need for cost-effective and scalable meth-
ods that are able to identify the most subtle forms of AD, from
the preclinical stage of Subjective Cognitive Decline (SCD), to
more severe conditions like Mild Cognitive Impairment (MCI)
and Alzheimer’s Dementia (AD) itself.

Whilst memory is often considered the main symptom of
AD, language is also deemed as a valuable source of clinical
information. Furthermore, the ubiquity of speech has led to a
number of studies investigating speech and language features
for the detection of AD, such as [3, 4, 5, 6] to cite some exam-
ples. Although these studies propose various signal processing
and machine learning methods for this task, the field still lacks
balanced and standardised datasets on which these different ap-
proaches could be systematically compared.

Consequently, the main objective of the ADReSS Chal-
lenge of INTERSPEECH 2020 is to define a shared task through
which different approaches to AD detection, based on sponta-
neous speech, could be compared. This aims to address one of
the main problems of this active research field, the lack of stan-
dardisation, which hinders its translation into clinical practice.
The ADReSS Challenge will therefore: 1) target a difficult au-
tomatic prediction problem of societal and medical relevance,
namely, the detection of cognitive impairment and Alzheimer’s
Dementia (AD); 2) to provide a forum for those different re-
search groups to test their existing methods (or develop novel
approaches) on a new shared standardized dataset; 3) mitigate
common biases often overlooked in evaluations of AD detec-
tion methods, including repeated occurrences of speech from
the same participant (common in longitudinal datasets), varia-
tions in audio quality, and imbalances of gender and age dis-
tribution; and 4) focus on AD recognition using spontaneous
speech, rather than speech samples that are collected under lab-
oratory conditions.

To the best of our knowledge, this will be the first such
shared-task focused on AD. Unlike some tests performed in
clinical settings, where short speech samples are collected un-
der controlled conditions, this task focuses on AD recogni-
tion using spontaneous speech. While a number of researchers
have proposed speech processing and natural language process-
ing approaches to AD recognition through speech, their studies
have used different, often unbalanced and acoustically varied
datasets, consequently hindering reproducibility, replicability,
and comparability of approaches. The ADReSS Challenge will
provide a forum for those different research groups to test their
existing methods (or develop novel approaches) on a shared
dataset which consists of a statistically balanced, acoustically
enhanced set of recordings of spontaneous speech sessions
along with segmentation and detailed timestamped transcrip-
tions. The use of spontaneous speech also sets the ADReSS
Challenge apart from tests performed in clinical settings where
short speech samples are collected under controlled conditions
which are arguably less suitable for the development of large-
scale monitoring technology than spontaneous speech [7].

As data scarcity and heterogeneity have hindered research
into the relationship between speech and AD, the ADReSS
Challenge provides researchers with the very first available
benchmark, acoustically pre-processed and balanced in terms
of age and gender. ADReSS defines two different prediction
tasks: (a) the AD recognition task, which requires researchers
to model participants’ speech data to perform a binary classifi-
cation of speech samples into AD and non-AD classes; and (b)
the MMSE prediction task, which requires researchers to create
regression models of the participants’ speech in order to predict
their scores in the Mini-Mental State Examination (MMSE).
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This paper presents baselines for both tasks, including fea-
ture extraction procedures and initial results for a classification
and a regression model.

2. ADReSS Challenge Dataset
A dataset has been created for this challenge which is matched
for age and gender, as shown in Table 1 and Table 2, so as to
minimise risk of bias in the prediction tasks. The data con-
sists of speech recordings and transcripts of spoken picture de-
scriptions elicited from participants through the Cookie Theft
picture from the Boston Diagnostic Aphasia Exam [8, 9]. Tran-
scripts were annotated using the CHAT coding system [10]. The
recorded speech has been segmented for voice activity using a
simple voice activity detection algorithm based on signal energy
threshold. We set the log energy threshold parameter to 65 dB
with a maximum duration of 10 seconds per speech segment.
The segmented dataset contains 1,955 speech segments from
78 non-AD subjects and 2,122 speech segments from 78 AD
subjects. The average number of speech segments produced by
each participant was 24.86 (standard deviation sd = 12.84).
Recordings were acoustically enhanced with stationary noise
removal and audio volume normalisation was applied across all
speech segments to control for variation caused by recording
conditions such as microphone placement.

Table 1: ADReSS Training Set: Basic characteristics of the pa-
tients in each group (M=male and F=female).

AD non-AD
Age M F MMSE (sd) M F MMSE (sd)
[50, 55) 1 0 30.0 (n/a) 1 0 29.0 (n/a)
[55, 60) 5 4 16.3 (4.9) 5 4 29.0 (1.3)
[60, 65) 3 6 18.3 (6.1) 3 6 29.3 (1.3)
[65, 70) 6 10 16.9 (5.8) 6 10 29.1 (0.9)
[70, 75) 6 8 15.8 (4.5) 6 8 29.1 (0.8)
[75, 80) 3 2 17.2 (5.4) 3 2 28.8 (0.4)
Total 24 30 17.0 (5.5) 24 30 29.1 (1.0)

Table 2: Characteristics of the ADReSS test set.

AD non-AD
Age M F MMSE (sd) M F MMSE (sd)
[50, 55) 1 0 23.0 (n.a) 1 0 28.0 (n.a)
[55, 60) 2 2 18.7 (1.0) 2 2 28.5 (1.2)
[60, 65) 1 3 14.7 (3.7) 1 3 28.7 (0.9)
[65, 70) 3 4 23.2 (4.0) 3 4 29.4 (0.7)
[70, 75) 3 3 17.3 (6.9) 3 3 28.0 (2.4)
[75, 80) 1 1 21.5 (6.3) 1 1 30.0 (0.0)
Total 11 13 19.5 (5.3) 11 13 28.8 (1.5)

3. Acoustic and Linguistic Features
Acoustic feature extraction was performed on the speech seg-
ments using the openSMILE v2.1 toolkit which is an open-
source software suite for automatic extraction of features from
speech, widely used for emotion and affect recognition in
speech [11], and with in-house software [12]. As the purpose
of this paper is to describe the prediction tasks and set simple
baselines that can be attained without extensive optimisation,
we did not perform any feature set reduction procedures. The
following is a brief description of the acoustic feature sets used
in the experiments described in this paper:

emobase: This feature set contains the mel-frequency cep-
stral coefficients (MFCC) voice quality, fundamental frequency

(F0), F0 envelope, line spectral pairs (LSP) and intensity fea-
tures with their first and second order derivatives. Several sta-
tistical functions are applied to these features, resulting in a total
of 988 features for every speech segment [11].

ComParE: The ComParE 2013 [13] feature set includes en-
ergy, spectral, MFCC, and voicing related low-level descrip-
tors (LLDs). LLDs include logarithmic harmonic-to-noise ra-
tio, voice quality features, Viterbi smoothing for F0, spectral
harmonicity and psychoacoustic spectral sharpness. Statistical
functionals are also computed, bringing the total to 6,373 fea-
tures.

eGeMAPS: The eGeMAPS [14] feature set resulted from an
attempt to reduce the somewhat unwieldy feature sets above to
a basic set of acoustic features based on their potential to detect
physiological changes in voice production, as well as theoretical
significance and proven usefulness in previous studies [15]. It
contains the F0 semitone, loudness, spectral flux, MFCC, jitter,
shimmer, F1, F2, F3, alpha ratio, Hammarberg index and slope
V0 features, as well as their most common statistical function-
als, for a total of 88 features per speech segment.

MRCG functionals: Multi-resolution Cochleagram features
(MRCGs) were proposed by Chen et al. [16] and have since
been used in speech related applications such as voice activ-
ity detection [17], speech separation [16], and more recently
for attitude recognition [18]. MRCG features are based on
cochleagrams [19]. A cochleagram is generated by applying
the gammatone filter to the audio signal, decomposing it in the
frequency domain so as to mimic the human auditory filters.
MRCG uses the time-frequency representation to encode the
multi-resolution power distribution of the audio signal. Four
cochleagram features were generated at different levels of res-
olution. The high resolution level encodes local information
while the remaining three lower resolution levels capture spec-
trotemporal information. A total of 768 features were extracted
from each frame: 256 MRCG features (frame length of 20 ms
and frame shift of 10 ms), along with 256 ∆ MRCG and 256
∆∆ MRCG features. The statistical functionals (mean, stan-
dard deviation, minimum, maximum, range, mode, median,
skewness and kurtosis) were applied on the 768 MRCG features
for a total of 6,912 features.

Minimal: this feature set consists of basic statistics (mean,
standard deviation, median, minimum and maximum) of the du-
ration of vocalisations and pauses and speech rate, and a vocal-
isation count, similarly to [7].

In sum, we extracted 88 eGeMAPS, 988 emobase, 6,373
ComParE, 6,912 MRCG, and 13 minimal features from 4,077
speech segments. Excepting the minimal feature set, Pearson’s
correlation test was performed to remove acoustic features that
were significantly correlated with duration (when |R| > 0.2).
Hence, 72 eGeMAPS, 599 emobase, 3,056 ComParE, and 3,253
MRCG features were not correlated with the duration of the
speech chunks, and were therefore selected for the machine
learning experiments. Examples of features from the ComParE
feature set by the above described procedure include L1-norms
of segment length functionals smoothed by a moving average
filter (including their means, maxima and standard deviations),
and the relative spectral transform applied to auditory spectrum
(RASTA) functionals (including the percentage of time the sig-
nal is above 25%, 50% and 75% of range plus minimum).

In addition, we used the EVAL command in the CLAN pro-
gram [20] to compute a basic set of 34 language outcome mea-
sures (e.g., duration, total utterances, MLU, type-token ratio,
open-closed class word ratio, percentages of 9 parts of speech)
on the CHAT transcripts.
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4. AD classification task
The AD classification task consists of creating a binary classi-
fication models to distinguish between AD and non-AD patient
speech. These models may use speech data, transcribed speech,
or both. Any methodological approach may be taken, but par-
ticipants will work with the same dataset. The evaluation metric
for this task are Accuracy = TN+TP

N
, precision π = TP

TP+FP
,

recall ρ = TP
TP+FN

, and F1 = 2π×ρ
π+ρ

, where N is the number of
patients, TP, FP and FN are the number of true positives, false
positives and false negatives, respectively.

4.1. Baseline classification

We performed our baseline classification experiments using five
different methods, namely linear discriminant analysis (LDA),
decision trees (DT, with leaf size of 20 and the CART algo-
rithm), nearest neighbour (1NN, for KNN with K=1), random
forests (RF, with 50 trees and a leaf size of 20) and support vec-
tor machines (SVM, with a linear kernel with box constraint of
0.1, and sequential minimal optimisation solver). The classifi-
cation methods were implemented in MATLAB [21] using the
statistics and machine learning toolbox. A leave-one-subject-
out (LOSO) cross-validation setting was adopted, where the
training data do not contain any information from validation
subjects.

Two-step classification experiments were conducted to de-
tect cognitive impairment due to AD (as shown in Figure 1).
This consisted of segment-level (SL) classification, where clas-
sifiers were trained and tested to predict whether a speech seg-
ment was uttered by a non-AD or AD patient, and majority vote
(MV) classification, which assigned each subject a class label
based on the majority labels of SL classification.

4.2. Results

The classification accuracy is shown in Tables 3 and 4 for LOSO
and test settings respectively. These results show that the 1NN
(0.574) provides the best accuracy for acoustic features using
ComParE set for AD detection, with accuracy above the chance
level of 0.50. From the results shown in Table 3, we note that
even though 1NN provides the best result (0.574), DT and LDA
also exhibit promising performance, being in fact more stable
across all feature sets than the other classifiers (the best average
accuracy of 0.559 for LDA and 0.570 for DT). We also note that
Minimal, ComParE and linguistic also exhibit promising perfor-
mance, being in fact more stable across all classifiers than the
other features (the best average accuracy of 0.552 for Minimal,
0.541 for Compare and 0.713 for linguistic). Based on these
findings we have selected the LDA model trained using Com-
ParE as our baseline model for acoustic features.

Table 4 shows that 1NN provides less accurate results on
the test set than in LOSO cross validation. However, the results
of LDA (0.625) and DT (0.625) improve on the test data for
acoustic features. The linguistic features provide an accuracy
of 0.75, which is better than automatically extracted acoustic
features though it relies on manual transcription. The challenge
baseline accuracy for the classification task are therefore 0.625
for acoustic features and 0.75 for linguistic features. The preci-
sion, recall and F1 Score are reported in Table 5.

5. MMSE prediction task
The MMSE prediction task consists of generating a regression
model for prediction of MMSE scores of individual partici-

Table 3: AD classification accuracy on LOSO cross validation.

Features LDA DT 1NN SVM RF mean
emobase 0.500 0.519 0.398 0.491 0.472 0.476
ComParE 0.565 0.528 0.574 0.528 0.509 0.541
eGeMAPS 0.482 0.500 0.380 0.333 0.482 0.435
MRCG 0.519 0.500 0.482 0.528 0.509 0.507
Minimal 0.519 0.667 0.426 0.565 0.583 0.552
linguistic 0.768 0.704 0.740 0.602 0.750 0.713
mean 0.559 0.570 0.500 0.508 0.551 –

Table 4: AD classification accuracy on test set.

Features LDA DT 1NN SVM RF mean
emobase 0.542 0.688 0.604 0.500 0.729 0.613
ComParE 0.625 0.625 0.458 0.500 0.542 0.550
eGeMAPS 0.583 0.542 0.688 0.563 0.604 0.596
MRCG 0.542 0.563 0.417 0.521 0.542 0.517
Minimal 0.604 0.562 0.604 0.667 0.583 0.604
linguistic 0.750 0.625 0.667 0.792 0.750 0.717
mean 0.608 0.601 0.573 0.590 0.625 –

Table 5: Baseline results of AD classification task using the LDA
classifier with acoustic and linguistic features.

class Precision Recall F1 Score Accuracy

LOSOAcous
non-AD 0.56 0.61 0.58 0.56AD 0.57 0.52 0.54

TESTAcous
non-AD 0.67 0.50 0.57 0.62AD 0.60 0.75 0.67

LOSOling
non-AD 0.76 0.78 0.77 0.77AD 0.77 0.76 0.77

TESTling
non-AD 0.70 0.87 0.78 0.75AD 0.83 0.62 0.71

pants from the AD and non-AD groups. Unlike classification,
MMSE prediction is relatively uncommon in the literature, de-
spite MMSE scores often being available. While models may
use speech (acoustic) or linguistic data individually or in com-
bination, the baseline described here report results of acoustic
and linguistic models built separately.

5.1. Baseline regression

We performed our baseline regression experiments using five
different methods, namely decision trees (DT, with leaf size of
20 and CART algorithm), linear regression (LR), gaussian pro-
cess regression (GPR, with a squared exponential kernel), least-
squares boosting (LSBoost, which contains the results of boost-
ing 100 regression trees) and support vector machines (SVM,
with a radial basis function kernel with box constraint of 0.1,
and sequential minimal optimisation solver). The regression
methods are implemented in MATLAB [21] using the statistics
and machine learning toolbox. As with classification, the re-
gression experiments were conducted in two steps for acoustic
features (Figure 1), with SL regression followed by averaging
of predicted MMSE values.

5.2. Results

The regression results are reported as root mean squared error
(RMSE) scores in Tables 6 and 7 for LOSOCV and test data.
These results show that DT (7.28) provides the best RMSE us-
ing MRCG features for MMSE prediction with r = −0.759,
being more stable across all acoustic feature sets than the other
classifiers (the best average RMSE of 6.86 for DT). We also
note that Minimal and eGeMaPs also exhibit promising perfor-
mance, with RMSE of 7.46 and 8.02 respectively across models.
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Figure 1: System Architecture: A(i), the recording of is segmented using voice activity detection (VAD) into n segments x(i, n).
Acoustic feature extraction (FE) is performed at segment level. The output of classification or regression for the nth segment of the ith

recording is denoted y(i, n). MV outputs the majority voting for classification, and Average the mean regression score.

Based on this, the DT model trained using the MRCG feature
was chosen as the baseline model for the regression task for
acoustic features. For linguistic features, we selected the DT
model as baseline with RMSE of 4.38 (r = 0.792).

Table 7 shows the results of regression methods on test
data. The baseline model (DT with MRCG features) provides
an RMSE of 6.14 (r = 0.22) in the test setting. Hence the
challenge baseline accuracy for this task is 6.14 for acoustic
features. The linguistic feature model provides an RMSE of
5.20 (r = 0.57), which therefore corresponds to the ADReSS
challenge baseline accuracy for linguistic features in this task.

Table 6: MMSE prediction LOSO cross Validation results. the
chance level is RMSE of 7.18

Features Linear DT GP SVM LSBoost mean
emobase 7.44 7.29 7.71 7.71 8.33 7.70
ComParE 15.69 7.29 7.67 7.63 7.84 9.22
eGeMAPS 8.08 7.31 7.72 8.55 8.68 8.07
MRCG 13.46 7.28, r = −0.76 7.65 7.50 8.02 8.78
Minimal 7.39 7.60 7.18 8.01 7.14 7.46
Linguistic 6.15 4.38, r = 0.79 7.92 6.34 7.44 6.45
mean 9.70 6.86 7.64 7.62 7.91 –

Table 7: MMSE prediction test results.

Features Linear DT GP SVM LSBoost mean
emobase 6.80 6.78 6.36 6.18 6.73 6.57
ComParE 6.47 6.52 6.33 6.19 6.72 6.45
eGeMAPS 6.90 5.99 6.28 6.12 6.41 6.34
MRCG 6.70 6.14, r = 0.22 6.33 6.20 6.31 6.33
Minimal 6.29 6.84 6.58 6.19 7.71 6.72
Linguistic 4.78 5.20, r = 0.57 5.54 6.24 6.62 5.68
mean 6.32 6.25 6.24 6.19 6.75 –

6. Discussion
These results of the classification baseline are comparable to
those attained by models based on speech recordings available
from spontaneous speech samples in DementiaBank’s Pitt cor-
pus [8], which is widely used. Accuracy scores of 81.92%,
80% and 79% and 64% have been reported in the literature
[3, 22, 23, 7]. Although these studies report higher accuracy
than the baselines presented here, all of those studies (except
[7]) combined information from the manual transcripts with
acoustic data, and were conducted on an unbalanced dataset (in
terms of age, gender and number of subjects in the AD and non-
AD classes). It is also worth noting that accuracy for the best
performing of these models drops to 58.5% when feature se-
lection is not performed on their original set of 370 linguistic
and acoustic features [3]. Models that relied only on acoustic
features were reported in [7] (64% accuracy) and [23] (62% ac-
curacy, using an SVM model). It is also noted that previous
studies do not evaluate their methods in a complete subject-
independent setting (i.e. they consider multiple sessions for a
subject and classify a session instead of a subject). This could

lead to overfitting, as the model might learn speaker dependent
features from a session and then, based on those features, clas-
sify the next session of the same speaker.

One strength of our method is its speaker independent na-
ture. Ambrosini et al. reported an accuracy of 80% while us-
ing acoustic (pitch, unvoiced duration, shimmer, pause duration,
speech rate), age and educational level features for cognitive
decline detection using an Italian dataset of an episodic story
telling setting [24]. However, this dataset is less easily com-
parable to ours, as it is elicited differently, and is not age and
gender balanced.

Yancheva and colleagues [25] predicted MMSE scores
with speech-related features using the full DementiaBank Pitt
dataset, which is not balanced and includes longitudinal obser-
vations. Their model yielded a mean absolute error (MAE) of
3.83 in predicting MMSE. However, they employed lexicosyn-
tactic and semantic features derived from manual transcription,
rather than automatically extracted acoustic features as we used
in our analysis. In [25], those linguistic features were the main
features selected from a group of 477, with acoustic features
typically not being among the most relevant. Therefore no
quantitative results were reported for acoustic features.

7. Conclusions
This paper described the ADReSS challenge, and set simple
baselines for its tasks, demonstrating the relevance of acoustic
and linguistic features of spontaneous speech for cognitive im-
pairment detection in the context of Alzheimer’s Disease diag-
nosis and MMSE prediction. Machine learning methods operat-
ing on automatically extracted voice features provide a baseline
accuracy of up to 62.5% on the AD classification task, while lin-
guistic features extracted from manually produced transcripts
yielded 76.85% accuracy on the same task. These results are
well above the chance level of 50%. A baseline RMSE of 6.14
and 5.21 for acoustic and linguistic features respectively on test
has been established for the MMSE regression task. It is reason-
able to expect that the ADReSS Challenge’s participants will at-
tain better accuracy scores by employing further pre-processing,
feature set reduction, and more complex models than the ones
employed in this paper. By bringing the research community
together in order to work on a shared task on the same dataset,
ADReSS intends to make comprehensive methodological com-
parisons. This will hopefully highlight research caveats and
shed light on avenues for clinical applicability and future re-
search directions.
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Abstract
In this study, we analyze the use of state-of-the-art tech-

nologies for speaker recognition and natural language process-
ing to detect Alzheimer’s Disease (AD) and to assess its severity
predicting Mini-mental status evaluation (MMSE) scores. With
these purposes, we study the use of speech signals and transcrip-
tions. Our work focuses on the adaptation of state-of-the-art
models for both modalities individually and together to examine
its complementarity. We used x-vectors to characterize speech
signals and pre-trained BERT models to process human tran-
scriptions with different back-ends in AD diagnosis and assess-
ment. We evaluated features based on silence segments of the
audio files as a complement to x-vectors. We trained and eval-
uated our systems in the Interspeech 2020 ADReSS challenge
dataset, containing 78 AD patients and 78 sex and age-matched
controls. Our results indicate that the fusion of scores obtained
from the acoustic and the transcript-based models provides the
best detection and assessment results, suggesting that individual
models for two modalities contain complementary information.
The addition of the silence-related features improved the fusion
system even further. A separate analysis of the models suggests
that transcript-based models provide better results than acoustic
models in the detection task but similar results in the MMSE
prediction task.

1. Introduction
Alzheimers Disease (AD) is the most common cause of demen-
tia and the most prevalent neurodegenerative condition. Its im-
pact on the multiple aspects of society is rising due to the aging
of the worldwide population [1]. While two of the most typi-
cal signs of AD are memory and cognitive decline, the litera-
ture suggests that language impairment is also a common sign
that can be employed to support diagnosis and assessment of
the severity of the disease, given that speech and language pro-
duction can provide information about the cognitive status of
a person and other aspects related to brain damage. Although
the human evaluation of speech and language can be used to
diagnose and assess patients in the clinical setting, that type of
evaluation does not allow an objective quantitative analysis and
reliable repeatability. To this respect, the use of speech recog-
nition and Natural Language Processing (NLP) techniques can
deliver new precision medicine tools that will provide objective
measures and biomarkers. This will allow faster diagnosis and
assessment in a non-invasive and cost-effective manner.

Although the influence of AD in speech and language is di-
verse and subject-dependent, the literature suggests some com-
mon signs such as progressive, logopenic or anomic aphasia
[2, 3, 4] (communication and word retrieval impairment, phone
substitution) and apraxia of speech [5] (articulatory impair-
ment.) Therefore, several studies indicate that both phonetic-
motor signs (related to apraxia) and phonological-linguistic

manifestations (related to aphasia and anomia) can be found
in cohorts of AD patients [5]. Depending on the patient, the
apraxic or aphasic manifestations can be prevalent, suggest-
ing that both acoustic and linguistic analyses are advisable in
systems employing speech technologies automatically to detect
AD or assess its severity.

In this respect, the combination of acoustic and linguistic
features within machine learning based-approaches to automat-
ically detect AD in recordings obtained from the DementiaBank
corpus has already been analyzed [6], obtaining 81% cross-
validation accuracy. Other studies providing similar results sug-
gest that linguistic features provide higher accuracy than acous-
tic features in detecting AD [7]. However, the combination of
both types of features yields better results than when using these
features separately, suggesting that these features are comple-
mentary [7]. Additionally, accuracies over 80% have been re-
ported when employing word and silence rates obtained with
Voice Activity Detection (VAD) systems and transcripts [8].
Moreover, some linguistic features indicative of lexical diver-
sity such as word frequency, percentage of content words, pro-
noun ratio or type-token ratio among others have shown a high
correlation with Mini-Mental Status Examination (MMSE) in
AD patients [9], suggesting that patient’s morphosyntactic im-
pairments can be automatically analyzed and employed for
severity assessment.

Although the literature includes a fair amount of studies
employing acoustic and linguistic features [6, 7, 8, 9, 10, 11, 12]
for the automatic detection and assessment of AD, to our knowl-
edge no study analyzes the use of speaker recognition and NLP
technologies such as x-vectors [13] and Bidirectional Encoder
Representations from Transformers (BERT) [14]. These tech-
niques have become the state-of-the-art in speech technologies,
and its acoustic and linguistic characterization properties have
been exploited in multiple scenarios such as Parkinson’s Dis-
ease (PD) detection [15], emotion recognition [16], sentiment
analysis [17] or question answering [14], among others.

Consequently, this study aims to analyze the use of these
two Deep Neural Networks (DNN)-based techniques, x-vectors
and BERT, in AD detection and MMSE prediction scenarios.

2. ADReSS Challenge Dataset
The ADReSS Challenge dataset [18] contains two subsets with
speech and transcriptions from speakers with and without AD:
the training and the evaluation subsets. In this study, the train-
ing subset was used to perform cross-validation and to train
models to be evaluated with the evaluation subset.

The training subset includes two groups of speakers: those
diagnosed with AD (AD group) and the age- and sex-matched
control speakers (CC group). Each group is composed of 24
male and 30 female participants. Data in both groups contain
one audio recording per participant, recorded at 44100 Hz and
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with an average length of 72.10 s, demographic information,
full transcript, and MMSE score. In our experiments, we down-
sampled the recordings according to the models we used, as
explained in later sections.

The evaluation subset comprises 11 male and 13 female
participants in each group, while the age distribution is the same
over the two groups. The average session length is 82.51 s.
Challenge participants do not have information about AD diag-
nosis or MMSE assessment for these speakers.

3. Experimental Setup
In this study, we employed two main models to detect AD and
predict MMSE from speech. The first model or acoustic model
is based on the use of acoustic aspects of speech and employs
a speaker characterization technique, i.e., x-vectors and two
different back-ends: Probabilistic Linear Discriminant Analy-
sis (PLDA) for detection and Support Vector Regression (SVR)
for MMSE prediction. The x-vectors were complemented with
heuristic features obtained from the analysis of the silence and
pause segments from the speech signal. The second model or
transcript-based model is a BERT model that utilizes linguis-
tic contents to detect AD subjects and predict MMSE. We hy-
pothesize that the transcript-based model provides complemen-
tary information to the acoustic model. Finally, scores from the
two approaches were fused using a Gradient Boosting Regres-
sor (GBR) or averaging, depending on the task.

Moreover, we differentiate two types of results:

• Cross-validation results: obtained training and testing with
the training subset, using a 10-fold scheme where class and
age distributions were consistent over the folds. The cross-
validation was done speaker-independently since the dataset
has only one session recorded per participant.

• Evaluation results: obtained by testing the models trained
with the training subset on the evaluation subset.

