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Abstract
Robust strategies for Alzheimer’s disease (AD) detection is im-
portant, given the high prevalence of AD. In this paper, we study
the performance and generalizability of three approaches for
AD detection from speech on the recent ADReSSo challenge
dataset:1) using conventional acoustic features 2) using novel
pre-trained acoustic embeddings 3) combining acoustic features
and embeddings. We find that while feature-based approaches
have a higher precision, classification approaches relying on the
combination of embeddings and features prove to have a higher,
and more balanced performance across multiple metrics of per-
formance. Our best model, using such a combined approach,
outperforms the acoustic baseline in the challenge by 2.8%.
Index Terms: Alzheimers disease, ADReSSo, dementia detec-
tion, computational paralinguistics

1. Introduction
Alzheimer’s disease (AD) is an irreversible, progressive brain
disorder that slowly destroys memory and thinking skills. Re-
search into the early assessment of Alzheimer’s dementia is be-
coming increasingly more important, as the proportion of peo-
ple affected by it grows every year [1]. Changes in cognitive
ability due to neurodegeneration associated with AD lead to a
progressive decline in memory and language quality [2].

Studies have shown that valuable clinical information in-
dicative of cognition can be obtained from spontaneous speech
elicited using pictures [3]. Studies have capitalized on this clin-
ical observation, using speech analysis, natural language pro-
cessing (NLP), and machine learning (ML) to distinguish be-
tween speech from healthy and cognitively impaired partici-
pants in datasets of semi-structured speech tasks such as picture
description [4, 5, 6]. As such, this approach shows a potential
to serve as quick, objective, and non-invasive assessments of an
individual’s cognitive status. The ADReSSo Challenge [7] aims
to generate systematic evidence for these promises towards their
clinical implementation.

ADReSSo (Alzheimer’s Dementia Recognition through
Spontaneous Speech only) Challenge is a shared task for the
systematic comparison of approaches to the detection of cogni-
tive impairment and decline based on spontaneous speech. In
2021, it focuses mainly on acoustic characteristics of speech,
requiring the creation of models straight from speech, without
manual transcription.

In this work, we develop ML models to detect AD from
speech using picture description data with the demographically-
matched ADReSSo challenge speech dataset. Following the
previous work on comparing the linguistic approaches to AD
detection from speech [8], we compare the following acoustic-
based approaches to detect AD:

1. Extracting conventional acoustic features from
speech: with this approach, we extract acoustic features

from the audio files for binary AD vs non-AD classifi-
cation. The features extracted are informed by previous
clinical and ML research in the space of cognitive im-
pairment detection [4, 9].

2. Using pre-trained deep neural models: with this ap-
proach, we embed the raw audio into representations us-
ing the last hidden state of the pre-trained wav2vec 2.0
model [10] and classify audio samples using these em-
beddings as input to simple classifiers.

3. A combination of both approaches. Here, we combine
the two approaches and make use of both engineered fe-
satures and audio representations generated using a pre-
trained deep neural model.

In this paper, we evaluate performance of the three ap-
proaches on both the ADReSSo train dataset, and on the unseen
test set. We find that models based on conventional acoustic fea-
tures are best suited for the AD screening tasks, as they are able
to achieve very high precision, while under performing on the
rest of evaluation metrics, such as accuracy, recall and F1 score.
For the cases when a more balanced performance is required,
a combination of conventional acoustic features and pre-trained
deep neural models is the most promising method, as it allows
to achieve high performance and generalize well to unseen data.

The main contributions of our paper are as follows:

• We use audio representations extracted from the pre-
trained deep neural model wav2vec 2.0 [10] for the task
of AD classification from speech. To the best of our
knowledge, this method and this model were never ap-
plied before for such a classification task.

• We present the model that combines conventional acous-
tic features with pre-trained representations of speech
and outperforms the ADReSSo baseline model by
2.82%.

• We carefully compare three different acoustic-based ap-
proaches for AD detection, which allows us to draw
more general conclusions on performance