3.1. Acoustic model

3.1.1. x-vectors

To model the speakers’ articulatory, prosodic and phonatory
characteristics included in the dataset, we employ representa-
tion obtained with an x-vector model trained for speaker recog-
nition. An x-vector model is a deep neural network that gen-
erates one single vector or embedding per utterance, charac-
terizing the speaker. Although the technique is considered the
current state-of-the-art for speaker recognition, several studies
suggest that these embeddings also contain information related
to emotion, speaking rate, gender [16, 19] and other articula-
tory, phonatory and prosodic information that can be used to
characterize neurological diseases, as Parkinson’s Disease [15].
In general terms, an x-vector model contains three main parts:
an encoder network to extract frame-level representation from
MFCC, a global temporal pooling layer to produce the embed-
ding (x-vector), and a feed-forward classification network to
produce speaker class posteriors. Once the model training is
done, only the first two parts are used while the last part is dis-
carded. In our case, the three parts consisted of a factorized
time delay network encoder (F-TDNN), mean plus standard de-
viation pooling, and two feed-forward layers, respectively, as
detailed in a previous study [15]. Differentiation process be-
tween AD and CC speakers followed the same setup as the one
explained in the cited study:

Figure 1: Diagram of the acoustic model methodology. In cross-
validation stage, models obtained with the training folds are
used for testing with their respective testing folds. In evaluation
stage, the whole training dataset is employed for training while
the evaluation dataset is used for testing

• First, all speech signals were normalized, low-pass filtered
and re-sampled to 16 kHz.

• Then, we extracted MFCC features (40 coefficients, frame
length of 25 ms with frame shift 10 ms)

• Silence segments were removed employing the standard VAD
from Kaldi [20].

• MFCC features were used to extract one x-vector (dimen-
sion 512) for each speech recording using an x-vector model
trained with VoxCeleb 1 and 2 corpora [21, 22] in Kaldi with
sampling frequency 16 kHz.

• At each cross-validation iteration, all the x-vectors from the
training folds were employed to train a Principal Component
Analysis (PCA) model that was applied to the x-vectors from
the training and testing folds in the cross-validation stage.

• For AD detection, x-vector PCA-transformed coefficients
from the training folds were used to train a PLDA classifier to
differentiate between AD and CC speakers. In the classifier,
a likelihood ratio per speech recording is calculated consid-
ering two classes (AD and CC) which is employed in scor-
ing to take the decision. The scoring threshold is set to the
equal error rate point obtained with the log-likelihoods from
the training folds x-vector-PCA coefficients.

• Similarly, for MMSE prediction, we trained and evaluated a
linear SVR on the x-vector PCA-transformed coefficients.

Fig. 1 includes a diagram of the described process. To get
the best PCA and PLDA models for evaluation on the evalua-
tion subset, the whole ADReSS training subset was used.

3.1.2. Silence features

To complement the x-vectors characterization, which is data-
driven, we also extracted 4-dimensional heuristic features based
on the Kaldi energy-based VAD algorithm. Our goal was to
characterize the presence of silences in the recordings. The four
features are:

• Silence rate (the number of silence regions divided by the
recording length)

• Ratio of silence to speech duration
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• Mean and standard deviation of the duration of silence re-
gions

We only considered silence regions that were longer than 150
ms. Also, we removed the silences at the start and end of the
recordings when these existed. We considered these features
since previous studies suggest that silence-related features can
help to characterize aphasia and apraxia associated with AD [8].
We used these features in two different manners in this study:

• As single features for PLDA and SVR model training to ex-
amine the discrimination capabilities of these features.

• Appended to the x-vector PCA-transformed coefficients,
which we denominate Acoustic model with silence features
scheme. This allows us to observe the complementarity be-
tween x-vectors and silence features.

3.2. Transcript-based model

To model the linguistic-phonological manifestations of AD on
speech, we employed a BERT model [14] on the spoken tran-
scripts, which has shown state-of-the-art performances in sev-
eral NLP applications such as question answering, natural lan-
guage inference, named entity recognition, sentence, and word
prediction, among many others. We chose BERT for two rea-
sons: 1) the embeddings obtained from this model act as gen-
eral text representation and, 2) previous studies reported good
results from fine-tuned BERT models for multiple tasks. Two
examples are depression detection [23] or sentiment analysis
[17].

BERT is a pre-trained language model trained to predict
masked words of a sentence and the next sentence. The BERT
architecture mainly consists of self-attention layers and feed-
forward layers. In general, a pre-trained BERT model is adapted
to a down-stream task by fine-tuning the pre-trained parameters
with the minimal number of newly introduced parameters for
the task [14]. We adapted BERT to our tasks (AD detection and
MMSE prediction) in a similar way:

• We replaced the last layer of the BERT model with a task-
specific layer: a linear layer having two neurons with a soft-
max activation function for AD detection or a linear layer
having 1 neuron with linear activation function for MMSE
prediction.

• We fine-tuned the entire pre-trained model using our data to
minimize cross-entropy loss for AD detection or mean square
error for MMSE prediction.

The inputs of the model were tokens from the transcript that
were tokenized into sub-words using WordPiece tokenizer [24].
These inputs were processed through multiple self-attention and
feed-forward layers to obtain embeddings for each sub-word in
the penultimate layer. Then, the sequence of sub-word embed-
dings was pooled to pass through a linear layer to obtain the
prediction.

For each iteration of the cross-validation experiments, 9
folds from the training subset were employed for BERT fine-
tuning and the remaining fold for testing. We used early stop-
ping criterion to stop training the model and trained for 5
epochs.

3.3. Fusion

In this section, we describe our methodology for fusing acoustic
and transcript model scores. For the AD detection task, we first

Figure 2: Score scatterplot for AD and CC speakers in detection
task considering the transcript-based model scores (that range
between 0 and 1) and the log-likelihood ratio obtained with the
PLDA classifier for the acoustic+silence model. Each dot rep-
resent one subject.

obtained the scores from acoustic and transcript-based mod-
els for all utterances from the testing folds during the cross-
validation stage. Then, we employed these predictions in a
cross-validation scheme to train and test the fusion of the scores
using a GBR model [25], which provided the cross-validation
results. To obtain the evaluation subset predictions, we em-
ployed the scores from the whole training subset to train a fi-
nal fusion GBR model that was used to perform the fusion of
scores coming from the acoustic and transcript-based models
for the challenge evaluation. For MMSE prediction, we fol-
lowed a similar procedure but simply averaged the scores from
the different models instead of using a GBR.

4. Results and Discussion
In this section, we present our results on both AD detection
and MMSE prediction tasks. For evaluation metrics, we used
the same metrics as proposed in [18], namely, accuracy, preci-
sion, recall, and F1 score for detection and Root Mean Square
Error (RMSE) for MMSE prediction. For simplicity, in cross-
validation results (10 folds) we only report accuracy and RMSE.

4.1. Cross-validation results

Table 1 presents the cross-validation results with the proposed
models for AD detection and MMSE prediction tasks. From the
comparison of acoustic and transcript models, we can observe
that the transcript-based model performed better than the acous-
tic model for AD detection but worse in MMSE prediction. The
use of silence features alone did not provide high accuracy to
differentiate between AD and CC groups. However, when we
concatenated silence features with x-vectors PCA-transformed
coefficients, denoted as Acoustic+silence in Table 1, we ob-
tained an absolute 2.4% improvement in AD detection accuracy
compared to using acoustic features alone, implying that acous-
tic and silence features may have complementary information.
For MMSE prediction task, we obtained a small improvement
in RMSE value after concatenation (0.03, absolute).

We further fused acoustic and transcript-based model
scores to exploit their complementary information. The fusion
model showed 79.2% accuracy and 5.93 RMSE, which indi-
cates a 0.5% and 0.31 improvement compared to the best indi-
vidual model, respectively. Thus, results suggest that score fu-
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sion provides improvements in both AD detection and MMSE
prediction. In the same sense, the fusion of Acoustic+silence
and transcript models scores yielded 81.44% AD accuracy and
5.91 RMSE for MMSE prediction, the best cross-validation re-
sults.

A scatterplot of detection scores per subject is shown in
Figure 2. The figure indicates that in the detection task, the
transcript-based analysis is more informative for some speak-
ers, while the acoustic signal analysis is so for some of the oth-
ers. We can observe that for the majority of subjects, the scores
from the two types of models help to cluster the two groups of
speakers in the bottom left (CC) and upper right (AD) parts of
the score bi-dimensional space, suggesting that both acoustic
signal and transcripts contain cues to detect AD. Nevertheless,
a few subjects have opposite results in different models, show-
ing a high score from the transcript-based model but a low score
from the acoustic model and vice versa. This indicates that dif-
ferent models can provide complementary information.

Figure 3 shows the confusion matrices of the models with
the best cross-validation results. We can observe that the mod-
els are not biased to any single class, i.e., the recall for each
class, AD and CC, is similar. Improvement in the fusion model
is reflected with higher diagonal values and lower off-diagonal
values in general, compared to the two individual models.

Table 1: Cross-validation (CV) results for AD detection and
MMSE precition tasks. Best results are marked in bold.

Detection Prediction
Models CV accuracy (%) RMSE

Acoustic 73.21 6.24

Silence 51.20 8.05

Acoustic+silence 75.93 6.21

Transcript 78.70 6.52

Acoustic & Transcript 79.20 5.93

Acoustic+silence & Transcript 81.48 5.91

(a) (b) (c)

Figure 3: Confusion matrices for the detection tasks using (a)
Acoustic model with silence features, (b) Transcript model, (c)
Fusion of Acoustic model with silence features and transcript
model.

4.1.1. Evaluation results

Results for the evaluation subset were obtained from the sub-
mission of our model predictions to the ADReSS challenge or-
ganizers. Table 2 shows the evaluation results of our models
in AD detection and MMSE prediction tasks. Baseline results
are based on the use of the ComParE 2013 feature set [26] and a
linear discriminant analysis classifier (for detection) and MRGC

features [27] with decision trees (for MMSE prediction.) These
baseline results were provided by the ADReSS challenge or-
ganizers [18]. We observed that four of our four models out-
performed the baseline in the detection task by significant mar-
gins, and all of them provided a better RMSE than the baseline.
The model comparison showed similar trends in accuracy on
the evaluation and cross-validation results, but the overall accu-
racy was lower in the evaluation than the cross-validation. For
MMSE prediction, all RMSE values are lower in the evaluation
experiments than in the cross-validation. The model provid-
ing the best accuracy was the score-level fusion of acoustic and
transcript models with 75% accuracy. When silence features
were also used, we obtained the best MMSE prediction results,
5.32 RMSE.

We observed that the acoustic model performance in the
evaluation subset is much lower than its correspondent cross-
validation accuracy, suggesting that the acoustic models might
have been overfitted to the training subset. We observed the
same trends and conclusions from model comparison in cross-
validation and evaluation experiments in Tables 1 and 2, as the
complementarity between transcript and acoustic models.

Table 2: ADReSS challenge evaluation results for the detection
and prediction tasks. Best results are marked in bold.

Detection Prediction
Models Class Prec./Rec. F1 Accuracy

(%)
RMSE

Baseline CC 0.67/0.50 0.57 62.50 6.14
AD 0.60/0.75 0.67

Acoustic CC 0.61/0.45 0.52 58.00 6.08
AD 0.57/0.71 0.63

Acoustic + CC 0.64/0.75 0.69 66.70 5.97
silence AD 0.70/0.58 0.63
Transcript CC 0.79/0.63 0.7 72.92 5.86

AD 0.69/0.83 0.75
Acoustic & CC 0.83/0.63 0.71 75.00 5.37
Transcript AD 0.70/0.88 0.78
Acoustic +
silence &

CC 0.79/0.62 0.70 72.92 5.32

Transcript AD 0.69/0.83 0.75

5. Conclusions and future work
This study presents different approaches to automatically detect
AD and predict MMSE from the speech signal and its associated
transcript, based on the acoustic characterization of the speech
signal and the transcript-based modeling employing DNN. The
employed x-vectors and BERT are considered the current state-
of-the-art techniques in speaker recognition and NLP, respec-
tively. Our results suggest that transcription-based models pro-
vide better results in detection and prediction tasks than acous-
tic models. At the same time, information about the silences
present in the recording improves accuracy for acoustic model-
ing. The best results in cross-validation and evaluation stages
are obtained with the fusion of the scores provided by both the
acoustic and transcript-based models.

In future work, we will explore the x-vector adaptation by
fine-tuning the extractor [16] for the AD/CC detection task.
Also, we will explore the use of automatic speech recognition
systems to obtain the speech transcription and compare results
with human transcription. Lastly, we will explore the use of
BioBERT [28] and other transformer-based architectures for the
detection and assessment of AD.
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I. Hoffmann, “Identifying mild cognitive impairment and mild
alzheimer’s disease based on spontaneous speech using asr and
linguistic features,” Computer Speech & Language, vol. 53, pp.
181–197, 2019.

[8] J. Weiner, C. Herff, and T. Schultz, “Speech-based detection
of alzheimer’s disease in conversational german.” in INTER-
SPEECH, 2016, pp. 1938–1942.
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Abstract
In the light of the current COVID-19 pandemic, the need for
remote digital health assessment tools is greater than ever. This
statement is especially pertinent for elderly and vulnerable pop-
ulations. In this regard, the INTERSPEECH 2020 Alzheimer’s
Dementia Recognition through Spontaneous Speech (ADReSS)
Challenge offers competitors the opportunity to develop speech
and language-based systems for the task of Alzheimer’s Demen-
tia (AD) recognition. The challenge data consists of speech
recordings and their transcripts, the work presented herein is
an assessment of different contemporary approaches on these
modalities. Specifically, we compared a hierarchical neural
network with an attention mechanism trained on linguistic fea-
tures with three acoustic-based systems: (i) Bag-of-Audio-Words
(BoAW) quantising different low-level descriptors, (ii) a Siamese
Network trained on log-Mel spectrograms, and (iii) a Convo-
lutional Neural Network (CNN) end-to-end system trained on
raw waveforms. Key results indicate the strength of the linguis-
tic approach over the acoustics systems. Our strongest test-set
result was achieved using a late fusion combination of BoAW,
End-to-End CNN, and hierarchical-attention networks, which
outperformed the challenge baseline in both the classification
and regression tasks.
Index Terms: Alzheimer’s Disease, Bag-of-Audio-Words, Con-
volutional Neural Network, Siamese Network, Hierarchical Neu-
ral Network, Attention Mechanisms

1. Introduction
According to the World Health Organisation (WHO), dementia
is a major cause of disability in the elderly population world-
wide, with at least 10 million new cases reported every year [1].
Alzheimer’s Disease (AD) is the most common cause of demen-
tia [1, 2] and is a major public health concern, with considerable
associated socio-economic costs [2]. Therefore, there is an ur-
gent need for early diagnosis systems in order to promote timely
and optimal management. The current coronavirus disease 2019
(COVID-19) pandemic accelerates this need; people living with
dementia are at an increased risk of infection due to an inability
to comprehend, recall and follow hygiene and procedures [3].

Declines in speech and language are regarded as key early
markers of AD [4]. However, sparse and heterogeneous data sets
are limiting the impact of research in this area. The Alzheimer’s
Dementia Recognition through Spontaneous Speech (ADReSS)
challenge aims to address this issue by supplying a new AD
speech corpus on which competitors perform two different recog-
nition tasks [5]. The database consists of 54 participants with
AD and 54 matched controls. The first task is the 2-class classifi-
cation between the AD and non-AD samples. The second task is
a regression task predicting the score of the Mini-Mental State
Examination (MMSE) [6] of a speaker.

Herein, we present the Training Network on Automatic
Processing of PAthological Speech (TAPAS) – a Horizon 2020
Marie Skłodowska-Curie Actions Innovative Training Network
European Training Network – approach to these two tasks. As
both acoustic- and linguistics-based systems have shown promise
in the identification of AD, the latter particularly so, we explore
the efficacy of combining information gained from these differ-
ent combinations of state-of-the-art approaches.

Based on previous works that demonstrated their suitability
in related tasks, we utilise three different acoustic-based systems.
The first, a Bag-of-Audio Words (BoAW) system [7] has been
successfully applied for other speech-health recognition tasks,
e. g., [8, 9]. Based on results achieved in [10], we also test a
Siamese network [11]. Finally, building on [12], we include
an End-to-End, raw waveform, Convolutional Neural Network
(CNN). To the best of the authors’ knowledge, this is the first
time these three systems have been used in AD recognition.

We compare and combine these acoustic systems, with a
linguistic system that utilises Global Vectors (GLoVe) word
embeddings [13] and a hierarchical attention neural network [14].
The strength ofthis approach has been demonstrated across a
range of natural language processing (NLP) tasks [15], including
AD detection [16, 17]. Given that linguistic features have, in
general, shown stronger performances in AD detection tasks [4,
18], we regard this system as our gold standard, and investigate if,
(i) a combination of our acoustic systems can match performance
with the linguistic systems and, (ii), if the acoustic systems
provide complementary information to the linguistic system.
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2. Methodology
This section introduces the acoustic and linguistic systems con-
sidered in our contribution to the ADReSS challenge.

2.1. Bag-of-Audio-Words

Bag-of-Audio-Words (BoAW) [7] features have been applied for
a range of speech-based recognition tasks, including cold and flu
detection [8] and level of pain evaluation [9]. BoAW involves
the quantisation of acoustic low-level descriptors (LLDs), where
each frame-level LLD vector is assigned to an audio word from
a previously learnt codebook. Typically, the codebook is formed
form LLDs extracted from the training partition of a dataset. The
subsequent quantisation, undertaken by counting the number of
assignments for each audio word, generates a sparse histogram
representation of a given speech file. The openXBOW [7] is an
open-sourced toolbox for the formation of BoAW features, it has
been widely utilised such as in INTERSPEECH Computational
Paralinguistics Challenges (COMPARE) [19].

In the formation of BoAW features, LLD vectors are first
extracted from the speech files. In this work, three LLDs fea-
ture representations are generated using openSMILE [20]: Mel-
Frequency Cepstral Coefficient (MFCC), log-Mel, and the COM-
PARE acoustic feature set [21]. These three feature representa-
tions have previously been shown to be suitable for AD recogni-
ton [4, 5, 22] and their bagged representations have performed
well in previous studies, especially in health-based tasks [23].
Therefore, the three BoAW representations have promise as ef-
fective representations of AD recognition.

2.2. Siamese Network

Inspired by the success of Siamese networks in related tasks [10,
24–26], we investigate this paradigm for the task of AD recog-
nition. A core advantage of Siamese networks is the associated
contrastive loss function that encourages intra-class compactness
and inter-class separability [27]. During training, information
from segments of recordings belonging to the same condition
(AD speech or healthy speech) is pulled together using con-
trastive loss, while information relating to segments of record-
ings from different conditions are pushed away from each other.

Formally we define the contrastive loss Lc as:

Lc(x1,x2, y) = (1− y) ·D(x1,x2)
2

+ y ·max(0, αc −D(x1,x2))
2,

(1)

where y = 1 if the embeddings x1, and x2 are from different
conditions and should thus be distant, and y = 0 when x1 and
x2 are from the same condition and thus should be close. Addi-
tionally, D denotes the Euclidean distance and αc is the margin
which we want to obtain between the two different conditions.

2.3. End-to-End Convolutional Neural Network

We also propose modelling AD’s speech in an end-to-end manner,
utilising raw waveform based CNNs. This framework was been
successfully applied to tasks such as emotion recognition [28],
speaker verification [29], gender identification [30], or depres-
sion detection [12]. Exploiting this paradigm, we can capture in-
formation related to different speech production mechanisms by
modifying the initial kernel width (kW ) parameter [29, 31]. Set-
ting kW = 300 covers a signal length of approximately 20 ms
(segmental) allows the first convolution layer to model voice-
source-related information. Alternatively, by setting kW = 30
covers a signal of approximately 2 ms of length (sub-segmental),

encouraging the first convolution layer into tending to capture
vocal tract information, such as formants.

In order to verify the importance of changes in fundamental
frequency, we also investigated using zero-frequency filtered
(ZFF) signals [32]. Taking inspiration from a recent paper show-
ing that voice source related information related to depression
can be modelled with CNNs [12], the filtered signals are fed to
the same network applied to classification and regression tasks.

2.4. Hierarchical Attention Network

We implement a bi-directional Hierarchical Attention Network
(bi-HANN) as our linguistic system. This choice was motivated
by the success of bi-HANNs in other AD recognition tasks [16,
17]. This approach is a two-stage system which operates at the
word- and sentence-level [14]. In our model, wit with t ∈ [1, T ]
and i ∈ [1, L] is used to represent the tth word in ith sentence.
Each word wij is encoded into a fixed dimensional vector xij
by a pre-trained embedding matrix We. The choice of word
embedding matrix is a trainable parameter in the model.

To extract word-level characteristic patterns from the
variable-length sequence, a bidirectional long short-term mem-
ory (bi-LSTM) is applied on the word vectors, followed by an
attention mechanism. After obtaining the sentence representation
si, a further bi-LSTM layer extracts sentence-level information
extraction. Given a sentence vector si, this action generates a
transcript representation v with a similar structure as for the
word level model. Finally, a dense layer with a sigmoid function
is applied for classification on the transcript representation. See
[17] for further information on this paradigm.

3. Experimental Setup
This section introduces the ADReSS AD dataset, as well as the
key outlines the key experimental settings associated with our
four AD recognition systems.

3.1. Database

The speech data and transcripts used in this work were provided
by the ADReSS challenge organisers [5]. The speech data con-
tains both full speech files and segmented speech chunks. The
segmented chunks, used to set the challenge baseline [5] were
generated by the organisers applying a log-energy threshold-
based voice activity detector. The BoAW and End-to-End sys-
tems utilised these chunks, while the Siamese network exploits
the full recordings. The transcripts contain the linguistic content
of an interviewer and a participant, as well as other related an-
notations. We, therefore, pre-processed all the raw transcripts
to remove all content unrelated to the spoken content of the
participant and used the remaining information as input to the
bi-HANN. For the sake of brevity, the demographics and charac-
teristics of the data set are not given here. The interested reader
is referred to [5] for these details.

3.2. Bag-of-Audio-Words

The extraction of the three LLDs representations mentioned
in 2.1 is described below. Both MFCC and log-Mel LLDs are
extracted with a frame size of 0.025 s and a step size of 0.01 s.
The MFCC LLDs consist of MFCC 1-14 and the corresponding
delta regression coefficients, leading to 28-dimensional MFCC
LLDs. The log-Mel LLD feature set contains 64-band log-Mel
frequencies and corresponding 64 delta regression coefficients.
The 130 dimensional COMPARE LLDs [21] were obtained by
the OPENSMILE configure file ComParE 2016.conf.
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Next the LLD’s were quantised to form the BoAW repre-
sentations. The input LLDs are split into two subsets, in order
to train a separate codebook in each subset. We then quantise
14 LLDs for MFCC, 64 for log-Mel, and 65 for ComParE fea-
tures for both subsets. The number of word-assignments was
set as 10 for all three feature sets. Then, the optimal codebook
size was searched in {65, 125, 250, 500}. Finally, the extracted
BoAW features were then fed into a linear Support Vector Ma-
chine (SVM) for classification or regression. The combination
of BoAW and SVM has worked well in similar tasks [8, 9]. The
complexity hyperparameter in the SVM is optimised from the
setting of {1e−6, 1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1}.

3.3. Siamese Networks
This model generates embeddings using a deep Siamese neu-
ral network consisting of convolutional layers. The network
was trained using a contrastive loss between the two different
conditions (Section 2.2). Note, as the Siamese network and con-
trastive loss function are not suited to regression analysis, we
only present use of this system in the classification task. As an
input, the model used either 8-second or 16-second segments,
with a 2 second stride size, extracted from the full, rather than the
chunked audio recordings (Section 3.1). Log-Mel spectrograms
were then extracted from these segments using a frame size of
25 ms and stride of 10 ms. Our deep Siamese network consists
of two CNNs to extract embeddings, one for each class. The
encoded embeddings are then concatenated and fed into a fully
connected network to estimate their similarity. Specifically, each
CNN has 4 convolutional layers, each of which is followed by
rectified linear unit (ReLU) activations, and batch normalisation.
After the embeddings from the two CNNs are extracted, they are
concatenated and fed into a 2-layer Fully Connected Network
with each layer followed by ReLU activation. The final layer
uses a sigmoid activation function to squash the output value
between 0 and 1, which is regarded as the similarity value.

3.4. End-to-End Convolutional Neural Network

Raw waveform CNN networks typically consist of an initial
filter stage followed by a classification stage. Our proposed
network has four convolution layers, kernel widths 30-10-4-3 for
subsegmental modelling, and 300-5-4-3 for segmental modelling
(Section 2.3). Convolution layers are followed by maximum
pooling and ReLU activations. The final stage of the network is
a multilayer perceptron. At the output, the classification network
predicts a probability for AD using a sigmoid function, while
the output is a linear value for the regression model. In both
cases, this is a per frame action. These frame-level values are
then averaged to get per-utterance posterior probabilities.

The input to the CNNs, wseq , is a 250 ms length speech
segment, shifted by 10 ms. We randomly-initialised CNNs with
a batch-size of 256 and employ a cross-entropy cost function
or mean squared error for the two tasks, respectively. We opted
for a decaying learning schedule which halves the learning rate
between 10−3 and 10−7 whenever the validation loss stops re-
ducing. In initial testing, we observed that a combination of ZFF
with subsegmental modelling was better suited to the classifica-
tion task. In contrast, the combination of ZFF with segmental
modelling was better suited to the regression task. Herein, ZFF
denotes this combination.

3.5. Hierarchical Attention Network

Only the transcripts that corresponded to participants are used for
the bi-HANN model (Section 3.1). GloVe 100-dimensional word

Table 1: A comparison of the proposed approaches on the
ADReSS Challenge training set. Results are the average perfor-
mance across a nine-fold cross-validation step up.

Approach Acc. F1 RMSE

BoAW MFCC 65 .611 .604 7.03
125 .630 .623 7.05
250 .602 .593 7.00
500 .620 .610 7.17

LogMel 65 .565 .540 7.18
125 .556 .526 6.97
250 .537 .522 7.15
500 .556 .544 7.03

COMPARE 65 .620 .601 7.04
125 .593 .582 7.04
250 .574 .556 7.17
500 .574 .567 7.13

Fusion – .639 .639 6.99

SiameseNet LogMel 8 s .586 .693 –
16 s .628 .731 –

End-to-End Raw seg .713 .762 8.89
ZFF .741 .780 7.58

Linguistic bi-LSTM .694 .736 5.99
bi-LSTM-Att .842 .842 5.49
bi-HANN .827 .826 4.86

Fusion Maj. / Wt. .850 .855 4.91
Fusion bi-LSTM-Att .887 .887 7.73
Fusion bi-HANN .831 .829 7.64

vectors trained on Wikipedia 2014 and Gigaword-5 data were
taken as our pre-trained embedding matrix [13]. The bi-HANN
was trained on a fixed number of epochs (20) and evaluated on
the development set at each epoch. Batch size was set to 20
and the best model selected via the F1-score on the training set.
The number of LSTM units was set to 100, and the dense layer
dimension in word-level was set as 50. For the attention layer’s
dimension, both the sentence and word level is set to 30. The
sentence length was set to 30, and we zero-padded the shorter
sentences. The sentence numbers in a transcript were set to 30,
with zero-padding used on the shorter transcript. We opted for
Adam optimisation with a learning rate of 1e−5. Dropout was
applied after all the functional layers with 0.3 dropout rate.

We compare the bi-HANN with two simplified linguistics
systems, a bi-LSTM and bi-LSTM with attention (bi-LSTM-
Att). These models follow the same parameters setting as in the
biHANN. The maximum word number for each transcript is 200,
with zero-padding being applied if the word number is less than
this amount. Dropout layers are adopted after the LSTM layer
and attention, and dense layers.

3.6. Evaluation Metrics
As per the challenge organisers [5], we report our results in terms
of accuracy and F1-score for the classification score, and root
mean squared error (RMSE) for the MMSE prediction task. We
divided the 108 speaekers in the training set into 9 folds of 12
speakers1 and report the average of each score across each fold
in the results section.

1Partitioning of folds available on request
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Figure 1: Accuracy per MMSE score of our for best systems on
the development set, together with a histogram of MMSE scores.
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Figure 2: RMSE per MMSE score of our for best systems on the
development set, together with a histogram of MMSE scores.

4. Results and Discussion
4.1. Training Set Results
As expected, the linguistic systems outperforms the acoustic
systems (Table 1). The bi-HANN system achieves the strongest
result on the regression task; however, the simpler bi-LSTM-Att
system achieves the strongest performances on the classification
task. This result does not match with similar systems in the liter-
ature [17]. We speculate the more even performances between
the bi-HANN and bi-LSTM-Att systems are due to the smaller
size of the ADReSS database. The end-to-end CNNs produce
the strongest performance of the acoustic systems on the classi-
fication task, highlighting the benefits of self-learning features.
The inclusion of the ZFF signals improves the performance of
this set-up, indicating the importance of fundamental frequency
in AD recognition tasks. Finally, the BoAW-logMel-C125 gains
the lowest RMSE of our acoustic systems; verifying the strength
of this feature representation in paralinguistic tasks [23].

Figure 1 and Figure 2 show accuracy and RMSE per MMSE,
respectively, for the best performing systems from each group
on the training set. In terms of accuracy, none of the systems
in Figure 1 show any consistency. Whereas, in terms of RMSE,
we observe high errors at low MMSE values and another peak
around 26, where control and AD histograms start overlapping.

The late fusion between the best-performing systems from
each grouping did not improve system performance beyond the
linguistic only approaches (Table 1). This approach adopted a
majority voting for the classification task or a weighted aver-

Table 2: A comparison of the best performing approaches from
Table 1 on the ADReSS Challenge test set

Approach Acc. F1 RMSE

Baseline [5] .625 .620 6.14

BoAW .563 .561 6.88
BoAW fusion (3-best) .625 .625 6.45
SiameseNet .708 .708 –
End-to-End .667 .664 6.75

bi-LSTM-Att .813 .812 4.66
bi-HANN .729 .726 4.74

Fusion Feat. (bi-LSTM-Att) .771 .766 5.62
Fusion Feat. (bi-HANN) .813 .810 6.65
Fusion Maj./ W-avg (3-best) .852 .854 4.65

age for the regression task. However, in the classification task,
when fusing the bi-LSTM-Att and ZFF systems, we were able to
improve on the performance of the bi-LSTM-Att system. This
approach exploited the learnt representations from the second to
last layer of the ZFF CNN. These features were concatenated
with the attention output of the bi-LSTM attention layer and
the network trained as per (Section 2.4). However, this feature
fusion approach was not as well suited to the regression task.

4.2. Test Set Results
The SiameseNet performs the strongest out of the acoustic sys-
tems in the classification task (Table 2). Interestingly, despite
their stronger performance in the classification task, none of the
acoustic systems trailed on the test set out-performs the regres-
sion baseline. The bi-LSTM-Att system was our strongest stand-
alone system, highlighting the strength of considering linguistics
in AD recognition tasks. The benefits of fusion are more appar-
ent in the test set, with our best result being achieved through a
majority vote (classification) / weighted average (fusion) of the
BoAW-MFCC-C125 (classification) / BoAW-logMel-C125 (re-
gression), ZFF, and bi-LSTM-Att systems. This set-up achieves
an accuracy of .852 and an RMSE of 4.65.

5. Conclusions
This paper described the TAPAS Training Network approach to
the INTERSPEECH 2020 ADReSS challenge. We compared
and combined information from four different speech-based
Alzheimer’s recognition approaches; three acoustic and one lin-
guistic. The linguistic systems outperformed our acoustics ap-
proaches; such a result is unsurprising given a human observer
generated the transcripts. Thus, they contain considerably fewer
sources of noise than the audio recordings. Small gains were
found when fusing acoustics and linguistics approaches. In
future work, we will explore the effect of performing similar
analysis when combining acoustic information with linguistics
systems based on transcripts generated from an automatic speech
recognition system.
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Abstract
This paper is a submission to the Alzheimer’s Dementia

Recognition through Spontaneous Speech (ADReSS) chal-
lenge, which aims to develop methods that can assist in the
automated prediction of severity of Alzheimer’s Disease from
speech data. We focus on acoustic and natural language
features for cognitive impairment detection in spontaneous
speech in the context of Alzheimer’s Disease Diagnosis and
the mini-mental state examination (MMSE) score prediction.
We proposed a model that obtains unimodal decisions from
different LSTMs, one for each modality of text and audio,
and then combines them using a gating mechanism for the
final prediction. We focused on sequential modelling of text
and audio and investigated whether the disfluencies present
in individuals’ speech relate to the extent of their cognitive
impairment. Our results show that the proposed classification
and regression schemes obtain very promising results on both
development and test sets. This suggests Alzheimer’s Disease
can be detected successfully with sequence modeling of the
speech data of medical sessions.

Index Terms: Cognitive Decline Detection, Affective Comput-
ing, Computational Paralinguistics

1. Introduction
Alzheimer’s Disease (AD) is a chronic neurodegenerative con-
dition and the most common form of dementia. AD gradually
affects the memory, language and cognitive skills and ultimately
the ability to perform basic tasks in the everyday lives of pa-
tients. Early diagnosis of AD has become essential in disease
management as it has not been possible to reverse the degener-
ative process, even with significant efforts focused on therapies
[1].

Discrepancies in speech comprehension, speech production
and memory functions are closely tied in with AD as suggested
by a decrease in global vocabulary and a loss in evocative mem-
ory [2]. Patients with AD have difficulty performing tasks that
leverage semantic information; they exhibit problems with ver-
bal fluency and identification of objects [3]. The semantics and
pragmatics of their language appear affected throughout the en-
tire span of the disease more than syntax [4]. AD Patients talk
more gradually with longer pauses and invest extra time seeking
the right word, which contributes to disfluency of speech [3].

AD diagnosis demands the existence of cognitive dysfunc-
tion to be validated by neuropsychological assessments like the
mini mental state examination (MMSE) performed in medical
clinics [5]. Diagnosis is typically based on the clinical analysis

of patients’ history and the presence of typical neurological and
neuropsychological features. It is costly and not accessible to
all patients who have concerns about their memory functions.

Recent experimental research has looked at AD’s auto-
mated analysis from multimodal data as alternative, less inva-
sive tools for diagnostics. Studying behaviours of individuals
could also help detect AD earlier. There has been research on
building systems which use a broad range of multimodal fea-
tures to identify AD severity. A meaningful association between
MMSE scores and language measures such as articulation and
disfluency has been found [6].

Much of the work to date has looked separately at the prop-
erties of the language of an individual: acoustic and lexical
characteristics of speech, or syntax, fluency, and content of in-
formation. Usually these are studied within language tasks in
specific domains or in conversational dialogue [7]. Several stud-
ies have suggested various forms of speech analysis to identify
AD. Researchers found that the number of pauses, pause pro-
portion, phonation time, phonation–to-time ratio, speach rate,
articulation rate, and noise-to-harmonic ratio correlate with the
severity of AD [8]. Weiner et al. [9] developed a Linear Dis-
criminant Analysis (LDA) classifier with a set of acoustic fea-
tures such as the mean of silent segments, speech and silence
durations and silence to speech ratio to distinguish subjects with
AD from the control group and achieved a classification accu-
racy of 85.7 percent. Ambrosini et al. [10] showed an accuracy
of 73 percent when using selected acoustic features (pitch, voice
breaks, shimmer, speech rate, syllable duration) to detect mild
cognitive impairment from a spontaneous speech task.

In terms of the features which aid AD detection, lexical
features from spontaneous speech are shown to be informative.
Jarrold et al. [11] extracted the frequency occurrence of 14 dif-
ferent part of speech features and combined them with acoustic
features. Abel et al. [12] modeled patient speech errors (naming
and repetition disorders) to the problem of AD diagnosis.

There has also been work on modelling multimodal input
for AD detection. Gosztolya et al. [13] examined the fusion
of two SVM models with separate feature sets. The first model
used a set of acoustic features, and the second model was de-
veloped using linguistic features extracted from manually an-
notated transcripts. Their work showed the complementary in-
formation that audio and lexical features may contain about a
subject with AD.

Among other similar tasks, using multimodal fusion to pre-
dict a cognitive state, research has been done on integrating tem-
poral information from two or more modalities in a recurrent
approaches to classify emotions or detecting different mental
states, such as depression [14]. One key challenge these mod-
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els have is addressing the various predictive capacity of each
modality and their different levels of noise. The application of a
gating mechanism in various multimodal tasks has been shown
to be successful in controlling the level of contribution of each
modality to the eventual prediction.

This paper addresses AD classification and MMSE score
regression tasks, which are part of the Alzheimer’s Dementia
Recognition through Spontaneous Speech (ADReSS) challenge
[15]. In ADReSS, participants are required to assess the AD
severity of different subjects, where the target severity is based
on their MMSE scores.

We performed a binary classification of samples of speech
into AD and non-AD classes and create regression models to
predict MMSE scores. Using the ADReSS Challenge data
which consists of speech recordings and transcripts of spoken
picture descriptions, we explored various features as diagnos-
tically relevant tools. We focused in particular on sequential
modelling of sessions and whether the disfluencies and self-
repairs present in individuals’ speech can help predict the level
of cognitive impairment.

Our approach is motivated by [14] that developed the ability
to learn difficult decision boundaries which other models with
different methods of fusion have trouble managing, and max-
imise the use and combination of each modality. We employed
data of individuals under controlled conditions, and modeled
the sessions with audio and text features in a Long-Short Term
Memory (LSTM) neural network to detect AD. Our findings in-
dicate that AD can be detected with minimal information avail-
able on the structure of the description tasks by pure sequential
modelling of a session. We also found that disfluency markers
have predictive power for AD recognition.

2. Proposed Approach
Our approach is to model the speech of individuals giving pic-
ture descriptions as a sequence to predict whether they have AD
or not, and if so, to what degree. To predict AD, we performed
three sets of experiments using features from the audio and text
data:

1 LSTM models utilising unimodal audio and text features.

2 LSTM model with gating to test the effect of using mul-
timodality.

3 A multimodal LSTM model using acoustic and lexical
information, including disfluency tagging.

The details of the three experiments are outlined below in
the following sub-sections. In line with the standard assumption
in deep learning, we take the approach that for a model to be
genuinely data-driven, minimal feature engineering is required.
The model’s power is in its capacity to represent information
through non-linear transforms, at varying spatial and temporal
units, and from different modalities. Since we were interested
in modelling temporal session changes, we used a bi-directional
Long Short-Term Memory (LSTM) neural network as it has the
added benefit of sequential data modelling. For each of the au-
dio and text modalities we trained an LSTM model separately,
using the audio and text features.

2.1. Multimodal Features

Lexical Features from Text A pre-trained GloVe model [16]
was used to extract the lexical feature representations from
the picture description transcript and convert the utterance se-
quences into word vectors. We selected the hyperparameter val-

ues, which optimised the output of the model on the training set.
The optimal dimension of the embedding was found to be 100.

Audio Features A set of 79 audio features were extracted
using the COVAREP acoustic analysis framework software, a
package used for automatic extraction of features from speech
[17]. We sampled the audio features at 100Hz and used the
higher-order statistics (mean, maximum, minimum, median,
standard deviation, skew, and kurtosis) of COVAREP features.
The features include prosodic features (fundamental frequency
and voicing), voice quality features (normalized amplitude quo-
tient, quasi open quotient, the difference in amplitude of the
first two harmonics of the differentiated glottal source spec-
trum, maxima dispersion quotient, parabolic spectral parame-
ter, spectral tilt/slope of wavelet responses, and shape parame-
ter of the Liljencrants-Fant model of the glottal pulse dynamics)
and spectral features (Mel cepstral coefficients 0-24, Harmonic
Model and Phase Distortion mean 0-24 and deviations 0-12).
Segments without audio data were set to zero. A standard zero-
mean and variance normalization was applied to features. We
omitted all features with no statistically significant univariate
correlation with the results of training set.

2.2. Sequence Modeling

The potential of neural networks lies in the power to derive
representations of features by non-linear input data transforma-
tions, providing greater power than traditional models. As we
were interested in modelling temporal nature of speech record-
ings and transcripts, we used a bi-directional LSTM. For each
of the audio and text modalities we trained a separate unimodal
LSTM model, using different sets of features. For the input
data we explored different timesteps and strides. After explor-
ing different hyper-parameters, the model using audio data has
a timestep of 20 and stride of 1 with 4 bi-directional LSTM lay-
ers with 256 hidden nodes. The model using text input has an
input with a timestep of 10 and stride of 2 and has 2 LSTM lay-
ers with 16 hidden nodes. The code used in the experiments are
publicly available in an online repository.1

2.3. Multimodal Fusion with Gating

Audio and text features can include not only discriminative and
temporarily changing information about the current state of a
subject, but supporting information as well.

The model consists of two branches of the LSTM, one for
each of the modalities, with their outputs combined into fi-
nal feed-forward highway layers. The branches are made up
of different hyperparameters and configured with respect to
each modality’s properties. Their outputs are concatenated and
passed through N highway layers (where the best value N was
determined from optimizing on heldout data). We pad the size
of the training examples in the text set (which was the smaller
set) to meet the audio set by mapping together instances that oc-
curred in the same session, as the audio and text inputs for each
branch of the LSTM had different timesteps and strides.

Gating Mechanism Data from two modalities affect the fi-
nal output differently, and it is important to consider the amount
of noise when aggregating them into a single representation.
Since learned representation for the text can be undermined by
corresponding audio representation, during multimodal fusion
we need to minimise the effects of noise and overlaps. We use
feed-forward highway layers [18], with gating units that learn
by weighing text and audio inputs at each time step to regulate

1https://github.com/mortezaro/ad-recognition-from-speech
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Figure 1: Multimodal fusion with gating.

information flow through network work.
Each highway layer consists of two non-linear transforma-

tions: a Carry (Cr) and a Transform (Tr) gate which determine
the degree to which the output is generated by transforming and
carrying the input. Each layer uses the gates and feed-forward
layerH to regulate its input vector at timestep t,Dt, to generate
output y:

y = Tr ·H + Cr ·Dt (1)

where Cr is simply defined as 1− Tr, giving:

y = Tr ·H + (1− Tr) ·Dt (2)

The transform gate Tr is defined as σ(WTrDt + bTr),
where WTr is the weight matrix and bTr the bias vector for the
gates. Based on the transform gates outputs, highway layers ad-
justs their performance from multiple-unit layers to layers that
only pass through their inputs. As inspired by [18] and to help
resolve long-term learning dependencies faster we initialise bTr

with a negative value (biased towards the Carry gate). We use a
block of 3 stacked highway layers. The overall architecture of
the LSTM with Gating model is shown in Figure 1.

2.4. Multi-modal Model with Disfluency Markers

Disfluencies like self-repairs, pauses and fillers are widespread
in everyday speech [19]. Disfluencies are usually seen as in-
dicative of communication problems, caused by production or
self-monitoring issues [20]. Individuals with AD are likely to
deal with troubles in language and cognitive skills. Patients with
AD speak more slowly and with longer breaks, and invest ex-
tra time seeking the right word, which in effect contributes to
disfluency [3]. The present research explores the disfluencies
present in the speech of AD patients as they contribute to sever-
ity of symptoms.

Self-repair disfluencies are typically assumed to have a
reparandum-interregnum-repair structure, in their fullest form
as speech repairs [21]. A reparandum is a speech error subse-
quently fixed by the speaker; the corrected expression is a re-

pair. An interregnum word is a filler or a reference expression
between the words of repair and reparandum, often a halting
step as the speaker produces the repair, giving the structure as
in (3)

John [ likes︸ ︷︷ ︸
reparandum

+ { uh }︸ ︷︷ ︸
interregnum

loves ]︸ ︷︷ ︸
repair

Mary (3)

In the absence of reparandum and repair, the disfluency re-
duces to an isolated edit term. A marked, lexicalized edit term
such as a filled pause (“uh” or “um”) or more phrasal terms
like “I mean” and “you know” can occur. Recognizing these
elements and their structure is then the task of disfluency detec-
tion.

We automatically annotated self-repairs using a deep-
learning-driven model of incremental detection of disfluency
developed by Hough and Schlangen [22, 23]. It consists of deep
learning sequence models that use word embeddings of incom-
ing words, part-of-speech annotations, and other features in a
left-to-right, word-by-word manner to predict disfluency tags.
Here each word is either tagged as a repair onset tag (marking
first word of the repair phase) edit term, or fluent word by the
disfluency detector- we concatenate the disfluency tags with the
word vectors to create the input for text-based LSTM.

3. Experiments
3.1. Data

The ADReSS challenge’s data consists of speech recordings
and transcripts of spoken picture descriptions gathered from
participants via the Boston Diagnostic Aphasia Exam’s Cookie
Theft picture [15]. The training set includes 108 subjects, and
the state of the subjects is assessed on the basis of the MMSE
score. MMSE is a commonly used cognitive function test for
older people. It involves orientation, memory, language, and
visual-spatial skills tests. Scores of 25-30 out of 30 are consid-
ered as normal, 21-24 as mild, 10-20 as moderate and <10 as
severe impairment.

The total number of speech segments each participant had
generated was 24.86 on average. The annotations for the test set
were not included in the public release of the ADReSS Chal-
lenge, so all models were tested on both the development and
test set. The data is pre-processed acoustically and is balanced
in terms of age and gender.

3.2. Implementation and Metrics

We set up our model to learn the most useful information from
modalities for predicting AD. All experiments are carried out
without being conditioned on the identity of the speaker. The
sizes of layers and the learning rates are calculated by grid
search on validation test. The LSTM models were trained using
ADAM [24] with a learning rate of 0.0001. For the loss function
we used Binary Cross-Entropy to model binary outcomes, and
Mean Square Error (MSE) to model regression outcomes. For
binary classification of AD and non-AD, we report accuracy,
precision, recall, and F1 scores and for the MMSE prediction
task we report the Root Mean Square Error (RMSE).

3.3. Baseline Models

We compare the performance of our models to the ADReSS
Challenge baseline [15] with an ensemble of audio features
which was provided with the dataset. The baseline classifica-
tion experiments were different methods of linear discriminant
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analysis (LDA), decision trees (DT), and support vector ma-
chines (SVM). The baseline regression experiments were dif-
ferent methods of DT, gaussian process regression (GPR), and
SVM.

Table 1: Result of the AD classification and regression experi-
ments with our models in cross validation

Models Features Accuracy RMSE
LSTM Acoustic 0.64 6.01
LSTM Lexical 0.69 5.42
LSTM Lexical+ Dis 0.73 5.08
LSTM with Gating Acoustic + Lexical 0.76 5.01
LSTM with Gating Acoustic + Lexical + Dis 0.77 4.98

Table 2: Result of the AD classification and regression experi-
ments with our models against baseline models on test set

Models Features Accuracy RMSE
Baseline ([15])
LDA Acoustic 0.625 -
DT Acoustic 0.625 6.14
SVM Acoustic 0.563 6.12
GPR Acoustic - 6.33
Our Models
LSTM Acoustic 0.666 5.93
LSTM Lexical 0.708 5.45
LSTM Lexical + Dis 0.729 4.88
LSTM with Gating Acoustic + Lexical 0.771 4.57
LSTM with Gating Acoustic + Lexical + Dis 0.792 4.54

4. Results
In Table 1, we present our proposed model’s performance in a
cross-validation setting and in Table 2 against that of baselines
models on AD detection on the provided test set. For AD de-
tection, our proposed LSTM model with gating and disfluency
features achieves an accuracy of 0.792 and RMSE of 4.54, out-
performing all the baselines. The overall findings confirm our
assumption that a model with a gating structure can more effi-
ciently minimise the errors and noise of the individual modali-
ties.

Effect of disfluency features We found that disfluency tags
help as features in AD detection. Adding disfluency features
to the lexical features lead to improvement in both unimodal
(ACC 0.70 vs. 0.72; RMSE 5.45 vs. 4.88) and multimodal mod-
els (ACC 0.77 vs. 0.79; RMSE 4.57 vs. 4.54).

Effect of multimodality The multimodal LSTM with gat-
ing model outperforms the single modality AD detection mod-
els in both the classification and regression tasks. A perfor-
mance increase is obtained by combining textual and audio
modalities with gating over single modality models (ACC 0.72
vs. 0.79; RMSE 4.88 vs. 4.54). Adding audio features improves
performance despite having different steps and timesteps inputs
for each LSTM branch. In terms of our competitor baselines
(without the information from the manual transcripts), multi-
modal classifiers performed better than all the baseline models,
indicating the potential benefits of multimodal fusion in AD de-
tection. We found that while the baseline audio-based mod-
els have some discriminative capacity, sequence modelling is
more accurate (ACC scores 0.67 vs. 0.63) and has lower (bet-
ter) RMSE (5.93 vs. 6.12) for predicting AD.

For AD classification, the text features alone are more in-
formative than the audio features, as using only the text modal-
ity gives a better AD prediction than utilizing unimodal audio

modality sequentially (Acc scores 0.73 vs. 0.67; RMSE 4.88 vs.
5.93).

We can see that all models provide more accurate results on
the test set than in cross validation. LSTM with gating mod-
els accuracy improved more than other models on the test set
(RMSE 4.54 and 4.57 vs. 4.98 and 5.01).

Error analysis The results in Table 3 show that the LSTM
model with gating and disfluency features obtains the highest
precision and recall for both AD and non-AD classes. The
model achieves F1 scores of 0.7826 for AD and 0.8000 for non-
AD. The addition of gating particularly improves the recall of
AD class: the LSTM model with lexical and disfluency features
without gating has a recall 0.6667 for the AD class compared to
the 0.7500 achieved with gating, while its 0.7910 recall for the
non-AD class is not as far beneath the 0.8333 achieved by the
full gating model. Depending on the application the model is
used for, false negatives or false positives for AD detection will
be more or less desirable, but as it stands our full gating model
considerably reduces the false negatives of diagnosis whilst still
marginally reducing the false positives.

Table 3: Results of AD classification task on test set

Models Class Precision Recall F1 Score Accuracy
LSTM
(Lexical+ Dis)

AD 0.7619 0.6667 0.7111 0.7292non-AD 0.7037 0.7910 0.7451
LSTM with Gating
(Acoustic + Lexical)

AD 0.7826 0.7500 0.7660 0.7708non-AD 0.7600 0.7917 0.7755
LSTM with Gating
(Acoustic + Lexical+ Dis)

AD 0.8182 0.7500 0.7826 0.7917non-AD 0.7692 0.8333 0.8000

5. Conclusions
We have presented a deep multi-modal fusion model that learns
the AD indicators from audio and text modalities as well as dis-
fluency features. We trained and tested the model on audio and
transcript data from individuals doing a description task under
controlled conditions, and modeled the sessions with an LSTM
and feed-forward highway layers as gating mechanism for AD
detection. Our findings indicate that AD can be identified by
pure sequential modelling of a session, with limited informa-
tion available on the structure of the description tasks. We also
found that markers of disfluency hold predictive power for iden-
tification of AD.

In future work we intend to study a series of language mark-
ers associated with AD severity, as well as interactions between
them. In particular, we want to undertake a more principled
approach to lexical markers, disfluency markers in terms of a
study of self-repair and structural markers with a look at gram-
matical fluency. Furthermore, we want to find acoustic features
that contribute more to the prediction of AD and have higher
correlation with linguistic information.
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Abstract
Alzheimer’s Dementia (AD) is an incurable, debilitating, and
progressive neurodegenerative condition that affects cognitive
function. Early diagnosis is important as therapeutics can de-
lay progression and give those diagnosed vital time. Devel-
oping models that analyse spontaneous speech could eventu-
ally provide an efficient diagnostic modality for earlier diag-
nosis of AD. The Alzheimer’s Dementia Recognition through
Spontaneous Speech task offers acoustically pre-processed and
balanced datasets for the classification and prediction of AD
and associated phenotypes through the modelling of sponta-
neous speech. We exclusively analyse the supplied textual tran-
scripts of the spontaneous speech dataset, building and com-
paring performance across numerous models for the classifica-
tion of AD vs controls and the prediction of Mental Mini State
Exam scores. We rigorously train and evaluate Support Vector
Machines (SVMs), Gradient Boosting Decision Trees (GBDT),
and Conditional Random Fields (CRFs) alongside deep learn-
ing Transformer based models. We find our top performing
models to be a simple Term Frequency-Inverse Document Fre-
quency (TF-IDF) vectoriser as input into a SVM model and a
pre-trained Transformer based model ‘DistilBERT’ when used
as an embedding layer into simple linear models. We demon-
strate test set scores of 0.81-0.82 across classification metrics
and a RMSE of 4.58.
Index Terms: adress shared task, spontaneous speech classifi-
cation, alzheimers dementia classification

1. Introduction
Alzheimer’s Dementia (AD) is a progressive neurodegenerative
condition that largely affects cognitive function. With our glob-
ally aging population, conditions such as AD are likely to be-
come more prevalent[1]. Despite there being no cure currently,
early diagnosis can offer interventions to slow or delay progres-
sion of symptoms[2]. Prior work has used machine learning
methods for the prediction of cognitive impairment (CI) condi-
tions, including AD, using patient structured data[3] and med-
ical imaging data[4]. Linguistic phenomenon have also been
identified in those already diagnosed with AD[5, 6].

The Alzheimer’s Dementia Recognition through Sponta-
neous Speech (ADReSS) challenge presents two tasks in the
modelling of spontaneous speech[7]. Firstly, to classify pres-
ence of AD vs controls and secondly, to predict the ‘Mental
Mini State Exam’ score, a common set of questions designed to
assess cognitive function[8]. The challenge provides 108 train-
ing, 54 AD vs 54 Control samples, and 48 unseen test samples.

Spontaneous speech audio and associated transcripts of partic-
ipants describing the ‘Cookie Theft’ picture from the Boston
Diagnostic Aphasia Exam[9] are provided. Samples are de-
mographically and acoustically balanced and longer in duration
than previous clinical studies[7]. The challenge provides an en-
vironment for researchers to test competing methods with rec-
ommendations for future work. Using machine learning tech-
niques to predict AD from spontaneous speech could potentially
offer an efficient early diagnostic modality. For example, audio
samples could be collected via a mobile device with results di-
recting individuals to seek more formal medical evaluation.

2. Data Prepossessing
In this work we exclusively focus on the textual transcriptions
that are provided alongside the audio samples. Transcripts are
supplied using the CHAT transcription format[10]. The tran-
scription schema provides the linguistic content alongside some
prosodic content such as: pauses, laughter, discourse markers
such as ‘um’ and ‘ah’, and abbreviations such as ‘(be)cause’.
We preprocess each transcript before feeding into our model
pipelines. All code to re-create the data prepossessing, experi-
ments and analysis is available open-source1.

The preprocessing parses participant metadata such as age,
sex, AD diagnosis and MMSE score. Each transcription line
is parsed to remove time duration suffixes, specific speech arti-
facts such as ‘[’,‘]’ or ‘>’, ‘<’ and excess white-space such as
tabs and newlines. We purposely leave discourse markers such
as ‘um’ ‘ah’ and other speech artifacts such as ‘+...’, ‘&=laughs’
and ‘(...)’ that indicate various pause types, or laughter in the
audio.

2.1. Data Splits and Granularity

We split the transcripts into multiple competing datasets pro-
viding the candidate models with greatest opportunity to find
adequate signal for the prediction tasks.

2.1.1. Transcript Level Data

Within these datasets each transcript is a single data point with
their corresponding AD label and assigned MMSE score. This
includes:

1. A dataset with only participant utterances concatenated to-
gether into a single paragraph as they appear in the tran-
script. Denoted PAR.

1https://github.com/tomolopolis/ADReSS Challenge
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2. A dataset with both participant and interviewer speech con-
catenated into a single paragraph as they appear in the tran-
script. Denoted PAR+INV.

2.1.2. Utterance Level Data

For these datasets we define each utterance as an individual data
point. This provides N=1,476, AD(N=740), controls (N=736).
The target labels and MMSE scores are replicated to each utter-
ance. Segments maintain a reference to their source transcript
so random shuffling does not produce data leakage between the
train and test phases. We only consider participant spoken utter-
ances here as initial experiments indicated including interviewer
speech lead to a reduction in performance. This includes:

1. A dataset with only participant utterance as individual clas-
sification & regression data points. Denoted PAR SPLT.

2. Further datasets that extend the text based features with the
inclusion of temporal and participant demographic features
such as: time duration per sentence, time between sentences,
average/max/min sentence time denoted PAR SPLT+T, and
participant age and sex denoted PAR SPLT+T+D.

3. Methods
The baseline paper accompanying the challenge[7] only creates
a single baseline result using only the text transcripts. There-
fore, we present a range of models both as a new baseline result
for the linguistic features, Section 3.1, alongside our more ad-
vanced approaches in Section 3.2.

3.1. Baseline Methods

We make extensive use of Scikit-Learn[11], a python based
machine learning framework that provides APIs for common
machine learning models, feature extraction, cross validation,
hyper parameter optimisation and performance metric calcula-
tion. We use the integrated Term-Frequency-Inverse Document
Frequency (TF-IDF)[12] ‘bag-of-words’ vectoriser. With this
method text inputs forgo their sequence order and words are
counted within and across documents. TF-IDF down-weights
the counts of common cross-document terms, and increases
weights of rare cross-document but frequent intra-document
terms. This embedding method is a common first stage in any
textual modelling exercise due to its efficiency and ease of use.

Scikit-learn provides APIs for optimised implementations
of common machine learning algorithms such as libsvm[13]
for Support Vector Machines(SVM)[14] and XGBoost[15] for
Gradient Boosted Decision Trees(GBDT)[16] allowing for fast
model fitting. We use both algorithms in the development of
our baseline models for the transcript level and utterance level
datasets presented in Section 2.1

SVMs and GBDTs are effective techniques to learn non-
linear relationships between input features and the decision
boundaries for both classification and regression tasks.

3.1.1. Utterance Level Methods

For the segmented speech datasets, PAR SPLT, PAR SPLT+T,
PAR SPLT+T+D presented in Section 2.1.2, our modelling ap-
proach does not support MMSE prediction so we only report
results for AD classification. We train and cross validate TF-
IDF/SVM and TF-IDF/GBDT models on each utterance, and
feed output prediction probability sequences to a Conditional
Random Field (CRF)[17]. CRFs are effective in the modelling
of sequential data as input feature representations can depend

on previous and future states of the sequence. For the over-
all classification of the transcript we take the final classification
state of the CRF.

3.1.2. Hyper Parameter Optimisation

Table 1 lists the model configuration and associated hyper-
parameter spaces we search across during an exhaustive 5-fold
cross validation grid-search. As our dataset is fairly small, per-
forming this only took a couple of minutes for each model con-
figuration and each dataset despite the many individual model
fits.

Table 1: Baseline methods hyper-parameter searched and found
optimal parameters. ∗ values are×103. † the parameter spaces
are sampled from an exponential probability distributions 15
times with specified λ

Model Hyper Parameter Param Space Optimal

TF-IDF/GBDT Max Features 0.1, 0.5, 1, 2, 10∗ 1∗
TF-IDF/GBDT Stop Words english, None english
TF-IDF/GBDT Analyser word, char word
TF-IDF/GBDT sublinear TF True, False True
TF-IDF/GBDT N-Estimators 100, 200, 500 100
TF-IDF/GBDT Max Depth 3, 5, 10 5
TF-IDF/SVM Max Features 0.1, 0.5, 1, 2, 10∗ 0.1∗
TF-IDF/SVM Stop Words english, None None
TF-IDF/SVM Analyser word, char word
TF-IDF/SVM sublinear TF True, False True
TF-IDF/SVM Kernel rbf, sigmoid sigmoid
TF-IDF/SVM C 0.1, 0.5, 1 1
SVM+CRF c1 λ = 0.5† 0.0036
SVM+CRF c2 λ = 0.05† 0.018

GBDT+CRF c1 λ = 0.5† 0.314
GBDT+CRF c2 λ = 0.05† 0.009

3.2. Deep Learning Methods

To converge successfully deep learning (DL) models often re-
quire more training data than methods such as SVMs and GB-
DTs. Training set sizes are often 50 or 100 times larger than
available here. Transfer learning presents a compelling option
to enable re-use of deep learning models for smaller domain
specific data sets. Recently, transfer learning approaches have
been successfully applied to a variety of NLP problems[18].

Large pre-trained language models are an example of trans-
fer learning, and can be used to provide semantically rich em-
bedding layers, allowing researchers to re-use knowledge ac-
quired by the model from a prior training process. The language
modelling task can be defined as predicting the next word given
the sequence of previous words, or formally in Equation 1, mod-
elling the probability distribution of all wordsw in a vocabulary
V conditioned on previous words wi−1 to w1.

P (wi|wi−1, wi−2 · · ·w1)∀w ∈ V (1)

The task enables the usage of large corpora of existing
texts without any explicit manual annotation, often referred to
as self-supervised learning[19]. Each model we use is based
upon the Transformer architecture first presented for sequence
to sequence problems such as machine translation[20]. The
Transformer consists of layers of encoder and decoder blocks of
multi-headed self-attention followed by fully connected layers.
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Each successive layer learns sophisticated latent representations
of the input texts.

We use the ‘transformers’[21] library to load, and re-use the
BERT[22], RoBERTa[23] and DistilBERT/DistilRoBERTa[24]
models as embedding layers for the PAR and PAR+INV
datasets.

Running the input transcripts through the pre-trained mod-
els produces a fixed size embedding representation for each pro-
vided transcript. This is an embedding matrix of size N × H ,
where N is the number of transcripts and H is the hidden di-
mension of the pre-trained model. As recommended in prior
work we fit simple linear models, Logistic Regression model
for AD classification and LASSO Regression for MMSE pre-
diction, to produce our final predictions.

4. Results

Table 2 provides results for average 10 fold cross-validation for
hyper parameter selection and best train/development set per-
formance. This attempts to compare model robustness with
the available training data, especially for our transcript level
datasets where dataset size is limited. Metrics follow the stan-
dard definitions as outlined in the baseline work[7] and are aver-
aged between the classes Non-AD / AD for precision, recall and
F1. We then pick our 5 best performing models / dataset con-
figurations and run on the unlabelled test dataset, containing 48
samples, sending our AD and MMSE predictions to challenge
organisers. Organisers subsequently responded with aggregate
results as reported in Section 4.1 for AD classification and Sec-
tion 4.2 for MMSE predictions.

Table 2: Average 10-fold CV AD Classification and MMSE pre-
diction results. Results are highlighted if within 0.02 of the
highest score. ∗ indicates best score for given metric.

Dataset Model Acc Prec Recall F1 RMSE

PAR GBDT .82 .84 .82 .81 5.93
PAR SVM .86 .90 .83 .86 6.57
PAR DistilBERT .87 .90 .87 .87 4.49∗
PAR DistilRoBERTa .84 .86 .85 .82 5.12
PAR BERT(base) .84 .86 .85 .82 5.12
PAR RoBERTa(base) .75 .79 .72 .74 7.11
PAR BERT(large) .77 .80 .77 .76 6.64
PAR RoBERTa(large) .77 .81 .73 .76 7.13

PAR+INV GBDT .79 .80 .82 .79 5.60
PAR+INV SVM .88 .92∗ .87 .87 6.74
PAR+INV DistilBERT .87 .89 .89 .88∗ 4.85
PAR+INV DistilRoBERTa .80 .87 .79 .78 7.11
PAR+INV BERT(base) .75 .76 .78 .74 7.13
PAR+INV RoBERTa(base) .72 .71 .71 .69 5.45
PAR+INV BERT(large) .75 .78 .73 .74 7.13
PAR+INV RoBERTa(large) .81 .88 .76 .79 6.64
PAR SPLT SVM+CRF .88 .88 .88 .87 -
PAR SPLT GBDT+CRF .80 .84 .74 .78 -

PAR SPLT+T SVM+CRF .89∗ .87 .90∗ .88∗ -
PAR SPLT+T GBDT+CRF .82 .84 .79 .81 -

PAR SPLT+T+D SVM+CRF .86 .85 .87 .86 -
PAR SPLT+T+D GBDT+CRF .83 .86 .79 .81 -

4.1. AD Classification

Table 3 shows our test set results for each metric. We show
results for metrics both labels (AD vs No AD) for precision,
recall and F1 metrics as defined in baseline work[7].

Table 3: Test set results for AD classification

Dataset / Model Class Prec Recall F1 Acc

PAR / DistilBERT Non-AD
AD

0.76
0.783

0.79
0.75

0.78
0.77 0.77

PAR+INV / DistilBERT Non-AD
AD

0.83
0.80

0.79
0.83

0.81
0.82 0.81

PAR / TF-IDF/SVM Non-AD
AD

0.70
0.79

0.83
0.63

0.75
0.70 0.73

PAR SPLT / SVM+CRF Non-AD
AD

0.78
0.86

0.88
0.75

0.82
0.80 0.81

PAR SPLT+T / SVM+CRF Non-AD
AD

0.75
0.85

0.88
0.71

0.81
0.77 0.79

4.2. MMSE Prediction

Table 4 provides our MMSE prediction results on the provided
test set. We observe that the deep learning embedding meth-
ods perform best, and in particular the DistilBERT model using
only participant sections of the transcript performs best RMSE.
Interestingly, the deep learning methods perform well despite
having not been trained with regression tasks in mind. Our CRF
models do not support regression so we cannot report MMSE
prediction scores for those model configurations.

Table 4: Test set results for MMSE score prediction, ‘DBL’ in-
dicates our DistilBERT embedding with LASSO linear model.

Dataset/Model PAR/DBL PAR+INV/DBL PAR/SVM
RMSE Score 5.37 4.58 5.22

4.3. Alternative Configurations

The supplied transcripts included temporal metadata for each
sentence for participants and interviewers. We experimented
with these time time based features alongside the text features
at the transcript level, i.e. a PAR+TIME dataset. This included
features: participant average / minimum / maximum and me-
dian sentence times, and time between sentences. Intuitively,
we assumed that AD subjects would exhibit distinctly different
time based features due to their impaired cognitive function.
However, this dataset (PAR+TIME) performed poorly across
the modelling approaches so we do not include in our results.
We suggest this is due to the aggregation in the transcript level
dataset removing any signal to that could be detected by the
modelling approaches. PAR SPLT+T does include temporal
level features but does not perform as as well as linguistic fea-
tures only.

5. Discussion
We discuss our results in context of model complexity, model
generalisability and potential utility as a diagnostic modality.
Our most effective models are DistilBERT with PAR+INV and
SVM+CRF with PAR SPLT. Both models perform similarly for
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the AD classification task, but the deep learning approach can
also output MMSE score predictions. The DL methods will
likely generalise better as the majority of the modelling is ac-
complished by the embedding layer. Both models could be de-
ployed to mobile devices for a potentially ubiquitous early di-
agnostic tool.

In a potential diagnostic scenario, models would seek to
balance recall and precision. A true-positive label of AD would
prompt the user to seek a formal evaluation, under medical su-
pervision, potentially leading to an earlier diagnosis allowing
for slower progression of the disorder. However, ensuring the
false-positive rate is low would minimise unnecessary anxiety
during the following formal clinical evaluation.

5.1. Baseline Approaches

The SVM models report higher performance than the GBDT
models across all metrics and tasks. They are also computation-
ally faster to fit and cross validate. It is unclear if these mod-
els will generalise to alternative or larger datasets. The models
have captured correlations in frequency of appearances of ‘key
words’ as identified by TF-IDF vectoriser. Further datasets may
result in variations in performance as the frequencies of ’key
words’ change providing insufficient signal for accurate mod-
elling of the decision boundaries necessary for prediction.

Despite offering the worst performance across all config-
urations and datasets, GBDTs do provide good model inter-
pretability. For example, we find the top 20 most informa-
tive word level features from the TF-IDF vectoriser contain
discourse markers such as ‘oh’, ‘uh’ and ‘um’ for both tasks.
This indicates the model has found occurrences of these words
are useful in making predictions for both tasks. However,
prior work has suggested more informative features are more
complex[25].

5.2. Deep Learning Approaches

Our results are inline with previous work that has empirically
shown that large, pre-trained, DL Transformer based, language
models are an effective embedding layer that capture a variety
of linguistic phenomenon[26]. As models are pre-trained we
incur no model fit expense to use them. Training from scratch
requires days or weeks with specialised hardware and large data
sets. The simple LR or LASSO models that are fit on top of the
fixed size output embeddings are as efficient to fit as the baseline
SVM models.

BERT and RoBERTa models are available in their ‘base’
and ‘large’ varieties. In prior work, ‘large’ often performs bet-
ter due to the increased parameter space and longer training
time[22]. However, we observe in our experiments ‘large’ mod-
els are often equivalent or worse performing. We also observe
this trend with DistilBERT / DistilRoBERTa that have further
reduced parameters compared to ‘base’ varieties that broadly
produce better results in our experiments although prior work
would suggest the contrary.

6. Future Work
6.1. Further NLP Modelling

For future work we would look to replicate findings with larger
datasets to demonstrate model robustness. We also currently use
the models ‘out-of-the-box’ so they have only been trained with
large corpora of prepared speech (Wikipedia and the Toronto
Book Corpus[22]). For future work we would also look to

fine-tune the deep learning embedding models specifically to
spontaneous speech as fine-tuning to domain specific data often
boosts performance[27]. Spontaneous speech corpora would
likely show a difference in lexicon and grammar as well sub-
tle prosodic differences such as rhythm, tempo that are often
captured within spontaneous speech transcripts. An example
of such a corpus is the ‘The British National Corpus[28]’. A
large corpora of informal spontaneous speech containing 1251
recordings and∼11 million words from 668 speakers. We have
cleaned and prepared the corpus using a sliding sentence win-
dow producing a dataset of ∼767k ‘documents’. We success-
fully begun the fine-tuning process observing a reduction in
training loss. However, due to extenuating circumstances our
GPU resource became unavailable and we were unable to com-
plete the fine-tuning. We make the data pre-processing, and
language model fine-tuning scripts available open-source2.

6.2. Feature Combinations and Model Ensembling

Combining features or model ensembling that incorporated the
acoustic data (i.e. prosodic/articulatory features) may provide
further gains in performance. Audible phenomenon such as
changes in pitch, intonation, stress and subtle changes in tempo
would only be available in the audio dataset and have shown to
be useful during prior work[29, 25]. We leave the investigation
and ensembling of these features to future work.

7. Conclusions
We have presented a range of NLP techniques applied to the
ADReSS challenge dataset, a shared task for the prediction
of AD and MMSE scores of AD patients and controls. Each
dataset and model configuration is rigorously optimised and
tested. We observe promising results, above published base-
lines, for machine learning techniques such as SVMs and Deep
Learning approaches. We highlight that the Deep Learning ap-
proaches are particularly effective when used as embedding lay-
ers for both the AD classification and MMSE score prediction
tasks even despite the lack of domain and task specific fine-
tuning.
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Abstract
This paper describes the Verisk submission to The ADReSS
Challenge [1]. We analyze the text data at both the word
level and phoneme level, which leads to our best-performing
system in combination with audio features. Thus, the sys-
tem is both multi-modal (audio and text) and multi-scale (word
and phoneme levels). Experiments with larger neural language
models did not result in improvement, given the small amount
of text data available. By contrast, the phoneme representation
has a vocabulary size of only 66 tokens and could be trained
from scratch on the present data. Therefore, we believe this
method to be useful in cases of limited text data, as in many
medical settings.
Index Terms: Dementia detection, voice classification, compu-
tational paralinguistics

1. Introduction and Related Work
Alzheimer’s disease (AD) is the most common cause of demen-
tia, a group of symptoms affecting memory, thinking and social
abilities. Detecting and treating the disease early is important
to avoid irreversible brain damage. Several machine-learning
(ML) approaches to identify probable AD and MCI (Mild Cog-
nitive Impairment) have been developed in an effort to auto-
mate and scale diagnosis. A comprehensive review of medical-
imaging-based approaches was provided by [2], but methods
that are less invasive and expensive still require exploration.

Acoustic Approaches: Detection of AD using only audio data
could provide a lightweight and non-invasive screening tool that
does not require expensive infrastructure, and can be used in
peoples’ homes. Speech production with AD differs qualita-
tively from normal aging or other pathologies, and such differ-
ences can be used for early diagnosis of AD [3]. Several stud-
ies have been proposed to detect AD using speech signals. [4]
showed that spectrographic analysis of temporal and acoustic
features from speech can characterise AD with high accuracy.
[5] used only acoustic features extracted from the recordings of
DementiaBank for AD detection, and reported accuracy results
of up to 97%.

Linguistic Approaches: There has also been recent work
in text-based diagnostic classification approaches; these tech-
niques use either engineered features or deep features.

Engineered Features: [6] showed that classifiers trained on au-
tomatic semantic and syntactic features from speech transcripts
were able to discriminate between semantic dementia, progres-
sive nonfluent aphasia, and healthy controls. This work was
later extended to AD vs healthy control classification [7] using
lexical and n-gram linguistic biomarkers.

Deep Features: Deep learning models to automatically detect

AD have also recently been proposed. Orimaye et al. [8]
introduced a combination of deep language models and deep
neural networks to predict MCI and AD. One limitation of a
deep-learning-based approach is the paucity of training data
typical in medical settings. [9] attempted to interpret what
the neural models learned about the linguistic characteristics
of AD patients. Text embeddings of transcribed text have also
been recently explored for this task. For instance, Word2Vec
and GloVe have been successfully used to discriminate be-
tween healthy and probable AD subjects [10], while, more re-
cently, multi-lingual FastText embedding combined with a lin-
ear SVM classifier has been applied to classification of MCI
versus healthy controls [11].

Multimodal Approaches using representations from images
have been recently used to detect AD [12, 13]. [14] used
lexicosyntactic, acoustic and semantic features extracted from
spontaneous speech samples to predict clinical MMSE scores
(indicator of the severity of cognitive decline associated with
dementia). The work of [15] extended this approach to classifi-
cation, and obtained state-of-the-art results on DemantiaBank-
fused linguistic and acoustic features extracted into a logistic
regression classifier.

Multimodal and Multiscale Deep Learning Approaches to
AD detection have been applied using medical imaging data
[16]. Inspired by this, we propose an Acoustic-Linguistic ap-
proach with late fusion to classify AD vs healthy controls. Our
contributions are as follows:

1. We introduce a multiscale approach for linguistic features
by learning phoneme-level representation from scratch us-
ing FastText [17] and Sent2Vec [18]. We show that this
phoneme-level embedding can be learned with a very small
amount of data, which is a considerable advantage over ex-
isting work and ideally suited for clinical settings.

2. We combine speech and text domains to obtain a novel mul-
tiscale and multimodal approach to AD recognition. We find
that subword (phoneme) information helps the classifier dis-
criminate between healthy and ill participants.

2. Dataset
The dataset was provided by the ADReSS Challenge [1]. The
participants were asked to describe the Cookie Theft picture
from the Boston Diagnostic Aphasia Exam [19]. Both the
speech and corresponding text transcripts were provided. It was
released in two parts: train and test sets. The train data had 108
subjects (48 male, 60 female) and the test data had 48 subjects
(22 male, 26 female). For the train data, 54 subjects were la-
beled with AD and 54 with non-AD. The speech transcriptions
were provided in CHAT format [20], with 2169 utterances in the
train data (1115 AD, 1054 non-AD), and 934 in the test data.
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Table 1: Acoustic features and their dimensions. CFS denotes
correlation feature selection and RFECV denotes recursive fea-
ture elimination using cross-validation.

Feature Dim. (All) Dim. (CFS) Dim. (RFECV)
GEMAPS 64 53 3
eGEMAPS 90 76 4

emobase 979 626 6
emobase2010 1583 995 19

emolarge 6511 1810 21
ComParE2016 6375 3592 54

MRCG 6914 367 5

3. Acoustic Systems
All audio started as 16-bit WAV files at 44.1 kHz sample rate.
These were provided as ‘chunks’, which were sub-segments of
the above speech dialog segments that had been cropped to 10
seconds or shorter duration (2834 chunks: 1476 AD, 1358 non-
AD). In general, the audio data was found to be very noisy and
some of the chunks were unintelligible to the human ear. For
example, a basic audio classification into ‘speech’ vs. ‘other’
using pyAudioAnalysis [21] found only 49.8% of audio chunks
were clearly ‘speech’.

We applied a basic speech-enhancement technique using
VOICEBOX [22], which slightly improved the audio results,
but is not essential to our method. We also tried rejecting noisy
chunks, or using a 3-category classification scheme to sepa-
rately identify the noisiest chunks. These attempts did not sig-
nificantly improve the results, however, and so were not pursued
further. We also attempted using voice activity detection, using
OpenSMILE [23] or rVAD [24], and weighting audio results ac-
cordingly. This led to small improvements for some analyses,
but was also not included in the final results, as it was apparent
that more radical changes in methodology would be required to
deal with these noise levels (e.g., a windowing into fixed-length
frames). We decided therefore to use the noisy audio ‘chunks’
as given, with only the basic speech enhancement applied, and
to defer additional improvements to future work.

3.1. Acoustic Features

Acoustic features were extracted on the enhanced speech seg-
ments downsampled to 16-kHz sample rate. We used the same
feature sets as in the baseline Challenge paper [1], along with a
few additional sets, but also added a stage of feature selection.
Features are computed every 10-ms to give “low-level descrip-
tors” (LLDs) and then statistical functionals of the LLDs (such
as mean, standard deviation, kurtosis, etc.) are computed over
each audio chunk of 0.5-10 sec duration (chunks shorter than
0.5 s were rejected). Using OpenSMILE [23], we extracted
the following sets of functionals: emobase [25], emobase2010,
GeMAPS [26], extended GeMAPS (eGeMAPS), and Com-
ParE2016 (a minor update of numerical fixes to the Com-
ParE2013 set [27]). Using code from the Cacophony Project
(https://github.com/TheCacophonyProject), we extracted multi-
resolution cochleagram (MRCG) LLDs [28], and then several
statistical functionals of these. The dimensions of each func-
tionals set are given in Table 1, and details can be found in the
cited references.

3.2. Acoustic Feature Selection

As the dimensionality of each functionals set was large (Table
1), we explored feature selection techniques to improve sub-

Table 2: Accuracy scores of feature selection. These numbers
calculated by taking majority vote on segments.

Feature All CFS RFECV
GEMAPS 0.490 0.472 0.629
eGEMAPS 0.453 0.462 0.620

emobase 0.555 0.555 0.657
emobase2010 0.555 0.574 0.601

emolarge 0.595 0.629 0.666
ComParE2016 0.601 0.629 0.694

MRCG 0.546 0.509 0.611

Table 3: Accuracy scores of the ComParE2016 acoustic feature
set with different classifiers. LR: Logistic regression, SVM: sup-
port vector machine, and LDA: linear discriminant analysis.

Feature LR SVM LDA
ComPareE2016 0.694 0.740 0.740

sequent classification. First, we used correlation feature se-
lection (CFS), which discards highly-correlated features. Sec-
ond, we used recursive feature elimination with cross validation
(RFECV), where a classifier is employed to evaluate the impor-
tance of the each feature dimension. In each recursion, the fea-
ture that least improves or most degrades classifier importance
is discarded, leading to a supervised ranking of features.

Table 1 shows the raw (“All”) feature dimensions and af-
ter each feature selection method. We further appended age and
gender to each acoustic feature set. With CFS, we discarded fea-
tures with correlation coefficient ≥ 0.85. For RFECV, we used
logistic regression (LR) as the base classifier with leave-one-
subject-out (LOSO) cross validation. CFS reduced the dimen-
sionality by 15-95%, and the RFECV method further brought
the dimensionality down to 3-54 for all sets.

Table 2 shows the performance of feature selection methods
employed in this study, assessed with LOSO cross-validation on
the train set. There is considerable improvement in accuracy af-
ter the CFS and RFECV methods. Since the performance of
the ComParE2016 features is best among the acoustic feature
sets, we used only the ComParE2016 features for further ex-
periments. However, it is noted that equivalent performance
could be obtained with emobase2010 using other feature selec-
tion methodology (not included here).

Table 3 presents the accuracy scores achieved by the Com-
ParE2016 features using different ML classification models.
SVM (support vector machine) and LDA (linear discriminant
analysis) models gave better performance than LR. The best ac-
curacy obtained using acoustic features alone is 0.74. For our
ensemble models, we used the posterior probabilities from the
LDA model averaged over all chunks for each subject.

4. Linguistic Systems
The linguistic system contains two parts: the natural language
representation and the phoneme representation.

4.1. Natural Language Representation

We applied a basic text normalisation to the transcriptions by
removing punctuation and CHAT symbols and lower casing.
Table 4 shows the accuracy and F1 score results on a 6-fold
cross validation of the training data-set (segment level). For
each model used, hyper-parameter optimisation was performed
to allow for fair comparisons.
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4.1.1. Engineered Features

Following [7] and [9], we extract seven features from text
segments: richness of vocabulary (measured by unique word
count), word count, number of stop words, number of coordi-
nating conjunction, number of subordinated conjunction, aver-
age word length, and number of interjections. Using CHAT
symbols, we extract four more features: number of repetitions
(using [/]), number of repetitions with reformulations (using
[//]), number of errors (using [*]), and number of filler words
(using [&]).

4.1.2. Deep Learning Features

We experimented with three different settings: Random
Forest with deep pre-trained Features (DRF), fine-tuning of
pre-trained models (FT) and training from scratch (FS).

Deep Random Forest Setting: We extract features using three
pre-trained embeddings: Word2Vec (CBOW) with subword
information [29] (pre-trained on Common Crawl), GloVe
[30] pre-trained on Common Crawl and Sent2Vec [31] (with
uni-grams) pre-trained on English Wikipedia. The procedure is
the same for each model: each text segment is represented by
the average of the normalised word embeddings. The segment
embeddings are then fed to a Random Forest Classifier. In
this setting the best performing model is Sent2Vec with
unigram representation. Sent2Vec is built on top of Word2Vec,
but allows the embedding to incorporate more contextual
information (entire sentences) during pre-training.

Training from Scratch Setting: In this setting, models are
trained from scratch on the given dataset. The only model
fast enough to allow us to find the best hyper-parameters
while being a good baseline is FastText. With an embedding
dimension as low as 5 and with as low as 16 words in its
vocabulary, FastText performs competitively compared to most
of the Deep Random Forest Settings. Subword information
determined by character n-grams are keys to this result as
explained below.

Fine-Tuning Setting: For this final setting, pre-trained embed-
dings (Word2Vec, GloVe, Sent2Vec) or models (Electra [32],
Roberta [33]) are fine-tuned on the data. Electra uses a Gen-
erator/Discriminator pre-training technique more efficient than
the Masked Language Modeling approach used by Roberta.
Though the results of the two models are approximately the
same at the segment level, Electra strongly outperforms Roberta
at the participant level. The best models still remain the ones
using subword information: GloVe (FT) and Word2Vec (FT).
Both of those pre-trained embeddings are fine-tuned with the
FastText classifier. The later turn sentences into character-n-
gram augmented sentences (we found that a maximum charac-
ter n-grams of 6 was optimal). Though FastText from scratch
also have the sub-word information, it does not have the pre-
trained representation of those sub-words learnt using GloVe or
CBOW (Word2Vec).

4.1.3. Interpretation and Discussion

Subword Information appears to be a key discriminative
feature for effective classification. As Figure 1 shows, not
using subword information is detrimental to the discriminative
power of the model. As a result, we can make the hypothesis
that in low resource settings like in this case of medical data,
taking into account subword information might be the key to
good performance. We explore even further this hypothesis by
transforming sentences into phoneme level sentences.

Table 4: Best performance after hyper-parameters optimisa-
tion for each model, metrics are the average of accuracy and
f1 scores across 6-fold cross-validation, participant level (soft-
max average).

Model Dim. Accuracy F1-score
Random (DRF) 11 0.463 0.482

Engineered Feat (DRF) 11 0.704 0.68
Sent2Vec (FT) 600 0.787 0.758

GloVe (FT) 300 0.861 0.865
Word2Vec (FT) 300 0.926 0.923

Word2Vec (DRF) 300 0.787 0.785
GloVe + EF (DRF) 311 0.796 0.792

Sent2Vec (DRF) 600 0.833 0.83
GloVe (DRF) 300 0.824 0.822
FastText (FS) 5 0.796 0.776

Roberta-Base (FT) 768 0.787 0.753
Electra-Base (FT) 768 0.861 0.845

Figure 1: F1 and Accuracy on 6-fold cross validation as a func-
tion of the maximum size of character n-grams (maxn) using
FastText supervised classifier

Word Order: When word order is important, FastText tends to
not perform well as it averages the word embeddings of the in-
put sentences without accounting for their original position. We
confirmed this hypothesis by measuring the impact of adding
word n-grams as additional features to the classifiers. Figure 2
shows that adding word n-grams, thus introducing temporality,
does not impact the performance or even degrade it.
Performance of Transformers Though Transformers have
subword information through the use of Byte Pair Encoding to-
kenizer for Roberta and WordPiece tokenizer for Electra, there
are too few data points for their large number of parameters.

Experiment Details For the Random Forest (RF), we found
that the best results on the 6-fold cross validation were obtained
using 200 estimators, entropy criterion, square root for the max-
imum number of features. A StandardScaler (subtracting the
mean and scaling to unit variance) was also applied to the fea-
tures. FastText From Scratch (FS) hyper-parameters are: word-
Ngrams=1, 100 epochs, max number of character n-grams=6,
minimum number of word occurences=100, learning rate of
0.05 and embedding dimension of 5. We kept the same hyper-
parameters for FastText fine-tuned except for the dimension that
we set to 300 for Word2Vec and GloVe and 600 for Sent2Vec.
Roberta-Base and Electra-Base performance was measured on
the best hyper-parameters found. The hyper-parameters that
were found to work best are: a batch size of 16, 5 epochs, a
maximum token length of 128 and a learning rate of 2e-05.
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Figure 2: F1 and Accuracy on 6-fold cross validation as a func-
tion of the word n-grams (wordNgrams) features using FastText
supervised classifier

Table 5: Results of 9-fold CV on the Train set for several com-
bined systems, using simple LR on posterior probability out-
puts. Audio represents the LDA posterior probabilities of Com-
ParE2016. Word2Vec and GloVe were text (word-based) sys-
tems (Section 4.1) and Phonemes are as in Section 4.2. Age and
speaking rate were added to each system.

Model Accuracy
GloVe + Phonemes 0.8981

GloVe + Phonemes + Audio 0.9074
Word2Vec + Phonemes 0.9352

Word2Vec + Phonemes + Audio 0.9352

4.2. Phonetic Representation

The discriminative importance of the subword information was
confirmed by our phoneme transcription experiments. We tran-
scribed the segment text into phoneme written pronunciation
using CMUDict [34]. The most likely pronunciation is used for
words with multiple pronunciations. Thus, “also taking cook-
ies” becomes “ao1 l s ow0 t ey1 k ih0 ng k uh1 k iy0 z”. In
several experiments, it always helped to include vowel stress in
the pronunciation (0 is no stress, 1 is full stress, 2 is part stress).
With stress, there were 66 phones total.

Several text classifiers were trained on the phoneme rep-
resentation (FastText, Sent2Vec, StarSpace), and FastText was
again found to perform best (and fastest). Our best performance
on the Test set (Table 6) used only the phoneme representation
and FastText classification, along with the audio. However, in
9-fold CV tests with the Train set, the best result was a combina-
tion of natural language and phonetic representation (Table 5).

The numbers appended to vowel phonemes are stress in-
dicators according to the convention of CMUdict. Our exper-
iments showed that removing stress always caused a decrease
in performance. The discriminative importance of phonetic and
articulatory representation in AD patient is in accord with pre-
vious medical research (e.g., [35]), and deserves future experi-
mentation for ML purposes.

Experiment Details For the phonetic experiments, we used
FastText supervised classifier with the following hyperparam-
eters: 4 wordNgrams, an embedding dimension of 20, a learn-
ing rate of 0.05, 300 epochs, and a bucket size of 50000. The
other hyperparameters were at default. We did not use character
n-grams (many phones are already characters).

Table 6: Challenge Test Set Results

Model Class Precision Recall F1 Score Accuracy

System 1 non-AD
AD

0.6316
0.5862

0.5
0.7083

0.5581
0.6415

0.6042

System 2 non-AD
AD

0.7407
0.8095

0.8333
0.7083

0.7843
0.7556

0.7708

System 3 non-AD
AD

0.7692
0.8182

0.8333
0.7500

0.8
0.7826

0.7917

System 4 non-AD
AD

0.7308
0.7727

0.7917
0.7083

0.76
0.7391

0.75

System 5 non-AD
AD

0.75
0.75

0.75
0.75

0.75
0.75

0.75

5. Discussion
• System 1: Audio (LDA posterior probabilities of Com-

ParE2016 features)

• System 2: Phonemes (as in Section 4.2)

• System 3: Phonemes and Audio

• System 4: Phonemes and Word2vec (as in Section 4.1)

• System 5: Phonemes and Audio and Word2Vec

For each combined system (Tables 5 and 6), we appended
the age and speaking rate as auxiliary features. Those two
variables are well studied for identifying AD (see [36] for
the positive correlation with age and [37] for the negative
correlation with speech rate).

Acoustic Features alone are not as discriminative as text
features alone. There is indeed a 15 points difference in
accuracy between System 1 which mainly use acoustic features
and System 4 which mainly uses text features. However, the
audio was very noisy in this set; new feature sets and robustness
measures should be explored.

Deep learning text systems easily overfit for small data.
RoBERTa and Electra models performed worse than Word2Vec
on this small dataset (Table 4), and systems 4 and 5 perform
worse on the final Test set than just Phonemes alone (Table
6). However, 9-fold CV on the Train set (Table 5) found that
the best performing system was multiscale (Word2Vec and
Phonemes) as well as multimodal (text and audio) (Table 5).
We believe this would also give the best result for the Test set
if the amount of data were larger.

Using Phoneme/Subword is key. The effectiveness of using
subword features to discriminate between AD and non-AD peo-
ple can be understood as analogous to data augmentation. Split-
ting tokens into subwords or mapping them to phonemes re-
duces the size of the vocabulary and at the same time expands
the number of tokens in the training set. Also, several studies
like [35] have found that AD patients show articulatory difficul-
ties and patterns which would show on the phonetic transcrip-
tion. Phoneme representations also capture many simple as-
pects of word-based text models, noting that phoneme 4-grams
as used here already include many basic words.

6. Conclusions
We propose a multiscale approach to the problem of automatic
Alzheimer’s Disease (AD) detection. We find that subword in-
formation, and in particular phoneme representation, helps the
classifier discriminate between healthy and ill participants. This
finding could prove useful in many medical or other settings
where lack of data is the norm.
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Abstract
This paper describes a multi-modal approach for the au-

tomatic detection of Alzheimer’s disease proposed in the con-
text of the INESC-ID Human Language Technology Laboratory
participation in the ADReSS 2020 challenge. Our classification
framework takes advantage of both acoustic and textual feature
embeddings, which are extracted independently and later com-
bined. Speech signals are encoded into acoustic features us-
ing DNN speaker embeddings extracted from pre-trained mod-
els. For textual input, contextual embedding vectors are first
extracted using an English Bert model and then used either to
directly compute sentence embeddings or to feed a bidirectional
LSTM-RNNs with attention. Finally, an SVM classifier with
linear kernel is used for the individual evaluation of the three
systems. Our best system, based on the combination of linguis-
tic and acoustic information, attained a classification accuracy
of 81.25%. Results have shown the importance of linguistic
features in the classification of Alzheimer’s Disease, which out-
performs the acoustic ones in terms of accuracy. Early stage
features fusion did not provide additional improvements, con-
firming that the discriminant ability conveyed by speech in this
case is smooth out by linguistic data.
Index Terms: Alzheimer’s Disease, automatic multi-modal di-
agnosis, acoustic and textual feature embeddings

1. Introduction
Alzheimer’s Disease (AD), the most common cause of Demen-
tia [1], is a neurodegenerative disorder characterized by loss of
neurons and synapses in the cerebral cortex. Its prevalence in-
creases with age, a study on the U.S. census reported that 3%
of people aged 65-74, 17% of people aged 75-84, and 32%
of people aged 85 and older have AD [2]. As most countries
are experiencing a general increase in average lifespan, it is ex-
pected a rapidly escalation of AD cases worldwide in the next
thirty years [3]. Pharmacological treatments may temporarily
improve the symptoms of the disease, but they can not stop or
reverse its progression. For these reasons, there is an increas-
ing need for additional, noninvasive, and cost-effective tools
allowing a preliminary identification of AD in its early clini-
cal stages. Currently, AD is diagnosed through an analysis of
patient clinical history and disability, neuropsychological tests,
brain imaging and cerebrospinal fluid exams. Although the
prominent symptoms of the disease are alterations of memory
and of spatial-temporal orientation, language impairments are
also an important factor confirmed by current literature [4, 5].
Some of the most well known language impairments found in

This work has been partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference
UIDB/50021/2020 and by European Union funds through Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie
Grant Agreement No. 766287.

AD speech include naming [4], word-finding difficulties [6],
repetitions [7], an overuse of indefinite and vague terms [8],
and inappropriate use of pronouns [9].

Over the last years, there has been an increased interest
from the research community in the automatic identification of
AD through the analysis of speech and language abilities. Some
studies have focused on syntactic or semantic features [10, 11],
some targeted plain acoustic approaches [12, 13], while other
works have investigated a combination of temporal speech pa-
rameters and lexical measures [14, 15]. Most of these ap-
proaches use handcrafted features and traditional classification
algorithms. Very recent works investigated the use of auto-
matically learned representations from deep neural networks
[16–19]. Regardless of the approach used, the studies exist-
ing in the literature are difficult to analyze and compare due
to the different datasets used. In this scenario, the Alzheimer’s
Dementia Recognition through Spontaneous Speech (ADReSS)
challenge has been proposed, with the aim of providing re-
searchers with a common, statistically balanced and acousti-
cally enhanced dataset to test their approaches [20].

In this work, we present the multi-modal system proposed
by the Human Language Technology Laboratory of INESC-ID
for the ADReSS 2020 challenge. Our framework is designed
to solve the task of automatically distinguishing AD patients
from healthy individuals. In our previous approaches to this
topic [21, 22] we exploited lexical, syntactic, and semantic fea-
tures with measures of local, global, and topic coherence, in
order to provide a more comprehensive characterization of lan-
guage abilities in AD and thus a more reliable identification. In
this work, we take the challenge of using automatically learned
representations instead of traditional and consolidated hand-
crafted features, which already proven to achieve good classifi-
cation results. Inspired by recent studies, we push the limit of
deep neural models to work with extreme conditions, such the
ones in the health domain, in which data scarcity is ordinary.
Additionally, we combine both acoustic and linguistic informa-
tion to have a complete picture of patient’s disabilities, in a sim-
ilar way to the type of information that clinicians receive during
their interactions with patients.

The rest of this work is organized as follows: Section 2
introduces the relevant state on the art on the automatic identi-
fication of AD. Then, in Section 3 and 4, we present the dataset
used in this study and a description of our methodology. Fi-
nally, classification results are reported in Section 5, while con-
clusions are summarized in Section 6.

2. Related work
The computational analysis of speech and language impair-
ments in AD has gained growing attention in recent years. Ini-
tially, existing studies explored engineered temporal and acous-
tic parameters of speech, linguistic features, or a combination
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of both. König et al. [12] computed several temporal speech
features on a dataset composed of 26 AD and 15 healthy sub-
jects, while performing different tasks of isolated and continu-
ous speech. By considering different features according to the
task, the authors achieved an accuracy of 87% in the automatic
identification of AD. Fraser et al. [11] used more than 350 fea-
tures to capture lexical, syntactic, grammatical, and semantic
phenomena from the transcriptions of a picture description task.
With a selection of 35 features, the authors achieved a classifica-
tion accuracy of 81.92% in distinguishing individuals with AD
from healthy controls. Pompili et al. [21] exploited lexical, syn-
tactic, semantic and pragmatic features from the descriptions of
the Cookie Theft picture [23] attaining an accuracy of 85.5% in
the task of classifying AD patients. Gosztolya et al. [14] col-
lected a dataset composed of 75 Hungarian speakers (25 AD,
25 MCI, and 25 healthy subjects) performing two tasks elic-
iting continuous speech. The set of features used considered
demographic attributes, acoustic and linguistic features. Using
only acoustic or linguistic information the authors achieved an
accuracy of 82% in distinguishing AD patients from healthy
subjects. When the two types of features were combined, the
accuracy increases to 86%.

More recently, researchers are shifting their focus towards
more complex architectures capable of overcoming the limita-
tions of traditional approaches. Warnita et al. [18] proposed an
approach relying only on acoustic data computed from continu-
ous speech and gated Convolutional Neural Network (GCNN).
Using majority voting on speaker and the Paralinguistic Chal-
lenge (IS2010) feature set, the authors achieved an accuracy of
73.6%. Karlekar et al. [19], on the other hand, investigated lin-
guistic impairments using CNN, LSTM-RNNs, and a combina-
tion of both. In this way, they obtained an accuracy of 91.1% in
classifying AD patients. Chen et al. [16] went further, propos-
ing a network based on attention mechanism and composed of
a CNN and GRU module. In this way, the architecture should
be able to analyze both local speech patterns and global macro-
linguistic functions. The accuracy achieved in distinguishing
AD patients was of 97.42%. Finally, Zargarbashi et al. [17]
designed a multi-modal feature embedding approach based on
N -gram, i-vectors, and x-vectors. Classification accuracy re-
sults achieved with each of these models were, respectively, of
78.2%, 75.9%, and 75.1%. The joint fusion of the three models
reached an accuracy of 83.6%.

Our work differs from previous studies for several rea-
sons. First, to process the text data, we use contextual em-
beddings vectors as input to two different systems. One based
on the training of a Global Maximum pooling and a bidirec-
tional LSTM-RNNs architectures, and one based on the statis-
tical computation of sentence embeddings. The latter presents
the advantage of being a simple approach, which does not re-
quire the training of deep, data-demanding architectures. Sec-
ond, for the audio recordings, we use DNN speaker embeddings
extracted from pre-trained models. These learned, speaker rep-
resentative vectors have recently shown their potential in the
discrimination of neurodegenerative disorders [24]. To the
best of our knowledge, this is the first work that jointly uses
automatically learned representations from neural models, in-
stead of engineered features, for both audio signals and textual
data. In fact, although existing studies have shown that linguis-
tic impairments in AD appear to be more important than acous-
tic ones, traditional literature provide convincing evidence that
using both source of information will definitively improve the
accuracy of automatic diagnosis methods.

Table 1: Statistical information on the ADReSS dataset

Train Test
Control AD –

Audio Full 00:55:46 01:14:00 01:06:00
Audio chunks 00:30:11 00:26:31 00:26:32
# words (unique) 6097 (567) 5494 (552) 5536 (602)

3. Corpus
The ADReSS dataset contains the speech recordings and corre-
sponding annotated transcriptions of 156 subjects, 78 AD pa-
tients, and 78 healthy control matched for age and gender. Data
were divided into two partitions, training and test sets composed
of 108 and 48 subjects, respectively. Recorded participants
were required to provide the descriptions of the Cookie Theft
picture from the Boston Diagnostic Aphasia Examination [23].
Speech recordings were segmented using Voice Activity Detec-
tion (VAD) and later normalised [20]. The dataset contained
both full enhanced audio, and normalised audio chunks.

In our approach, we have used both the full enhanced au-
dio and the transcriptions. The latter were annotated with dis-
fluencies, filled pauses, repetitions, and other more complex
events. However, to build an automated system requiring a min-
imal annotation effort, we removed all the annotations not cor-
responding to the plain textual representation of words, thus,
better resembling the output that can be generated by an Auto-
matic Speech Recognition (ASR) system. Overall, the whole set
of transcriptions contained 17127 words, of which 1009 were
unique. More detailed information about the duration and size
of the ADReSS dataset are reported in Table 1.

4. Proposed methods
As shown in Figure 1, our multi-modal framework is based on
the independent generation of acoustic and textual feature em-
beddings. Then, we perform an early fusion of the output of the
two systems to obtain a single feature vector containing a com-
pact representation of both speech and language characteristics.
Finally, classification is performed with an SVM classifier with
linear kernel. The two systems are described in the remainder
of this section.

4.1. Acoustic system

The acoustic system is strongly based on two models bor-
rowed from the speaker verification field, i-vectors [25] and x-
vectors [26]. i-vectors are statistical speaker representation vec-
tors that have been recently used for the classification of Parkin-
son’s Disease and for the automatic prediction of dysarthric
speech metrics [27, 28]. X-vectors are discriminative deep neu-
ral network-based speaker embeddings that have outperformed
i-vectors in speaker and language recognition tasks [26, 29, 30]
and have been successfully applied to AD, obstructive sleep ap-
nea and pathological speech detection [24, 31]. Both models
allow to extract a fixed sized feature vector from variable length
audio signal.

Taking into consideration the small size of the ADReSS
dataset, we preferred to exploit already existing pre-trained
models to produce our acoustic feature embeddings, rather than
training them using in-domain challenge data. To this end, for
the x-vectors framework we use both the SRE and the Voxceleb
models. The first was trained mainly on telephone and micro-
phone speech using data from the Switchboard corpus, Mixer 6,
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Figure 1: Summary of embedding-based approaches

and NIST SREs [29]. The latter was trained on augmented Vox-
Celeb 1 and VoxCeleb 2 datasets, which contains speech from
speakers spanning a wide range of different ethnicities, accents,
professions and ages. [29, 32]. This dataset was used also to
build the i-vectors pre-trained model used in this work.

The inputs to the pre-trained SRE and Voxceleb models
consisted of 23 and 30-dimensional MFCC vectors, extracted
with Kaldi [33] from the full recordings, using default values for
window size and shift. Non-speech frames were removed using
energy-based VAD. For the x-vectors model, the last layers of
the pre-trained model, before the softmax output layer, can be
used to compute the embeddings. In this work, we extracted a
512-dimensional x-vectors at layer segment6 of the network.

The i-vectors models, is based on GMM-UBM. The uni-
versal background model (UBM) is used to capture statistics
about intra-domain and inter-domain variabilities and a projec-
tion matrix is used to compute i-vectors. We extracted a 400-
dimensional i-vectors.

4.2. Linguistic system

We followed two different approaches to obtain textual feature
embeddings. First, we investigated the feasibility of training
deep architectures with a corpus of reduced dimension like the
one used in this challenge. Then, this method is compared with
a less data-demanding one, based on the statistical computa-
tion of sentence embeddings using a pre-trained model. Both
strategies rely on contextual word embeddings as input, but
they provide different types of learned representations as out-
put. In fact, to combine the information from the linguistic
and the acoustic systems, the trained architectures are used only
to extract linguistic features from the last layer of the models,
before the final classification. In this way, we obtain a single
768-dimensional feature vector for an entire description. The
sentence embedding approach, on the other hand, provide a sin-
gle 768-dimensional vector for each sentence of a description.
These features are then used to classify between AD patients
and healthy subjects. For both approaches, the first step of the
pipeline deals with the normalization of the data provided in the
ADReSS dataset. In fact, we recall that besides the plain tran-
scription of the descriptions these also contain additional anno-
tations and information that were removed. Then, we encode
each word of the clean transcriptions into a 768-dimensional
context embedding vector using a frozen English Bert model
pre-trained with 12-layers, 768-hidden. This representation is
fed to our two linguistic systems, described hereafter.

The first system is derived from the ComParE2020 Elderly
Challenge baseline [34], and was obtained by adapting the orig-
inal code to deal with the classification of AD. With this ap-

Table 2: Results of different acoustic approaches on the devel-
opment set

Accuracy Precision Recall F1 Score
x-vectors Vox 0.6818 0.6834 0.6919 0.6812
x-vectors SRE 0.7273 0.7273 0.7273 0.7273
i-vectors Vox 0.6818 0.7292 0.6818 0.6645
i-vectors Vox x-vectors Vox 0.7273 0.7273 0.7273 0.7273
i-vectors Vox x-vectors SRE 0.7273 0.7351 0.7273 0.7250

proach, three different neural models are trained on top of con-
textual word embeddings: (i) a Global Maximum pooling, (ii)
a bidirectional LSTM-RNNs provided with an attention mod-
ule, and (iii) the second model augmented with part-of-speech
(POS) embeddings. During training, the loss is evaluated on the
development set.

The second system provides the advantage of not requiring
an additional phase of model training. Similarly to the approach
followed with the acoustic system, we use automatically learned
representations extracted from a pre-trained model to directly
characterize linguistic deficits in AD. The contextual word em-
beddings obtained for each word of the clean transcriptions are
now used to compute an embedding vector of fixed size for each
sentence of a description. Sentence embeddings were success-
fully employed in tasks of humor detection and more generally
sentiments analysis [35, 36] and information retrieval [36]. In
our approach, sentence embeddings are computed by averaging
the second to twelfth hidden layers of each word.

5. Results and discussion
The ADReSS dataset contains only training and test partitions
and for the latter the ground truth is not provided. Thus, in order
to test our approaches, we retain the 20% of the data from the
training set and use it as development set. In this way, we are
left with 86 subjects for training, 22 for development, and 48
for testing. While creating the additional partition, we kept the
dataset gender balanced.

As briefly mentioned, our evaluation method relies on
SVM [37] with linear kernel, based on a liblinear implemen-
tation. The complexity parameter C was optimised during the
development phase. The results reported in Tables 2 and 3 are
obtained using the best complexity configuration. Features were
normalized to have zero mean and unit variance. In the remain-
der of this section we first describe our results on the develop-
ment set for each system independently and then for their final
fusion. Finally, for the best systems, we report the results ob-
tained on the test set.

5.1. Results on the development set

5.1.1. Acoustic system

Results using different automatically learned acoustic features
embeddings are summarized in Table 2. Also in this case, we
explored different independent models and then we do an early
fusion of the best acoustic results attained. From Table 2 is
possible to observe that the x-vectors Voxceleb model usually
achieve a lower classification accuracy. However, when we
combine both i-vectors and x-vectors extracted from this model,
the accuracy resulting from their fusion is comparable to that of
x-vectors using the SRE model, which is currently our best re-
sult on the development set. These outcomes are slightly lower
than those found in the literature review for similar works. In
fact, we recall that Warnita et al. [18] and Zargarbashi et al. [17]
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Table 3: Results of different linguistic approaches on the devel-
opment set

Accuracy Precision Recall F1 Score
Global Max Pool. 0.7727 0.7947 0.7728 0.7684
LSTM-RNNs 0.8182 0.8182 0.8182 0.8182
LSTM-RNNs Pos 0.8636 0.8667 0.8637 0.8634
GMax/LSTM-RNNs/LSTM-RNNs-Pos 0.9091 0.9091 0.9091 0.9091
Sentence emb. - maj. vote 0.7727 0.7947 0.7728 0.7684

obtained an accuracy of 73.6%, 75.9%, and 75.1%, using, re-
spectively a gated CNN with the IS10 acoustic feature set and
the i-vectors/x-vectors paradigms. Our approach, however, is
different from the ones of these authors since we are using a
smaller dataset and do not rely on DNN training. Nevertheless,
since we are interested in corroborating these results on the test
set, we select the acoustic feature embeddings extracted from
the pre-trained x-vectors SRE model for the evaluation.

The use of pre-trained acoustic embedding extractors has
been motivated by the reduced size of the ADReSS dataset,
that we considered to be insufficient for data hungry deep learn-
ing approaches. To confirm this, we also trained an end-to-end
LSTM model for AD classification. The architecture consisted
of one dense and two LSTM layers with a softmax activation
function. The network took as input chunks of 500 voiced
frames using 23-dimensional MFCC with delta and delta-delta.
Majority voting was performed over all the chunks from the
same speaker to generate a single prediction per speaker. This
end-to-end approach performed very poorly, with an accuracy
around chance result in the development set, confirming our ex-
pectations that the ADReSS dataset is not suited for training a
deep learning end-to-end system.

5.1.2. Linguistic system

Results obtained with our different linguistic systems are sum-
marized in Table 3. This table reports the performance for the
features trained with the three neural models, their fusion, and
finally for the sentence embeddings approach. For the latter,
we present only results achieved using a majority voting over
the entire description. Our best classification result attained an
accuracy of 90.91% on the development set using the fusion of
the linguistic features sets generated by the three neural mod-
els. Comparing this result with the one obtained by sentence
embeddings, we acknowledge that neural models outperform
simpler strategies even with constrained training data. This was
somehow surprising and in contradiction with similar experi-
ments performed with the acoustic system. We hypothesize that
the large amount of contextual information provided by the Bert
model is helpful in overcoming the limited size of the ADReSS
dataset. Nevertheless, we suspect that the high accuracy at-
tained with neural models may be too optimistic, due to the fact
of having used the development set both for testing and evaluat-
ing the model’s loss. Thus, in spite of their lower outcome, the
sentence embeddings approach is selected as one of the systems
to be evaluated on the test set. In fact, on the one hand, we think
that they may represent a more reliable system, since do not re-
quire additional training. On the other hand, we also observe
that they achieve higher classification scores, when compared
with a similar approach based on GloVe embeddings [38], thus
corroborating our decision.

5.1.3. Fusion of systems

To provide a comprehensive evaluation of speech and language
impairments in AD, the best results obtained with both the

Table 4: Results of different acoustic and linguistic approaches
on the test set

Class Accuracy Precision Recall F1 Score
Fusion of system AD 0.8125 0.9412 0.6667 0.7805

non-AD 0.7419 0.9583 0.8364
Sentence embedding AD 0.7292 0.8235 0.5833 0.6829

non-AD 0.6774 0.8750 0.7636
x-vectors SRE AD 0.5417 0.5417 0.5417 0.5417

non-AD 0.5417 0.5417 0.5417

acoustic and the linguistic systems where combined together
in an early fusion fashion. We merged the x-vectors features set
obtained with the SRE model with the combination of linguistic
feature sets (GMax/LSTM-RNNs/LSTM-RNNs-Pos) generated
by the three neural models. Unfortunately, results on the devel-
opment set using this extended set of features did not provide
any further improvements with respect to using the linguistic
system alone. We believe that, in this case, the predictive ability
of linguistic features completely override acoustic ones. Never-
theless, we select the combination of these two systems as our
main system for the evaluation.

5.2. Results on the test set

Overall, we submitted three systems for the evaluation: (i) the
fusion of the best results achieved by the linguistic and acoustic
systems, (ii) sentence embeddings, (iii) the best acoustic sys-
tem. A summary of these results is reported in Table 4. In
general, we found a consistent impoverishment of the perfor-
mance of our methods when evaluated on the test set, even for
those systems based on features that do not required a train-
ing phase. The first system submitted achieved the best result,
with an accuracy of 81.25%, showing that the use of deep archi-
tectures with contextual word embeddings are actually able of
overcoming the limitation of a constrained dataset. The worse
result is achieved by the acoustic system alone, with an average
accuracy of 54.17%. This outcome is lower than the one found
in the ADReSS baseline (62.50%) [20], indicating that there is
still room for improving our acoustic approach. We relied on
pre-trained models to overcome the lack of data, but we ended
up with a similar problem. It is likely the case that an adap-
tation of these models to the characteristics of elderly speech
would allow for better performance.

6. Conclusions
In this work we presented a multi-modal approach to the clas-
sification of AD based on automatically learned feature repre-
sentations. Both for the acoustic and linguistic systems, we in-
vestigated feature embedding vectors extracted from pre-trained
models, as well as the feasibility of training deep neural archi-
tectures. Using a combination of both approaches, we attained
an accuracy of 90.91% and 81.25% on the development and test
sets, respectively. Our results showed that acoustic systems, in
comparison to linguistic ones, require more data in order to im-
prove the predictive ability of neural models and obtain fine-
tuned features representations. Nonetheless, it is worth noting
that linguistic systems used manually generated transcriptions.
In the presence of potential ASR errors –which are commonly
exacerbated in the case of atypical speech, such as AD speech–,
acoustic systems may play a more relevant role. The impact of
these errors could be an interesting analysis for future work, as
well as the investigation of robust acoustic methods and models
specially tailored to the elderly and AD speech characteristics.
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Abstract
The Mini Mental State Examination (MMSE) is a standard-
ized cognitive health screening test. It is generally admin-
istered by trained clinicians, which may be time-consuming
and costly. An intriguing and scalable alternative is to detect
changes in cognitive function by automatically monitoring in-
dividuals’ memory and language abilities from their conver-
sational narratives. We work towards doing so by predicting
clinical MMSE scores using verbal and non-verbal features ex-
tracted from the transcripts of 108 speech samples from the
ADReSS Challenge dataset. We achieve a Root Mean Squared
Error (RMSE) of 4.34, a percentage decrease of 29.3% over the
existing performance benchmark. We also explore the perfor-
mance impacts of acoustic versus linguistic, text-based features
and find that linguistic features achieve lower RMSE scores,
providing strong positive support for their inclusion in future
MMSE score prediction models. Our best-performing model
leverages a selection of verbal and non-verbal cues, demonstrat-
ing that MMSE score prediction is a rich problem that is best
addressed using input from multiple perspectives.
Index Terms: spoken language processing, spoken language
analysis, healthcare applications, dementia detection

1. Introduction
Scientific progress and improved healthcare standards in many
areas of the world have resulted in older populations than ever
before [1]. Although this is in many ways cause for celebra-
tion, it also introduces new challenges to administering effec-
tive clinical care. A growing elderly population creates an in-
creased demand for a wide range of healthcare services, includ-
ing cognitive assessment. Managing clinician burden and al-
lowing medical professionals to allocate their time effectively
is key to maximizing health outcomes and minimizing patient
distress. One way to do this is by automating lower-risk tasks,
such as routine cognitive assessment.

Cognitive assessment is often performed using straightfor-
ward, clinically validated tests such as the Mini Mental State
Examination (MMSE) [2]. Clinicians administering the MMSE
ask patients a series of questions in five different areas (orien-
tation, registration, attention, memory, and language); their re-
sponses to these questions ultimately result in a score ranging
from 0 (greatest cognitive decline) to 30 (no cognitive decline).
Although simple to administer, the assessment can be burden-
some, requiring the patient to travel to a clinical setting for in-
person assessment. It may also be subject to biases from various
demographic factors [3]. As an alternative to the structured, in-
person MMSE, preliminary evidence suggests that automated
methods can be used to predict MMSE scores from open-ended
narrative descriptions [4]. The availability of easily-accessible,
automated mechanisms could also enable assessment of indi-

viduals at more frequent, regular intervals, potentially facilitat-
ing quicker diagnosis of early-stage dementia [5].

We work toward this goal of simple, efficient dementia di-
agnosis by investigating a wide range of spoken language fea-
tures for automated MMSE score prediction. It is well-known
that dementia can influence spontaneous speech production,
with declines in verbal fluency often manifesting with longer
hesitations, lower speech rates, more frequent repetition, and
other aphasic conditions [6, 7]. We design features that account
for these discourse characteristics, in addition to incorporating
promising linguistic features from prior work. Our findings sug-
gest that a combination of verbal and non-verbal features results
in strong predictive ability. Our contributions are as follows:

1. We propose a suite of features for MMSE score predic-
tion, and run experiments to assess their utility for the
task. We find that a blend of features drawn from mul-
tiple linguistic and discourse perspectives exhibits the
strongest performance.

2. We extract features designed to encode properties of hes-
itation and verbal fluency, which are important biomark-
ers of Alzheimer’s disease. Since identifying these subtle
characteristics directly from audio files remains a chal-
lenging task [8, 9], we leverage the extensive set of an-
notations for non-verbal cues already present in the tran-
scripts. To the best of our knowledge, the use of these
features for MMSE score prediction is novel.

3. We compare the performance of acoustic and textual fea-
tures for the task, finding that models trained only on text
features outperform those trained only on acoustic fea-
tures. This provides strong support for the inclusion of
linguistic features in future models.

4. We analyze patterns in the features found to be most ben-
eficial, finding that function words and discourse con-
nectives offer high predictive value.

Our best-performing model outperforms the existing task
benchmark by a wide margin (RMSE=4.34, a 29.3% decrease
from the acoustic benchmark (RMSE=6.14) at the time of sub-
mission, and a 16.5% decrease from the linguistic benchmark
(RMSE=5.20) added before the camera-ready deadline [4]).

2. Related Work
There is growing interest in automated dementia detection, al-
though most work to date has focused on the binary task of de-
mentia classification (wherein an individual is predicted to ei-
ther have or not have dementia) [10, 11, 12, 13, 4] rather than the
more nuanced problem of assigning continuous MMSE scores
[14, 4]. Unlike most recent natural language processing tasks,
which have migrated almost exclusively to using neural mod-
els with implicitly learned features, small dataset sizes and a
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strong interest in maintaining model interpretability have kept
the problem space of automated dementia detection refreshingly
diverse. Recent high-performing models have relied on a wide
range of engineered features [10, 14, 11, 12, 15, 4], at the same
time that others have explored neural solutions [16, 13].

Although we examine one neural solution for compara-
tive purposes, our focus in this work is on identifying high-
performing interpretable feature sets. Previously, others have
explored both acoustic [11, 15, 4] and linguistic [10, 11, 12,
13] engineered features, primarily for dementia classification
[14, 15, 4] rather than regression [4]. Acoustic features that
have proved successful for the task include fundamental fre-
quency [4], measures of vocal quality [4], Mel Frequency Cep-
stral Coefficients [11, 4], and pause- and duration-based fea-
tures [15], among others. High-performing linguistic features
have included verbal markers (e.g., indicators of repetition or
backtracking) [10], syntax patterns [10, 11], lexical characteris-
tics [10, 12], part-of-speech tags [11, 13], syntactic complex-
ity [11], psycholinguistic traits [11, 13], vocabulary richness
[11, 12], information content [11], repetitiveness [11], n-grams
[12], and sentiment [13]. We draw inspiration from many of
these prior approaches in selecting and designing features for
our MMSE prediction models. Specifically, we make use of an
expanded n-gram set, non-verbal speech and discourse markers
via CHAT transcript [17] annotations, and measures of word fa-
miliarity, imageability, concreteness, sentiment, and typical age
of word acquisition, as well as MFCC acoustic features.

3. Methods
We employ a set of automatically-extracted lexicosyntactic,
psycholinguistic, discourse-based, and acoustic features for es-
timating continuous MMSE scores on a scale of 0 to 30. Al-
though MMSE scores are often present in dementia detection
datasets, the task is generally approached as a binary classifica-
tion problem; its framing as a regression task is under-explored.
We experiment with several machine learning techniques for
representing relationships between our observed features and
the underlying clinical scores. We explored this task in the con-
text of the Alzheimer’s Dementia Recognition through Sponta-
neous Speech (ADReSS) Challenge.

3.1. Data

The ADReSS Challenge dataset is a subset of DementiaBank’s
Pitt Corpus [18]. The Pitt Corpus consists of anonymized
recordings and transcripts of spoken picture descriptions
elicited from participants who were shown the Cookie Theft
picture from the Boston Diagnostic Aphasia Exam [19]. In
the recordings and transcripts, the interviewer asks the partic-
ipant to describe what is in the picture, with no time constraints
and relatively little structure (on occasion, the interviewer prods
the participant for clarification or additional details). The audio
from these conversations was manually transcribed, with dis-
course markers added for false starts, pauses, word repetition,
phrase tracing, incomplete sentences, and other nonverbal cues,
using the CHAT coding system [17]. For the ADReSS Chal-
lenge, the original speech recordings were also segmented into
volume-normalized clips of at most ten seconds in length.

The dataset was divided by the task organizers into training
and test sets. The training set contained 108 transcripts with an
average conversation length (in terms of number of words ut-
tered by the participant) of 98.5 (SD=55.37), and the test set
contained 48 transcripts with an average conversation length

Table 1: Token-level psycholinguistic and sentiment features.

Feature Description

Age of Acquisition The age at which a particular word
is usually learned.

Concreteness A measure of a word’s tangibility.

Familiarity A measure of how often one might
expect to encounter a word.

Imageability A measure of how easily a word
can be visualized.

Sentiment A measure of a word’s valence.

of 93.38 (SD=56.20). The dataset (unlike the Pitt Corpus as
a whole) was gender- and age-balanced across participants with
and without dementia. Individual participant demographic in-
formation, cognitive status (Dementia or Control), and MMSE
score were provided for all training samples; cognitive status
and MMSE score were not provided for test samples. We pre-
processed the transcripts to remove interviewer utterances, as
well as numbers, punctuation, and unwanted symbols.

3.2. Features

We automatically extracted a variety of features from each tran-
script, described in more detail below.

3.2.1. Lexicosyntactic Features

We extracted n-grams for n ∈ {1, 2, 3} from all training set
samples, retaining only n-grams that appeared at least five times
and at most 50 times across the training data and including
coded non-verbal cues (e.g., laugh, cough, breath intake, or
sigh). This resulted in a sparse feature vector for each utter-
ance containing one dimension for each n-gram. Feature values
were filled using TFIDF counts for a given transcript, computed
as follows where TF is the term frequency within the transcript
and DF is the number of documents containing the term:

TFIDF = TF × 1

DF
(1)

Each vector was L2-normalized with unit modulus. The
final vocabulary size across all n-grams was 613.

3.2.2. Psycholinguistic Features

Psycholinguistic characteristics play a key role in verbal pro-
cessing [20], and thus we suspected that they may have high
utility for predicting MMSE scores. We considered four clas-
sic psycholinguistic properties (age of acquisition, concrete-
ness, familiarity, and imageability), as well as sentiment scores.
These features (five total, described further in Table 1) were
all extracted from third-party lexical resources as token-level
scores, which we then averaged across all tokens in a given
transcript. Sentiment scores were obtained using NLTK’s Sen-
timentAnalyzer library,1 and psycholinguistic scores were ob-
tained from an open source repository2 containing scores from
multiple aspects of the MRC Psycholinguistic Database [21].

1https://www.nltk.org/api/nltk.sentiment.html
2https://github.com/vmasrani/dementia\

_classifier
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3.2.3. Discourse-Based Features

To model global discourse patterns across the entire transcript,
we extracted an array of count-based features for discourse tags.
These features include CHAT transcript [17] markers for differ-
ent pause types (including filled pauses containing, e.g., uh or
umm), word repetition, retracing (restarting the same phrase or
segment), and incomplete utterances. Our full list of discourse-
based features included: short pause count, long pause count,
very long pause count, word repetition count, retracing count,
filled pause count, and incomplete utterance count. We nor-
malized these counts by the number of words uttered in the
conversation. We also examined both word count and utterance
count as features, ultimately dropping utterance count due to its
high correlation (r > 0.5) with the former, but retaining word
count, resulting in a total set of eight discourse features.

3.2.4. Acoustic Features

Finally, we extracted acoustic features due to their success in
prior work on dementia detection [11, 22, 15, 4] and MMSE
score prediction [4]. Specifically, we computed Mel Fre-
quency Cepstral Coefficients (MFCCs) and extracted the first 14
MFCCs for each speech segment. We identified mean values,
variance, skewness, and kurtosis for these features, and then
computed the same for velocity and acceleration. This resulted
in a total of 171 audio features for each segment.

3.3. Model

We designed separate models for our textual (lexicosyntac-
tic, psycholinguistic, and discourse-based) and acoustic fea-
tures due to underlying differences in how the data was han-
dled. Since we extracted our acoustic features from local au-
dio segments (maximum duration 10 seconds), we employed a
segment-based model similar to that seen in the existing perfor-
mance benchmark [4]. The model predicted individual MMSE
scores for each discrete segment, and these scores were then
averaged across an entire transcript to produce a transcript-level
MMSE score. We employed a transcript-level model for our
textual features since they were extracted from the transcript as
a whole. We experimented with two high-performing statistical
regression algorithms: Support Vector Regression (SVR) with
a polynomial kernel, regularization parameter C = 100, and
kernel coefficient γ=“auto”; and Gaussian Process Regression
(GP) with a squared exponential kernel, α = 0.1, and optimizer
restarts set to 10. All other parameters for the respective algo-
rithms were kept at their default values.

To empirically validate the utility of our engineered fea-
tures relative to neural alternatives, we also experimented with
a fine-tuned DistilBERT sequence classification model [23] for
the task. We illustrate the architecture for this model in Figure
1. The pre-trained DistilBERT tokenizer processes unseen to-
kens (e.g., discourse tags in our transcripts) as subword units,
allowing it to make use of vocabulary not present in its origi-
nal corpus. Input is thus tokenized and then encoded, and the
resulting hidden representation is subsequently passed to a final
fully-connected network, which applies linear transformations
to the data to ultimately predict a single output neuron repre-
senting the predicted MMSE value for the specific patient.

4. Evaluation
We selected a diverse set of five models for entry to the ADReSS
Challenge:

Figure 1: Model Architecture for DistilBERT.

• ALL: All textual features described in Section 3.2.
• N-GRAM: All lexicosyntactic features.
• SELECTED-FEATURE: A selection of the 90 highest-

performing features from the training corpus. To ob-
tain this feature subset, we employed a Random Forest
regression model with 100 trees and selected features
based on their mean decrease impurity (MDI), where im-
purity was measured as variance. We retained only fea-
tures having MDI values exceeding a predefined thresh-
old (10−3). We show the top ten most important features
measured using this process in Table 4.

• DISTILBERT: The DistilBERT model described in
Section 3.3.

• ACOUSTIC-ALL: All acoustic features.
Although not entered into the ADReSS Challenge, we also

experimented with a selection of the highest-performing acous-
tic features (ACOUSTIC-SELECTED), using the same feature se-
lection technique as applied to SELECTED-FEATURE. We ad-
ditionally ran some experiments using a late fusion neural net-
work model to map acoustic and textual features to the same
hidden space,3 but the model performance was significantly
lower than alternatives in the leave-one-out (LOO) experiment
(RMSE> 10). We report both our LOO cross-validation results
on the training corpus, and our ADReSS Challenge results on
the test data. We report both root mean squared error (RMSE)
and R-squared values for the LOO setting, and RMSE for the
results on the test data.

4.1. Results

We present the results from our LOO cross-validation exper-
iment in Table 2, and our ADReSS Challenge results on the
test set in Table 3. Our LOO experiment included both SVR
and GP versions of each model; since SVR outperformed GP
in more cases and we were limited to a batch of five results
submissions, we submitted only SVR models (along with our
DistilBERT alternative) to the ADReSS Challenge. Our best-
performing model in the LOO experiment was ALL using an
SVR classifier, achieving an RMSE of 4.97. Interestingly, ALL
and ACOUSTIC-ALL exceeded the performance of SELECTED-
FEATURE and ACOUSTIC-SELECTED, respectively, in the LOO
experiments. Although ACOUSTIC-SELECTED was not en-
tered in the ADReSS Challenge, this advantage did not per-
sist for ALL vs. SELECTED-FEATURE on the test data. The
R-squared values in Table 2 provide insight into the variance
from the regression line; R2 = 0.52 is considered moder-
ate [25]. Our highest-performing model on the test set (Table

3Specifically, we encoded words using 300-dimensional English
GloVe embeddings [24] and passed them to a bidirectional LSTM (Bi-
LSTM) layer. We fed the acoustic features for each segment to a sep-
arate LSTM layer, and then we concatenated the resulting hidden rep-
resentations of the Bi-LSTM and LSTM layers. We merged this con-
catenated vector with the vector of discourse-based features, and fed the
merged vector into a feedforward layer with an output linear activation.
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Table 2: LOO results, formatted as RMSE (R2).

Features SVR GP

ALL 4.97 (0.52) 6.43 (-0.001)

N-GRAM 5.00 (0.514) 5.60 (0.225)

SELECTED-FEATURE 5.49 (0.415) 5.31 (0.451)

ACOUSTIC-ALL 6.59 ( -0.093) 6.71 (-0.135)

ACOUSTIC-SELECTED 7.67 ( -0.481) 7.31 (-0.271)

Table 3: Test set results.

Features RMSE

ALL 4.87

NGRAM 4.61

SELECTED-FEATURE 4.34

DISTILBERT 4.63

ACOUSTIC-ALL 6.42

3) employed the SELECTED-FEATURE subset with SVR. This
model (RMSE=4.34) outperformed the best-performing base-
line model on the test set (RMSE=5.20 [4]) by 16.5%.

4.2. Analysis

We analyzed trends in RMSE scores across binned MMSE
score groups to identify weaknesses in our best model and areas
for potential improvement, and present our findings in Figure 2.
We found that in general our model’s predictive power was best
for high MMSE scores, which is likely an artifact of the training
set distribution—although samples in the ADReSS Challenge
dataset are balanced across age and gender, they are not evenly
distributed across the MMSE score continuum.

We also sorted the features in SELECTED-FEATURE in de-
scending order based on their MDI importance score to ana-
lyze the strongest identified patterns, and present the top ten
features in Table 4. Interestingly, we found many non-content
function words and discourse connectives in this list, along with
some discourse-based count features. In general, individuals
with higher MMSE scores created longer descriptions of the
picture and used more content words and complex phrases (e.g.
fall, cookie jar and), whereas those with lower MMSE scores
used shorter descriptions and more pauses and filler words. This
provides evidence that verbal disfluency markers are important
indicators of cognitive status, and also supports our hypothesis
that a wide range of features can be productively leveraged in
tandem for this task.

5. Discussion and Conclusion
Overall, we found text-based features to be more informative
than acoustic features for the MMSE score prediction task. We
speculate that this may be an important distinction between this
and the dementia classification task, for which acoustic features
have achieved considerable success [11, 15]. Our source code

Figure 2: Binned MMSE scores and frequency counts, with
corresponding average RMSE per bin. Frequency counts (left
y-axis and associated histogram bars) and RMSE (right y-
axis and associated line graph) are for test instances, whereas
percentages above histogram bars indicate the corresponding
training set frequency for the same MMSE bins.

Table 4: Top 10 features based on MDI importance.

Features Importance

this 0.284
here 0.050
word count 0.044
fall 0.037
well 0.034
laughs (non-verbal) 0.034
short pause count 0.021
in the 0.015
cookie jar and 0.014
it uh 0.013

is publicly available.4 Further investigation into more informa-
tive features (e.g., acoustic disfluency markers) from the nor-
malized speech signal could potentially transfer insights from
our text-based features to high-performing acoustic analogues.
Likewise, we are interested in leveraging the segment-based
model with the text transcripts (casting utterances as segments).
Finally, while automated MMSE score prediction may make
testing more accessible, reliable, and resource-effective, future
work could additionally explore more precise measures such
as the Montreal Cognitive Assessment (MoCA) or the Repeat-
able Battery for the Assessment of Neuropsychological Sta-
tus (RBANS) [26, 27], which have higher sensitivity than the
MMSE to subtle changes in cognitive decline.
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E. Biró, F. Zsura, M. Pákáski, and J. Kálmán, “Automatic detec-
tion of mild cognitive impairment from spontaneous speech using
asr,” in Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[9] K. Fraser, F. Rudzicz, N. Graham, and E. Rochon, “Automatic
speech recognition in the diagnosis of primary progressive
aphasia,” in Proc. of the 4th Workshop on Speech and Language
Processing for Assistive Technologies. Grenoble, France:
Assoc. for Computational Linguistics, 2013, pp. 47–54. [Online].
Available: https://www.aclweb.org/anthology/W13-3909

[10] S. O. Orimaye, J. S.-M. Wong, and K. J. Golden, “Learning
predictive linguistic features for Alzheimer’s disease and
related dementias using verbal utterances,” in Proceedings
of the Workshop on Computational Linguistics and Clinical
Psychology: From Linguistic Signal to Clinical Reality.
Baltimore, Maryland, USA: Association for Computational
Linguistics, Jun. 2014, pp. 78–87. [Online]. Available: https:
//www.aclweb.org/anthology/W14-3210

[11] K. C. Fraser, J. A. Meltzer, and F. Rudzicz, “Linguistic fea-
tures identify alzheimer’s disease in narrative speech,” Journal of
Alzheimer’s Disease, vol. 49, no. 2, pp. 407–422, 2016.

[12] D. Weissenbacher, T. A. Johnson, L. Wojtulewicz, A. Dueck,
D. Locke, R. Caselli, and G. Gonzalez, “Automatic prediction
of linguistic decline in writings of subjects with degenerative
dementia,” in Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. San Diego,
California: Association for Computational Linguistics, Jun. 2016,
pp. 1198–1207. [Online]. Available: https://www.aclweb.org/
anthology/N16-1143

[13] F. Di Palo and N. Parde, “Enriching neural models with targeted
features for dementia detection,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics:
Student Research Workshop. Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 302–308. [Online].
Available: https://www.aclweb.org/anthology/P19-2042

[14] M. Yancheva, K. Fraser, and F. Rudzicz, “Using linguistic
features longitudinally to predict clinical scores for Alzheimer’s
disease and related dementias,” in Proceedings of SLPAT
2015: 6th Workshop on Speech and Language Processing for
Assistive Technologies. Dresden, Germany: Association for
Computational Linguistics, Sep. 2015, pp. 134–139. [Online].
Available: https://www.aclweb.org/anthology/W15-5123

[15] J. Weiner, M. Angrick, S. Umesh, and T. Schultz, “Investigating
the effect of audio duration on dementia detection using acoustic
features,” Proceedings of Interspeech 2018, pp. 2324–2328, 2018.

[16] S. Karlekar, T. Niu, and M. Bansal, “Detecting linguistic
characteristics of Alzheimer’s dementia by interpreting neu-
ral models,” in Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short
Papers). New Orleans, Louisiana: Association for Computa-
tional Linguistics, Jun. 2018, pp. 701–707. [Online]. Available:
https://www.aclweb.org/anthology/N18-2110

[17] B. MacWhinney, The CHILDES Project: Tools for analyzing talk.
transcription format and programs. Psychology Press, 2000,
vol. 1.

[18] J. T. Becker, F. Boiler, O. L. Lopez, J. Saxton, and K. L.
McGonigle, “The Natural History of Alzheimer’s Disease:
Description of Study Cohort and Accuracy of Diagnosis,”
Archives of Neurology, vol. 51, no. 6, pp. 585–594, 06
1994. [Online]. Available: https://doi.org/10.1001/archneur.1994.
00540180063015

[19] C. Roth, Boston Diagnostic Aphasia Examination. New York,
NY: Springer New York, 2011, pp. 428–430. [Online]. Available:
https://doi.org/10.1007/978-0-387-79948-3 868

[20] T. Salsbury, S. A. Crossley, and D. S. McNamara, “Psycholin-
guistic word information in second language oral discourse,”
Second Language Research, vol. 27, no. 3, pp. 343–360, 2011.
[Online]. Available: https://doi.org/10.1177/0267658310395851

[21] M. Coltheart, “The mrc psycholinguistic database,” The Quarterly
Journal of Experimental Psychology Section A, vol. 33, no. 4, pp.
497–505, 1981.

[22] S. Al-Hameed, M. Benaissa, and H. Christensen, “Detecting
and predicting alzheimer’s disease severity in longitudinal
acoustic data,” in Proceedings of the International Conference
on Bioinformatics Research and Applications 2017, ser. ICBRA
2017. New York, NY, USA: Association for Computing
Machinery, 2017, p. 57–61. [Online]. Available: https:
//doi.org/10.1145/3175587.3175589

[23] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a dis-
tilled version of bert: smaller, faster, cheaper and lighter,” arXiv
preprint arXiv:1910.01108, 2019.

[24] J. Pennington, R. Socher, and C. Manning, “Glove: Global
vectors for word representation,” in Proceedings of the 2014
Conference on Empirical Methods in Natural Language Process-
ing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1532–1543. [Online]. Available:
https://www.aclweb.org/anthology/D14-1162

[25] H. Jörg, R. C. M., and S. R. R., The use of partial
least squares path modeling in international marketing, ser.
Advances in International Marketing. Emerald Group Publishing
Limited, Jan 2009, vol. 20, pp. 277–319. [Online]. Available:
https://doi.org/10.1108/S1474-7979(2009)0000020014

[26] Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau,
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Abstract
Alzheimer’s disease is estimated to affect around 50 million
people worldwide and is rising rapidly, with a global economic
burden of nearly a trillion dollars. This calls for scalable,
cost-effective, and robust methods for detection of Alzheimer’s
dementia (AD). We present a novel architecture that leverages
acoustic, cognitive, and linguistic features to form a multimodal
ensemble system. It uses specialized artificial neural networks
with temporal characteristics to detect AD and its severity,
which is reflected through Mini-Mental State Exam (MMSE)
scores. We first evaluate it on the ADReSS challenge dataset,
which is a subject-independent and balanced dataset matched
for age and gender to mitigate biases, and is available through
DementiaBank. Our system achieves state-of-the-art test
accuracy, precision, recall, and F1-score of 83.3% each for AD
classification, and state-of-the-art test root mean squared error
(RMSE) of 4.60 for MMSE score regression. To the best of
our knowledge, the system further achieves state-of-the-art AD
classification accuracy of 88.0% when evaluated on the full
benchmark DementiaBank Pitt database. Our work highlights
the applicability and transferability of spontaneous speech to
produce a robust inductive transfer learning model, and demon-
strates generalizability through a task-agnostic feature-space.
The source code is available at https://github.com/
wazeerzulfikar/alzheimers-dementia

Index Terms: Alzheimer’s Dementia Detection, Affective
Computing, Human-Computer Interaction, Computational Par-
alinguistics, Machine Learning, Speech Processing

1. Introduction
Alzheimer’s disease is a progressive disorder that causes brain
cells to degenerate and is the most common cause of dementia
worldwide. It mainly causes cognitive and behavioural deteri-
oration of the patients [1] which is reflected through memory
loss, language impairment [2], and a decreased ability to ex-
press their needs. This in turn affects their quality of life, prog-
nosis, and social relationships. Consequently, it has been im-
posing increased health risks [3] and a significant financial bur-
den to patients, caregivers, families, and healthcare institutions
[4]. The number of people with dementia worldwide in 2015
was estimated at 47.47 million, and reaching 135.46 million in
2050 [5]. At the time of writing this paper, someone in the U.S.
develops Alzheimer’s disease every 66 seconds, and by 2050
it is projected to be 33 seconds [6]. According to the World
Health Organization, the global economic burden is nearly a
trillion dollars which amounts to 1.1% of the global GDP. [7],
with 63% of people with dementia living in low- and middle-
income countries [8]. In this work, we aim to take a significant

*Equal Contribution

step towards more reliable, cost-effective, scalable, and nonin-
vasive technologies to detect the onset of Alzheimer’s dementia
(AD) and predict the Mini-Mental State Exam [9] scores to es-
timate the severity of it.

Dementia can be strongly characterized by cognitive degen-
eration leading to language impairment which primarily occurs
due to decline in semantic and pragmatic levels of language pro-
cessing [10]. It has been widely reported that AD can be more
sensitively detected with the help of a linguistic analysis than
with other cognitive examinations [11] and also long before the
diagnosis is medically confirmed [12]. The temporal character-
istics of spontaneous speech, such as speech tempo, number of
pauses in speech, and their length are sensitive detectors of the
early stage of the disease [13, 14, 15, 16, 17]. Given the relative
ease of collecting balanced and representative data of sponta-
neous speech and their corresponding transcriptions, they can
be utilized in early and robust predictions for the onset of AD.

Consequently, our research work:

1. Presents a novel architecture comprising of domain-
specific feature engineering and artificial neural net-
works for Alzheimer’s Dementia (AD) detection and its
severity through classification and MMSE score regres-
sion (Section 3).

2. Evaluates the system in a subject-independent setting
with a carefully curated balanced and stratified dataset
matched for age and gender, to help minimize common
biases in the tasks (Section 3.1).

3. Achieves state-of-the-art test accuracy, precision, re-
call, and F1-score for AD classification, and state-of-
the-art test RMSE for MMSE score predictions on the
ADReSS (Alzheimer’s Dementia Recognition through
Spontaneous Speech) dataset. To the best of our knowl-
edge, the system further achieves state-of-the-art AD
classification accuracy when evaluated on the full bench-
mark DementiaBank Pitt database (Sections 4 and 5).

4. Spans a multimodal feature space to increase generaliz-
ability and robustness, and uses ensemble mechanisms to
leverage individual feature sets and model performances.

5. Reflects upon the transferability and interdependence of
the two tasks of AD classification and MMSE regression.

2. Related work
Many current AD detection studies use medical imaging [18,
19, 20] with deep neural networks and random forests. Sev-
eral studies claim that AD can be sensitively detected in early
stages by doing linguistic analysis which leverages speech and
language features to train machine learning models for the de-
tection of AD [13, 14, 15, 16, 17, 21].

In study [22], machine learning methods based on image
description were used reaching an accuracy of 75% on a limited

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-31372212



number of subjects enrolled in a longitudinal study. Study [23]
used logistic regression trained with spectrogram features ex-
tracted from audio files reaching accuracy of 83.3% and 84.4%
on VBSD and Dem@Care datasets respectively. Data used in
each of the above works are limited to around 32 to 36 subjects
and highly imbalanced between the classes and across age and
gender. In study [14], different traditional classification algo-
rithms like logistic regression, SVM, and more were used to
learn speech parameters from dialogues in Carolina Conver-
sations Collection. The best of their solutions reached 86.5%
leave-one-out cross-validation (LOOCV) accuracy with 38 sub-
jects. Works based on data extracted from DementiaBank have
reported scores of around 0.87, 0.85, 0.82, 0.80, 0.79, 0.64, and
0.62 [24, 25, 13, 26, 27, 28, 29] for AD classification. Study
[30] used speech related features to get a mean absolute error
(MAE) of 3.83 for MMSE scores with longitudinal data de-
rived from DementiaBank. While a number of works have pro-
posed speech and language based approaches to AD recognition
through speech, their studies have used different, often unbal-
anced and acoustically varied data sets, thereby introducing bias
and hindering generalization, reproducibility and comparability
of the proposed approaches.

3. Methods and materials
3.1. Dataset

The DementiaBank Pitt database [31] consists of speech record-
ings and transcripts of spoken picture descriptions elicited from
participants through the Cookie Theft picture from the Boston
Diagnostic Aphasia Exam [32]. The database consists of multi-
ple samples per subject corresponding to multiple visits. The
full database contains 242 speech samples from 99 control
healthy subjects and 255 speech samples from 168 AD sub-
jects. The dataset also provides Mini-Mental Status Exami-
nation (MMSE) scores, ranging from 0 to 30, of the subjects,
which offers a way to quantify cognitive function and screen for
cognitive loss by testing the individuals’ orientation, attention,
calculation, recall, language and motor skills [9]. A 10-fold
cross-validation was used on this database for fair comparison
with previously reported results.

The ADReSS Challenge Dataset [29] is a balanced subset
consisting of 156 speech samples, each from a unique subject,
matched for age and gender and evenly spread across the two
classes, AD and non-AD. A stratified train-test split of around
70-30 (108 and 48 subjects) for this dataset was provided by
the challenge. The test set was held out for all experimentation
until final evaluation. Any cross-validation mentioned in the
paper refers to cross-validation using the train split. Normalized
speech segments are also provided, but we only use full audio
samples. The MMSE scores provided are used as labels for the
regression task.

We first evaluate on the balanced ADReSS dataset and then
extend the evaluation to the full DementiaBank Pitt database.

3.2. Feature engineering

People with dementia show symptoms of cognitive decline, im-
pairment in memory, communication, and thinking [17]. To in-
clude such domain knowledge and context, our system extracts
cognitive and acoustic features using three different strategies,
which are then prepared and fed into their respective neural
models. Similarly extracted features have been repeatedly used
to propose speech recognition based solutions for automated de-
tection of mild cognitive impairment from spontaneous speech

[33, 17]. The following features were extracted upon exploring
the data to find the most descriptive set of correlated features
for detecting AD and its severity:

• Disfluency: A set of 11 distinct and carefully curated fea-
tures from the transcripts, like word rate, intervention rate, and
different kinds of pause rates reflecting upon speech impedi-
ments like slurring and stuttering. These are normalized by the
respective audio lengths and scaled thereafter.

• Acoustic: The ComParE 2013 feature set [34] was ex-
tracted from the audio samples using the open-sourced openS-
MILE v2.1 toolkit, widely used for affect analyses in speech
[35]. This provides a total of 6,373 features that include energy,
MFCC, and voicing related low-level descriptors (LLDs), and
other statistical functionals. This feature set encodes changes in
speech of a person and has been used as an important noninva-
sive marker for AD detection [36, 29]. Our system standardizes
this set of features using z-score normalization, and uses princi-
pal component analysis (PCA) to project the 6,373 features onto
a low-dimensional space of 21 orthogonal features with highest
variance. The number of orthogonal features was selected by
analyzing the percentage of variance explained by each of the
components.

• Interventions: Cognitive features reflect upon potential
loss of train of thoughts and context. Our system extracts the
sequence of speakers from the transcripts, categorizing it as sub-
ject or the interviewer. To accommodate for the variable length
of these sequences, they are padded or truncated to length of 32
steps, found upon analyses and tuning of sequence lengths.

We evaluated each of these features individually and in a
combined fashion to highlight the different configurations and
compare their performances.

3.3. Model architecture and training

Figure 1 - (1), (2), and (3) illustrate the architecture of the disflu-
ency, acoustic, and interventions models respectively. The dis-
fluency model is a multi-layer perceptron (MLP) that projects
the 11-feature input to a higher dimensional space for better
separability of the binary classes. The acoustic model is an
MLP with a single hidden layer that adds non-linearity and reg-
ularizes the PCA decomposed feature space. The interventions
model uses a recurrent architecture to learn the temporal rela-
tions from the sequence of interventions. These models were
trained with corresponding inputs obtained upon feature engi-
neering (Section 3.2), and one-hot encoded binary class labels.

To leverage the features learnt from classification for re-
gression, transfer learning was done on the trained classifica-
tion models. The regression module, as shown in Figure 1 - (4)
replaced the terminal output layer in the models and the remain-
ing original layers were frozen. The resultant models were then
trained with MMSE scores as labels.

A 5-fold cross-validation setting was adopted for evalua-
tion. The models were also evaluated in a leave-one-out cross
validation (LOOCV) setting, which in the case of ADReSS
dataset is equivalent to leave-one-subject-out cross validation
(LOSO) since each datapoint is an independent subject. Each
training run used a batch size of 8; and Adam optimizer with a
learning rate of 0.01 to minimize categorical cross-entropy loss
for classification, and a learning rate of 0.001 to minimize mean
squared error loss for regression. The best models were saved
by monitoring the validation loss in each fold.

To leverage all sets of features and models together, a paral-
lel ensemble was performed using the outputs of the three mod-
els for each of the two tasks independently. We experimented
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Figure 1: Architecture of (1) Disfluency, (2) Acoustic, (3) Inter-
ventions models, and (4) Regression module.

with three kinds of ensemble modules for classification:
• Hard: A majority vote was taken between the predictions

of the three individual models.
• Soft: To leverage the confidence of the predictions, a

weighted sum of the class probabilities was computed for fi-
nal decision. The weight used was 1/N where N is the total
number of models.

• Learnt: Instead of weighing the confidence of all the
models equally as in soft voting above, we used a logistic re-
gression to learn the weights. A logistic regression voter was
trained using class probabilities as inputs.

For regression, the predictions of all the individual models
were averaged by the ensemble module.

4. Results
The results of the experiments were recorded using a combina-
tion of accuracy, precision, recall and F1-score for classifica-
tion, and root mean squared error (RMSE) for regression.

4.1. ADReSS Challenge dataset

Table 1 shows the 5-fold cross-validation results for the classi-
fication task. The individual features achieved competitive per-
formance, although the acoustic model slightly overfits while
the interventions model marginally underfits on the data. The
ensemble model counteracted these and achieved an increased
5-fold mean training as well as validation accuracy with compa-
rable variance. The low variance generally observed across all
runs signifies high model stability across folds which is essen-

Table 1: 5-fold cross validation results of the models. Accuracy
measures the AD classification performance while RMSE mea-
sures the MMSE score regression performance over all 5 folds.
Ensemble in this table refers to hard ensemble for classification
and the regression ensemble for regression.

Model Split Accuracy RMSE
Disfluency Train 0.87 ± 0.08 4.37 ± 0.40

Val 0.89 ± 0.05 4.87 ± 0.78
Acoustic Train 0.89 ± 0.03 4.40 ± 0.64

Val 0.83 ± 0.07 5.63 ± 1.15
Interventions Train 0.82 ± 0.06 5.05 ± 0.56

Val 0.89 ± 0.04 4.70 ± 0.96
Ensemble Train 0.91 ± 0.04 3.65 ± 0.38

Val 0.92 ± 0.06 4.26 ± 0.75

Table 2: 5-fold cross-validation accuracies of different ensem-
ble mechanisms for AD classification.

Ensemble Type Split Accuracy
Hard Train 0.91 ± 0.04

Val 0.92 ± 0.06
Soft Train 0.86 ± 0.04

Val 0.86 ± 0.04
Learnt Train 0.95 ± 0.03

Val 0.81 ± 0.08

tial in small datasets. Similar observations can be seen on the
regression task in Table 1, where the ensemble model reduced
the train and validation mean RMSE as well as the variance.
This is consistent with the intuition behind using transfer learn-
ing using the trained classification models through the addition
of a regression module.

The improvement in performance upon ensembling the
three models as compared to the individual models further re-
flects upon the significance of leveraging acoustic and cognitive
features together from multimodal speech and text inputs.

Table 2 shows the 5-fold cross validation results of different
parallel ensemble techniques, discussed in Section 3.3, for the
classifiation task. The learnt ensemble showed signs of overfit-
ting due to the extra trainable parameters in the model. The soft
and hard ensemble helped counter this. However, the hard en-
semble proved to be the most competitive by improving training
and validation accuracies along with a strong degree of gener-
alization across folds.

Figure 2 shows the receiver operating characteristic (ROC)
curve for the individual models on the classification task. The
ROC is cumulatively calculated over the validation splits of all
5 folds of cross-validation.

We compare our results with the currently available base-
line performance results on this dataset [29]. Amongst our
models, the best performing model, the hard ensemble classifi-
cation model and the ensemble regression model, considerably
improved all the metrics on the LOSO as well as the held-out
test set on AD classification and regression, as can be seen in
Table 3 and Table 4 respectively.

The confusion matrices in Figure 3 provide further insights
into the predictions of the hard ensemble classification model
that has been compared with the baseline in Table 3.
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Figure 2: Receiver Operating Characteristic for Disfluency,
Acoustic, and Interventions models, cumulatively calculated
over validation splits of all the folds of 5-fold cross-validation.

Table 3: Baseline comparison of the AD classification. Our test
results below are corresponding to the hard ensemble model.

Model Accuracy Precision Recall F1-Score
LOSO Luz et al. [29] 0.77 0.77 0.76 0.77

Ensemble (ours) 0.99 0.99 1.00 0.99
TEST Luz et al. [29] 0.75 0.83 0.62 0.71

Ensemble (ours) 0.83 0.83 0.83 0.83

Table 4: Baseline comparison of the MMSE score regression.
Our test results are corresponding to the regression ensemble.

Model RMSE
LOSO Luz et al. [29] 4.38

Ensemble (ours) 0.82
TEST Luz et al. [29] 5.20

Ensemble (ours) 4.60

Figure 3: Confusion matrices for the hard ensemble classifica-
tion model (1) cumulatively calculated over the validation splits
of all the folds of LOOCV and (2) 5-fold cross-validation, and
(3) calculated on the held out test set.

4.2. DementiaBank Pitt database

The same AD classification models were retrained on the De-
mentiaBank Pitt database and a 10-fold cross-validation was
performed for fair comparison with previously reported re-
sults. To the best of our knowledge, our hard ensemble model
achieves state-of-the-art 0.88 ± 0.04 accuracy, also showing
minimal variance across the folds (Table 5).

Table 5: Comparison of the AD classification on DementiaBank
Pitt. All are 10-fold cross-validation results. Our results below
are corresponding to the hard ensemble model.

Model Accuracy Precision Recall F1-Score
Fraser et al. [13] 0.82 - - -
Masrani [25] 0.85 - - 0.85
Kong et al. [24] 0.87 0.86 0.91 0.88
Ensemble (ours) 0.88 0.92 0.82 0.88

5. Discussion and Future Work
There has been substantial work using spontaneous speech sam-
ples and manual transcriptions present in the DementiaBank
dataset [31]. Some of the highest reported scores for AD
classification are 0.87, 0.85, 0.82, 0.80, 0.79, 0.64, and 0.63
[24, 25, 13, 26, 27, 28, 29]. Many of these previous results
were obtained on datasets with variable subject dependencies.
In such datasets, a data point corresponds to a session and there
can exist multiple sessions per subject. Given the subject inde-
pendent setting in ADReSS dataset, our LOSO method clearly
distinguishes the left-out test subject. Hence, the near perfect
LOSO results on classification and regression (Tables 3 and
4) demonstrate that every subject individually can be correctly
evaluated with the engineered features. Furthermore, almost
all previous results are reported using cross-validation, whereas
our work is evaluated on a designated held-out test set as well.
This helps overcome ‘validation overfitting’ which is prone in
small dataset settings.

Study [30] used speech related features to obtain a cross-
validated mean absolute error (MAE) of 3.83 for MMSE scores
with data derived from DementiaBank. Our ensemble re-
gression model recorded a cross-validated MAE of 3.01 on
ADReSS dataset.

Through considerable improvements in both the AD classi-
fication and MMSE score regression by employing an ensem-
ble of independent models extracting acoustic and cognitive
features, our work reveals the potential of multimodal analy-
sis and its applicability to a age and gender balanced subject-
independent dataset. Future work would include incorporat-
ing automated transcription of speech samples in our system.
The continuous range of the MMSE scores can provide more
insights into progression of dementia. This can further be
leveraged for risk stratification and analyzing potential causal
relationships modelling AD with its symptoms and markers,
through a longitudinal dataset.

6. Conclusion
We present a novel architecture that uses domain knowledge
for inductive transfer learning for AD classification and MMSE
score regression. Our work achieves state-of-the-art accuracy,
precision, recall, and F1-score of 83.3% each for AD classifica-
tion, and state-of-the-art RMSE of 4.60 for MMSE predictions
on the designated held-out test set of the ADReSS challenge.
To the best of our knowledge, the system further achieves state-
of-the-art AD classification accuracy of 88.0% when evaluated
on the full benchmark DementiaBank Pitt database. Our system
spans a multimodal feature space to increase generalization and
robustness. We aim to extend our work by adding automated
transcription, further textual analysis, and personalized context
through longitudinal data.
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Abstract
Collecting and accessing a large amount of medical data

is very time-consuming and laborious, not only because it is
difficult to find specific patients but also because it is required
to resolve the confidentiality of a patient’s medical records. On
the other hand, there are deep learning models, trained on easily
collectible, large scale datasets such as Youtube or Wikipedia,
offering useful representations. It could therefore be very ad-
vantageous to utilize the features from these pre-trained net-
works for handling a small amount of data at hand. In this
work, we exploit various multi-modal features extracted from
pre-trained networks to recognize Alzheimer’s Dementia using
a neural network, with a small dataset provided by the ADReSS
Challenge at INTERSPEECH 2020. The challenge regards to
discern patients suspicious of Alzheimer’s Dementia by provid-
ing acoustic and textual data. With the multi-modal features, we
modify a Convolutional Recurrent Neural Network based struc-
ture to perform classification and regression tasks simultane-
ously and is capable of computing conversations with variable
lengths. Our test results surpass baseline’s accuracy by 18.75%,
and our validation result for the regression task shows the pos-
sibility of classifying 4 classes of cognitive impairment with an
accuracy of 78.70%.
Index Terms: Multimodal Systems, Cognitve Decline Detec-
tion, Pre-trained Model

1. Introduction
Collecting a sufficient amount of electronic health records is a
challenging task with various factors [1, 2]. Due to this prob-
lem, researchers in the medical field are often provided with
only a small amount of data given. Owing to the fact that deep
learning techniques perform better on large amounts of data, a
number of studies using machine learning techniques have been
conducted to solve specific medical problems, regarding a lim-
ited number of data [3, 4]. Dementia is also one of many medi-
cal symptoms facing this situation.

Dementia, a syndrome in which there is deterioration in
cognitive function beyond what might be expected from normal
ageing, is mostly affected by Alzheimer’s Disease [5]. There
were previous researches with various approaches to recognize
Alzheimer’s Dementia [6, 7, 8, 9], which has shown excellent
performance. However, datasets used in these works were suf-
ficient with quantity than the one used in this paper.

The ADReSS challenge [10] at INTERSPEECH 2020 hosts
two tasks: Alzheimer’s Dementia (AD) classification and Mini
Mental Status Examination (MMSE) regression, while provid-
ing a refined dataset. The dataset is equally balanced of AD and
non-AD participants with the metadata of age and gender. Each

data is a conversation in which participants, in both audio and
text modalities, spontaneously describes the picture given by
the investigator. Participants of the challenge are suggested to
solve hosted tasks using only the given data, where the numbers
of train and test data are 108 and 48, respectively.

For recognizing AD with small amounts of data, we deter-
mined it would be beneficial to use both acoustic and textual
features. Furthermore, we leverage models pre-trained on large
scale datasets as feature extractor to get better representation.
To this end, this paper focus on exploiting various multi-modal
features, and design suitable network architecture. We com-
pare 3 and 4 different acoustic and textual features, respectively,
and use the hand-crafted (HC) feature and part-of-speech (POS)
tagging as additional inputs. The usage of POS and HC is influ-
enced by previous research, which has approved that using these
features gained from transcript can improve the performance
[8]. The proposed network is a modified version of Convolu-
tional Recurrent Neural Network (CRNN); capable of comput-
ing conversations with variable lengths, and implemented with
methods to fit with a small amount of data. Also, the model
is able to compute using the acoustic feature only, without any
metadata, which can be efficient considering the real-world sit-
uation. Our experimental results show using features of the
pre-trained network leads to performance gain than that of raw,
and regression results imply the potential of network classifying
classes of cognitive impairment based on MMSE score.

2. Multi-Modal Features
This work compares 3 different acoustic and 4 different textual
features. To obtain a speech signal corresponding to each utter-
ance in the transcription, alignment of the transcription and the
signal is done by using [11, 12]. Hence, the following multi-
modal feature extraction in this section is applied to the aligned
data.

2.1. Acoustic Features

• openSMILE features: The openSMILE v2.3 toolkit [13]
provides multiple features from raw audio files. From
the toolkit, we use the ComParE feature [14] and the
eGeMAPS feature [15]. For ComParE feature, using
one-way ANOVA, we select 393 features (p≤0.05), out
of 6,373 concerning the efficiency of model capacity.

• VGGish: We use VGGish [16] which is trained with Au-
dio Set [17] for audio classification. The feature is com-
posed of 128 feature dimensions, where each feature is
extracted from audio with a length of 960ms. To handle
different lengths of utterance, we use the average value
of the extracted VGGish features.
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Figure 1: Overview of the proposed method. The acoustic and
textual features extracted from each utterance are fed in to the
CRNN network. Then, the hand-crafted features retrieved from
the participant’s entire conversation are concatenated to the
utterance-level features. Finally, the FC layer of each task esti-
mates the AD probability and MMSE score of the participant.

2.2. Textual Features

• Pre-trained language model features: We exploit
transformer [18] based language models, GPT [19],
RoBERTa [20], and Transformer-XL [21]. Pre-trained
on large corpora, these language models have shown the
effectiveness to improve performance over a wide range
of natural language processing tasks. Sentence represen-
tations are obtained by averaging word embeddings via
[22]. The specific settings for the language models are
as follows, GPT: openai-gpt, RoBERTa: roberta-base,
Transformer-XL: transfo-xl-wt103. The feature dimen-
sions of GPT and RoBERTa is 768, and Transformer-XL
dimensions of 1024. Besides the aforementioned fea-
tures, we also use 300-dimensional GloVe vectors [23].

• Hand-crafted features: We integrate three categories,
psycholinguistic, repetitiveness, and lexical complexity
features, as HC features, which reflect the features of
Alzheimer’s. Psycholinguistic features and repetitive-
ness1 are that suggested by [6], and lexical complexity is
the Lexical Complexity Analyzer for Academic Writing
(LCA-AW)2. These token-level HC features are aggre-
gated to the conversational-level by only averaging par-
ticipant’s utterance. We select and use 23 features whose
p-value from one-way ANOVA is less than 0.05 amongst
a total of 42 features.

3. Proposed Method
While the proposed model can cope with additional inputs such
as visual modality, the ADReSS challenge only offers acoustic

1https://github.com/vmasrani/dementia classifier
2https://github.com/Maryam-Nasseri/LCA-AW-Lexical-

Complexity-Analyzer-for-Academic-Writing

and textual modalities. Thus, we primarily focus on the network
with bimodal inputs. The overview of our model is as Figure 1.
In case of unimodal, the network has the same structure, except
that only a single modality feature is input.

3.1. Input

An input dialogue consists of its utterances and an extracted HC
feature. Each utterance comes along with an acoustic and a tex-
tual feature, and a speaker index. The speaker index is a binary
feature denoting an investigator or a participant, where it is ex-
tended as the size of the largest size of input feature dimension,
1024 in our case, by a single fully connected layer. Input fea-
tures smaller than 1024 are also expanded the same way by a
fully connected layer.

We apply dropout [24] to the input features before they are
inserted into the network. This way, the model can be provided
with more opportunity to learn independent representations, be-
cause each dimension can convey significant information, espe-
cially for the features extracted from pre-trained models.

3.2. Model Architecture

The proposed network is a modified version of CRNN, where an
attention layer is a forefront layer of the network, and fully con-
nected layers followed after the recurrent layer. Here, we use
a bidirectional Long Short-Term Memory Network (bi-LSTM)
[25] as the recurrent network.

Each modality input is individually inserted and computed
through an attention layer. Our attention layer is implemented
as the Scaled Dot-Product Attention mechanism introduced in
[18]. We use a self-attention mechanism, where an individual
feature is used as a query, key, and value during the attentional
computation.

Outputs of the attention layer and embedded speaker in-
dex of a single utterance are channel-wise concatenated then in-
serted into the one-dimensional Convolutional Neural Network
(CNN). After a convolutional layer expands channel dimension
to 32, 6 Squeeze-and-Excitation (SE) [26] blocks are followed
in the CNN. Each SE block consists of 2 convolution layers
with a SE layer in between them. The last convolutional layer
of every 2 SE blocks reduces feature dimension by convolu-
tional stride factor of 4 and increments channel dimension. The
expanding sizes of the channel dimension are 128, 512, 1024
respectively. Ultimately, CNN outputs 1024-dimensional chan-
nels with a global max pooled value.

After every utterance from the input dialogue is each com-
puted through the CNN, the processed utterance embeddings
are sequentially inputted into the bi-LSTM. The recurrent net-
work consists of 3 bi-LSTM layers with 512 hidden units. Ulti-
mately, the recurrent network outputs the max-pooled state from
the results of the last layer’s hidden states and is concatenated
with HC.

Three fully connected (FC) layers follow after the bi-LSTM
layers. Both the first two FC layers are followed by a rectified
linear unit (ReLU) activation and reduce the input dimension by
a factor of 4. The last activation function for classification and
regression tasks are softmax and sigmoid, respectively. Ground
truth MMSE score is scaled from 0 to 1 for regression loss com-
putation.

3.3. Training and Inference

We use different numbers of utterances per batch during the
training phase for the network to have opportunities to interpret
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Table 1: Validation Results of Acoustic Unimodal Network

Feature Accuracy F1 RMSE
eGeMAPS 61.82% 71.98% 6.7178
ComParE 68.27% 74.62% 6.7852
VGGish 85.27% 86.28% 5.1144

various sequences of dialogue. The size is randomly selected
between 5 and the minimum number of utterances among the
dialogues in each batch. Since the minimum number of utter-
ances of dialogue in the training data is 7, it was reasonable
to set the minimum length to 5. If the length is too short, the
network could be vulnerable to utterances with less meaningful
data such as the investigator’s “okay” or “mhm”. A single batch
is used during the inference phase to analyze every utterance in
an input dialogue.

Our training loss for classification and regression tasks are
binary cross-entropy error and mean squared error, respectively.
The total cost function is a summation of these two values. We
use the Adam optimizer [27] with a learning rate of 0.0002 and
momentum parameters β1 = 0.5, β2 = 0.9.

4. Experiments
In this section, we evaluate model performances for both classi-
fication and regression tasks. Recorded performances are aver-
aged value from measurements of 5-fold cross validation, where
each fold contains 86 training and 22 validation conversations,
except for the last fold containing 88 training and 20 validation
conversations.

Prior experiments were conducted for optimizing several
hyperparameters in the proposed network. First, we compared
model performance with a one-dimensional convolutional ker-
nel size of 3, 5, 10, 15. Through observations, larger kernel
sizes led to performance gain; thus, we set the kernel size to 15.
Attempts to ascertain the ideal dropout rate among 0 to 50% at
10% intervals could not be determined. Yet, we adopted a 20%
dropout rate for data augmentation and prevention of overfit-
ting. Finally, we discovered using 6 instead of 3 stacked convo-
lutional blocks achieved better performance. Experimental re-
sults of each model shown in this section share above achieved
hyperparameter values.

4.1. Feature Comparison

4.1.1. Unimodal Network

Table 1 is validation results of unimodal networks using acous-
tic features. The accuracy using VGGish exceeds openSMILE’s
by over 17%, which conveys a significant difference in these
audio features on performance. Hence, this result establishes a
strong point that using an acoustic feature extracted from a pre-
trained network outperforms features extracted from scratch.

Textual feature comparing experiment is further conducted
by including combinations of using POS and HC features as
input. Upon using POS, it is concatenated to the input textual
feature to fed into the network. The best performing features for
classification and regression are Transformer-XL and GloVe,
respectively, according to Table 2.

4.1.2. Bimodal Network

We choose VGGish as a fixed auditory input feature for the bi-
modal network, considering its leading validation performance
among other audio features. The use of POS and HC features is

Table 2: Validation Results of Textual Unimodal Network

Feature Accuracy F1 RMSE

GloVe

+ None 90.73% 0.9158 3.9282
+ POS 90.73% 0.9122 3.8959
+ HC 92.55% 0.9303 3.3493

+ POS + HC 93.55% 0.9389 3.3650

GPT

+ None 91.55% 0.9224 3.7825
+ POS 92.55% 0.9303 4.0275
+ HC 91.55% 0.9246 3.6695

+ POS + HC 89.82% 0.9076 3.7684

RoBERTa

+ None 92.45% 0.9312 3.7622
+ POS 91.64% 0.9231 3.8437
+ HC 93.45% 0.9391 3.3852

+ POS + HC 93.45% 0.9391 3.3773

Transformer
-XL

+ None 92.55% 0.9296 4.0078
+ POS 93.45% 0.9382 4.0588
+ HC 94.36% 0.9469 3.4866

+ POS + HC 92.55% 0.9325 3.6602

Table 3: Validation Results of Bimodal Network

Feature Accuracy F1 RMSE

GloVe

+ None 92.55% 0.9288 4.0743
+ POS 93.55% 0.9398 3.7091
+ HC 90.73% 0.9122 3.9138

+ POS + HC 93.55% 0.9382 3.4989

GPT

+ None 93.45% 0.9398 3.5503
+ POS 93.45% 0.9398 3.9910
+ HC 91.64% 0.9231 3.6334

+ POS + HC 92.55% 0.9318 3.5182

RoBERTa

+ None 91.64% 0.9231 3.7842
+ POS 92.55% 0.9318 3.6860
+ HC 93.45% 0.9375 3.4977

+ POS + HC 92.55% 0.9311 3.5182

Transformer
-XL

+ None 91.64% 0.9201 4.0703
+ POS 92.55% 0.9288 4.0546
+ HC 90.73% 0.9114 3.7820

+ POS + HC 94.45% 0.9454 3.6099

performed in the bimodal network as well. Acknowledging the
results of unimodal networks, Transformer-XL feature is also
well performed in the classification tasks, where RoBERTa fea-
ture scores the best root mean squared error (RMSE).

From the observation of this experimental result, it was
reasonable to ascertain the best text feature. Notably, using
Transformer-XL produced the highest performance in the clas-
sification task. Moreover, while comparing the average RMSE
scores by feature, RoBERTa outputs the lowest score for both
unimodal and bimodal networks. On the other hand, when an-
alyzing performance between additional inputs, only little ten-
dency could be observed. This can be an implication that the
quantity of given data may not be sufficient for the additional
inputs to exert influence.

4.2. Analysis of Regression Task

Figure 2 illustrates a graph comparing regression outputs from a
bimodal network and the actual patient’s corresponding MMSE
score during validation stage. The severity classes, each shaded
area in the figure, were categorized based on the MMSE score
presented in [28].

In this example, VGGish and RoBERTa were used as in-
put features, and the RMSE and r2 value between network out-
puts and ground truths are 3.5182 and 0.7361, respectively. The
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Table 4: Results of Test Set

Model Modality Feature Classes Precision Recall F1 Accuracy RMSE

Baseline

Unimodal
Network

ComParE non-AD 0.67 0.50 0.57 0.625 6.14AD 0.60 0.75 0.67

Ours

VGGish non-AD 0.6897 0.8333 0.7547 0.7292 5.0765AD 0.7895 0.6250 0.6977

Transformer-XL non-AD 0.8261 0.7917 0.8085 0.8125 4.0182AD 0.8000 0.8333 0.8163

Bimodal
Network

VGGish +
GLoVE

non-AD 0.7407 0.8333 0.7843 0.7708 4.3301AD 0.8095 0.7083 0.7556
VGGish +

Transformer-XL
non-AD 0.7500 0.7500 0.7500 0.7500 3.7472AD 0.7500 0.7500 0.7500

Ensembled Output non-AD 0.7586 0.9167 0.8302 0.8125 3.7749AD 0.8947 0.7083 0.7907

Figure 2: MMSE comparison graph between regression outputs
and ground truth scores - The linear line is a representation of
the ideal output with zero error for the task. Each rectangular
regions represent dementia severity based on the MMSE score
and is shaded respectively as classes of normal, mild, moderate,
and severe ranging from high to low values.

output plot shows that the distribution of the network output
decreases as the MMSE score decreases, which is inferred to
follow the distribution of the given training data. Even though
there was no network output below a score of 11, 78.70% of the
points are included in the shaded area. This indicates that clas-
sifying severity classes of dementia is possible to some extent,
based on regression outputs.

4.3. Test Set Results

The test dataset of the ADReSS challenge consists of 48 con-
versations and can be scored with a total of 5 different submis-
sions. Taking this into account, we use two different models for
unimodal and bimodal networks each and an ensembled output
of bimodal networks to infer the test data. In the case of the
unimodal network, VGGish and Transformer-XL are adopted
to represent acoustic and textual modality, respectively. For the
bimodal network, GloVe and Transformer-XL are adopted as
textual modality regarding on their performance from the val-
idation results. Besides, we select models using POS and HC
features along with the bimodality inputs. Lastly, the outputs
of the top 5 bimodal networks with high validation results are
ensembled and used as the final submission.

The final result for each conversation was deduced by five
different models with the same configurations used during the
training and validation stage. Combining these results, the final
output was concluded using majority voting for AD classifica-
tion and the median value for the MMSE regression task. The

baseline and our test results are presented at Table 4. When
using only audio modality, our test accuracy surpasses base-
line’s by 10%, where accounting textual modality contributes
another 8% performance gain. Although our textual unimodal
model performed the best classification result among the single
models, our bimodal network’s ensembled output indicates that
other bimodal models were able to achieve better performance.
Furthermore, the test RMSE implies using both modalities is
more advantageous for the regression task.

We could infer from the experimental results that the au-
ditory information led to some performance degradation com-
pared to the textual. This matter can be attributed to the low
quality of the audio files provided. In particular, the partici-
pant’s voice was barely hearable, while it was clear for the in-
vestigator’s comments in some audio files. Even so, with the
methodology to infer AD possible with only recorded audio
files, the proposed model can be utilized as a real-world ap-
plication reflecting on the difficulty of acquiring transcriptions
and the target’s metadata. The metadata is not dealt with in this
work; this is because there was little difference when condition-
ing age and gender into our model in our prior empirical results.

5. Conclusion
This paper demonstrates extracted features from pre-trained
networks are satisfactory for handling small amounts of data,
to recognize Alzheimer’s Dementia. The proposed model can
compute variable lengths of dialogue and also introduce produc-
tive methods to fit the network with a little amount of data. Fur-
thermore, our model does not require any metadata and also can
perform well without transcript, which may be practical in real-
world situations. Our test result outperforms baseline’s with
both tasks, and our regression results imply the potential of net-
work classifying classes of cognitive impairment based on the
MMSE score.

For future work, with the expectation of performance gain,
mechanisms effectively fusioning different modality features
[29] [30] can be applied in the model architecture.
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Abstract
Dementia is a neurodegenerative disease that leads to cogni-
tive and (eventually) physical impairments. Individuals who
are affected by dementia experience deterioration in their ca-
pacity to perform day-to-day tasks thereby significantly affect-
ing their quality of life. This paper addresses the Interspeech
2020 Alzheimer’s’ Dementia Recognition through Spontaneous
Speech (ADReSS) challenge where the objective is to propose
methods for two tasks. The first task is to identify speech
recordings from individuals with dementia amongst a set of
recordings which also include those from healthy individuals.
The second task requires participants to estimate the Mini-
Mental State Examination (MMSE) score based on an individ-
ual’s speech alone. To this end, we investigated characteristics
of speech paralinguistics such as prosody, voice quality, and
spectra as well as VGGish based deep acoustic embedding for
automated screening for dementia based on the audio modality.
In addition to this, we also computed deep text embeddings for
transcripts of speech. For the classification task, our method
achieves an accuracy of 85.42% compared to the baseline of
62.50% on the test partition, meanwhile, for the regression task,
our method achieves an RMSE = 4.30 compared to the baseline
of 6.14. These results show the promise of our proposed meth-
ods for the task of automated screening for dementia based on
speech alone.
Index Terms: Social signal processing, Computational paralin-
guistics, Alzheimer’s disease

1. Introduction
Dementia is an umbrella term for diseases which causes signif-
icant and continual cognitive and physical impairments. Indi-
viduals who are affected by dementia experience decline in lan-
guage, thinking ability, and memory along with deterioration in
their ability to perform day-to-day tasks in order to take care of
themselves at a level which is beyond what is expected for age-
ing. According to the World Health Organization (WHO), there
are around 50 million people worldwide who suffer from de-
mentia and this number is increasing, with 10 million new cases
every year [1]. Although there are various causes of dementia,
Alzheimer’s disease is the most prominent one, accounting for
60− 70% of total cases [1]. Alzheimer’s disease is also known
to adversely affect the mental health of care givers [2] such that
they may require psychiatric interventions themselves.

It is known that cognitive impairments such as those caused
by dementia affect the speech production system [3]. In [4],
Yu et al. reported the use of vocal biomarkers for prediction
of cognitive decline in the elderly population. They investi-
gated the efficacy of a variety of acoustic features such as pitch
variance, syllable rate, phoneme-based measures, and formant-
based articulatory coordination features for automated cognitive
impairment diagnosis. Ivanov et al. [5] developed phoneme-

conditioned statistical models for cognitive impairment diagno-
sis and found them to be useful for the task at hand. Fraser et
al. [6] consider a large number of features (370 in total) such as
part-of-speech information, grammatical constituents, and vo-
cabulary richness to capture linguistic phenomena which can
identify subjects with dementia amongst a corpus which also in-
cludes healthy subjects. Luz et al. [7] used turn-taking patterns,
speech rate, and other speech parameters which are essentially
“content-free” for Alzheimer’s disease recognition and report
that their method achieves better accuracy than lexical, syntac-
tic and semantic features.

In [8], Mirheidari et al. explored the use of word vector
representations based on word2vec and GloVe embeddings for
dementia recognition based on speech-transcripts and reported
high accuracy. The authors hypothesized that since these em-
beddings can capture the semantics and syntax of words in a
text, they will be useful for detecting diminished articulation
from subjects with dementia. Haider et al. [9] investigate the
efficacy of various types of speech paralinguistic features for
voiced based screening from spontaneous speech. We find that
the ADReSS challenge baseline closely follows the methodol-
ogy proposed in [9].

In this paper, we propose methods for speech based screen-
ing of Alzheimer’s dementia. To this end, we first train ma-
chine learning models which seek to model differences in char-
acteristics of speech paralinguistics between subjects with de-
mentia and those from the control group. Next, we conduct an
exploratory analysis to generate numerical representations for
speech transcripts based on recently developed deep language
models. Our proposed models perform significantly better than
the ADReSS challenge baselines for classification and regres-
sion tasks.

2. Dataset

The dataset for the Interspeech 2020 ADReSS challenge con-
sists of speech recordings elicited for the Cookie Theft pic-
ture description task from the Boston Diagnostic Aphasia
Exam [10]. This data was explicitly balanced by the organiz-
ers in terms of age, gender, and the distribution of labels be-
tween the training and test partitions in order to minimize the
risk of bias in the prediction tasks. The dataset has labels for
machine learning tasks of binary classification and regression.
As the name suggests, labels for the binary classification in-
clude Alzheimer’s dementia and healthy control, whereas the
labels for the regression task are Mini-Mental State Examina-
tion (MMSE) scores [11] which provide a means for dementia
diagnosis based on linguistic tests. For further details regard-
ing the dataset, we refer the reader to the ADReSS challenge
baseline paper [12].
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3. Methodology
As part of our investigation into automated recognition of de-
mentia with spontaneous speech as the input, we follow a two-
pronged approach which includes voice-based screening and
speech transcripts based screening as illustrated in Figure 1.
For voice-based screening, we investigate the efficacy of acous-
tic features which are known to represent paralinguistic char-
acteristics of prosody, voice quality, and spectra. Such cat-
egorization has previously proved to be useful for automated
recognition of depression [13, 14] and bipolar disorder [15].
Meanwhile, our work on speech-transcripts based screening is
largely exploratory such that we investigate the efficacy of deep
language embeddings such as Bidirectional Encoder Represen-
tations from Transformers (BERT) [16] and its derivatives for
generating a numerical representation of speech-transcripts.

3.1. Voice based screening

Here, we hypothesize that subjects with dementia have unique
characteristics to their voice, given that the disease causes cog-
nitive impairments, which can be quantified using acoustic de-
scriptors of speech-paralinguistics. Following the approach of
Horwitz et al. [13] for depression recognition, we propose to
investigate the efficacy of acoustic features which characterize
prosody, voice quality, and voice spectra. Prosody defines pat-
terns of stress and intonation and is likely to be affected due to
cognitive impairments. Voice quality analysis seeks to quan-
tify changes at the vocal source level (glottis). It has been
shown that the perceptual quality of voice changes on a scale
between breathy and tense depending on the available cogni-
tive resources [17]. Finally, acoustic descriptors of voice spec-
tra have the potential to provide vital insights into muscular
changes due to dementia at the vocal-tract level.

To this end, we compute prosody, voice quality, and spectral
features using the openSmile [18] and COVAREP [19] toolkits.
These toolkits have become the standard tools for computation
of acoustic features for tasks related to social signal process-
ing. These are not only open source but also freely available for
academic research. In addition to the mentioned features, we
use the (a) ComParE-2016 feature-set, (b) IS10-Paralinguistics
feature-set, and (c) VGGish acoustic embeddings as part of our
investigation of acoustic descriptors. The Computational Par-
alinguistics Challenge 2013 feature set (ComParE) is a brute-
force feature set which has proved to be useful for a variety
of speech paralinguistic tasks and is regularly used to set a
baseline for Interspeech ComParE challenges [20, 21, 22]. The
most recent version of the ComParE feature set was released as
part of the 2016 edition of the ComParE challenge. The IS10-
Paralinguistics feature set was introduced as part of the 2010
edition of Interspeech ComParE challenge and can be consid-
ered as a low-dimensional alternate to the ComParE feature set
(6373 features vs 1582 features). Recently, we have found this
feature set to be useful for tasks related to the recognition of
bipolar disorder from speech [15] and emotion recognition [23].
Finally, we use VGGish embeddings [24] since they provide an
alternative to domain-knowledge features such as those com-
puted using openSmile and COVAREP toolkits.

The six types of acoustic features are computed as low-
level-descriptors which means that they only represent the
acoustic characteristics of a small chunk of the audio file. There
is a need for these features to be aggregated using an ap-
propriate method in order to generate a global acoustic rep-
resentation for the speech recording. For this purpose, we
use three types of feature aggregation methods: (a) function-

als of descriptive statistics, (b) Bag-of-Audio-Words (BoAW),
and (c) Fisher Vector encoding. These feature aggregation ap-
proaches are relatively well known in the research community
and (mainly due to a requirement of brevity here) we refer the
reader to [25, 26, 27, 28, 29] for details.

3.2. Screening based on Speech-Transcripts

The availability of speech transcripts provides a second modal-
ity which can be used alongside voice for the development of
a multimodal framework for automated screening for demen-
tia. This has been our objective, as illustrated in Figure 1. To
this end, we conduct an exploratory analysis in order to de-
termine the efficacy of pre-trained embeddings from deep lan-
guage models for the task at hand. It must be mentioned here
that these embeddings have already been shown to be useful
for a large variety of tasks in the field of natural language pro-
cessing [30, 31]. More specifically, we compute embeddings
from eight models i.e. BERT base cased, BERT large cased,
BERT large uncased, distilbert cased, distilbert uncased, dis-
tilroberta base, roberta base, and the biomed roberta base us-
ing the Huggingface Transformers library [32]. These embed-
dings are computed for each word of every transcript. In order
to generate a transcript-level representation for transcripts we
use four types of pooling functions which are average pooling
(AvgPool), maximum value pooling (MaxPool), outlier-robust
percentile-based range pooling (RangePool), and the coefficient
of deviation (StdDevNormPool). The resultant feature vector is
passed down to the machine learning pipeline as shown in Fig-
ure 1.

4. Experiments and Results
In this section, we present results for our experiments on speech
based screening for Alzheimer’s dementia. We used two types
of algorithms each in order to predict labels for the classification
and regression tasks. For the classification task, we used sup-
port vector machine classifier with a linear kernel (SVC) and
logistic regression classifier. A grid search was carried out to
optimize the model using leave-one-subject-out (LOSO) cross-
validation whilst using the training partition. The optimization
parameter complexity was tuned for both of these methods be-
tween a logarithmically-spaced range of 10−7 and 103. For the
regression task, we used support vector machines based regres-
sion (SVR) (again with a linear kernel) whose hyperparameters
were tuned using the same method as the classifier. In addi-
tion to SVR, we used a partial least squares regressor (PLSR)
which has been shown to be useful for tasks related to speech
paralinguistics [33]. A grid search was carried out to optimise
the number of components for PLSR between 1 and 20. The
results summarized in this section report the best performing
models.

4.1. Voice based screening

A summary of classification results for voiced based screening
has been provided in Table 1, where one finds that the IS10-
Paraling.-BoAW model achieves the highest classification accu-
racy of the training partition with 76.85%, which is significantly
better than the challenge baseline of 56.50%. This result is
closely followed by the VGGish-BoAW model which achieves
the second-best performance with an accuracy of 75.00%. Fur-
thermore, the best performing models for Prosody, Voice Qual-
ity, and Spectra achieve a classification accuracy of 67.59%,
72.22%, and 71.30% respectively. This suggests that demen-
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Figure 1: Multimodal framework for automated screening of Alzheimer’s’ dementia

tia may cause changes at voice source and vocal tract level,
although a detailed investigation across datasets is required to
support this observation. The best performing model based on
ComParE features achieves an accuracy of 69.44%. It is impor-
tant to note that all of these models achieve a better performance
than the challenge baseline. The most interesting result from
this table is that VGGish features provide better accuracy than
most models trained on domain-knowledge based acoustic fea-
tures such as Prosody features, Voice Quality features, Spectral
features, and the ComParE features.

Table 1 also provides a summary of results for the regres-
sion task. Here one finds that the best performing model i.e.
VGGish-BoAW achieves an RMSE = 5.95 which is better than
the challenge baseline of 7.28. Furthermore, while MAE met-
ric was not provided as part of the ADReSS challenge baseline,
we find that the VGGish-FV BoAW model also achieves the
smallest MAE of 4.49. These results are particularly interest-
ing since they show that deep-learning based acoustic embed-
ding can achieve a better performance than domain-knowledge
based features and compliments our observation from the classi-
fication task. The performance of VGGish-BoAW is closely fol-
lowed by BoAW and FV models based on IS10-Paralinguistic
features. These models achieve an RMSE = 6.02 and RMSE
= 6.04 respectively. The ComParE-FV model also achieved
an RMSE = 6.04. Amongst the models which explicitly fo-
cus on characteristics of speech paralinguistics, we found that
the Voice Quality-BoAW model achieved the smallest RMSE
of 6.22, the Spectra-BoAW model achieved an RMSE = 6.12,
and the Prosody-functionals model achieved an RMSE = 7.17
– all of these models achieve a smaller RMSE than the chal-
lenge baseline. This shows that modelling speech paralinguis-
tics for recognition of dementia speech has promise, although,
if the aim is to minimize the error between MMSE scores then
the VGGish features with BoAW feature aggregation should be
chosen.

4.2. Screening based on speech-transcripts

In Table 2 we provide a summary of classification results for the
top-10 performing models based on text modality. Here, one
can observe a notable improvement in the classification accu-
racy as compared to the challenge baseline accuracy of 62.5%,
although it needs to be reminded that the challenge baseline was
computed using audio modality 1. The best performing model

1A text modality baseline was added in the final version of the base-
line paper with a classification UAR for train/test = 77.00%/75.00%

Table 1: Summary of results for classification and regression
tasks using acoustic features for the training partition with
LOSO cross-validation

Feature Class Feat. Agg. Acc. (%) RMSE MAE

Prosody Functionals 67.59 7.18 6.20
Voice Quality Functionals 63.89 7.08 6.10

BoAW 69.44 6.22 5.17
FVs 72.22 6.52 5.49

Voice Spectra Functionals 60.19 7.74 6.70
BoAW 71.30 6.12 5.24
FVs 71.30 6.12 4.89

IS10-Paraling. Functionals 70.37 6.66 5.74
BoAW 76.85 6.02 5.04
FVs 66.67 6.04 5.21

ComParE Functionals 68.52 7.16 5.69
BoAW 65.74 6.90 6.13
FVs 69.44 6.04 5.21

VGGish BoAW 75.00 5.92 4.69
FVs 62.96 6.75 5.53

Challenge baseline 56.50 7.29 —

i.e. biomed roberta base embedding with RangePool achieves
an accuracy of 89.81%, which is followed by roberta base with
RangePool which achieves an accuracy of 87.96%. Interest-
ingly, we do not observe a difference in performance due to case
and uncased versions of deep language models. For example,
both distilbert uncased and distilbert cased models achieve the
same accuracy, and the cased and uncased versions of the BERT
large models achieve the same accuracy.

Table 3 summarizes the results for the top-10 perform-
ing models for MMSE scores prediction from the text modal-
ity. Here, one finds that the BERT base uncased embedding
with MaxPool provides the best results in terms of the RMSE,
achieving an RMSE = 4.32 which is better than the challenge
baseline for regression of RMSE = 7.28. This is followed by
the same BERT model but with RangePool which achieved an
RMSE = 4.39. One can also note that all of the top-10 mod-
els based on text modality achieve a significantly better perfor-
mance than the challenge baseline. It must be mentioned here
for the sake of clarity that the baseline RMSE was computed us-

and regression RMSE for train/test = 4.38/5.20. As the reader shall
note, our proposed methods still beat the updated challenge baseline.
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ing audio features only (the organizer did not provide an RMSE
computed using text features). Nevertheless, a comparison of
results from Tables 1 and 3 makes it clear that the text modality
is better for the task at hand.

Table 2: Summary of results for top-10 performing models
based on text modality for the classification task

Feature Class Pooling meth. Accuracy (%)

biomed roberta base RangePool 89.81
roberta base RangePool 87.96
distilbert uncased MaxPool 86.11
distilbert cased MaxPool 86.11
BERT base uncased MaxPool 86.11
BERT large uncased AvgPool 86.11
BERT large cased AvgPool 86.11
biomed roberta base MaxPool 85.19
BERT base uncased RangePool 85.19
BERT large cased MaxPool 85.19

4.3. Predictions for the test partition

The ADReSS challenge baseline for the test partition is 62.50%
and each participant has five attempts at predicting the labels
of the test partition. A summary of the baseline and our re-
sults for the classification task is provided in Table 4. For our
first attempt, we use predictions from the biomed roberta base
RangePool model which was the best performing model for the
training partition by achieving an accuracy of 89.81%. On the
test partition, this model achieved an accuracy of 77.08% only
which suggests that the model may have overfitted the training
partition.

The second attempt used label fusion from the top-5 per-
forming models from the text modality for the training partition
(see Table 2). The resultant predictions for the test partition
achieved an accuracy of 85.45%. This is not only our best re-
sult but also a large improvement from the challenge baseline
of 62.50%. Our third attempt used label fusion from the top-
5 performing models from the audio modality for the training
partition (see Table 1). The resultant predictions for the test par-
tition achieved an accuracy of 64.58% which is slightly better
than the challenge baseline, although it does show that the audio
modality offers weaker classification performance than the text
modality. The fourth attempt used label fusion from the top-5
performing models from audio and text modalities (top-5 from

Table 3: Summary of results for top-10 performing models
based on text modality for the regression task

Feature class Pool meth. RMSE MAE

BERT base uncased MaxPool 4.32 3.57
BERT base uncased RangePool 4.39 3.62
distilbert uncased RangePool 4.49 3.62
roberta base AvgPool 4.49 3.48
BERT large cased MaxPool 4.49 3.64
BERT large uncased MaxPool 4.49 3.64
distilbert uncased MaxPool 4.51 3.70
allenai biomed roberta base AvgPool 4.51 3.68
allenai biomed roberta base MaxPool 4.55 3.69
distilbert cased AvgPool 4.57 3.51

Table 4: Summary of results on the test partition for our pro-
posed methods

Accuracy (%) RMSE

Attempt 1 77.08 4.83
Attempt 2 85.42 6.91
Attempt 3 64.58 5.18
Attempt 4 79.17 4.91
Attempt 5 85.42 4.30

Challenge baseline 62.50 6.15

each modality). The resultant predictions for the test partition
achieved an accuracy of 79.17% which is an improvement over
the results from the first and third attempt. For the final attempt,
we used label fusion from the top-10 performing models over-
all (see Tables 1 and 2). Incidentally, all ten models are based
on text modality. The resultant predictions for the test partition
achieved an accuracy of 85.45% which is the same as the accu-
racy achieved by a fusion of top-5 models for text modality.

Similar to the classification task, each participant of the re-
gression task has five attempts at predicting the MMSE scores.
The challenge baseline for the regression task is an RMSE =
6.14. Our first attempt used predictions from the BERT base un-
cased MaxPool model, which was the best model on the train-
ing partition with an RMSE = 4.32. We find that this model
achieved an RMSE = 4.83 on the test partition. The second
attempt used test partition predictions from the VGGish-BoAW
model which achieved an RMSE = 5.92 on the training parti-
tion but ends up achieving an RMSE = 6.91 on the test partition.
This result is poorer than the challenge baseline.

Our third attempt used prediction for the test partition from
the BERT base uncased RangePool model. This model was the
second-to-best performing model for the training partition by
achieving an RMSE = 4.39 and ends up achieving an accuracy
of 5.18 on test partition which is still better than the challenge
baseline. For the fourth attempt, we submitted the average value
of predictions from our first and third attempt, the resultant pre-
dictions achieved an RMSE = 4.91 on the test partition. It is im-
portant to note that this score is slightly larger than the RMSE
achieved from the first attempt. Finally, for our last attempt,
we submitted an average of MMSE score predictions for the
test partition from the top-10 performing models for the train-
ing partition. Interestingly, this setup produced our best RMSE
score for the test partition with 4.30. This score easily beats the
challenge baseline of 6.14.

5. Conclusions
In this paper, we investigated the efficacy of speech based au-
tomated screening of Alzheimer’s dementia, a disease which
significantly deteriorates the quality of life of affected individu-
als. From voiced based analysis we report that voice quality and
voice spectral features perform better than features which char-
acterise speech prosody. However, the best performing model
from voice modality was based on VGGish deep acoustic em-
beddings. Overall, we report that the text modality which is
available in the form of speech-transcripts perform the best by
achieving an accuracy of 89.91% for the training partition. On
training and test partitions, our methods outperformed the chal-
lenge baselines for both classification and regression tasks.
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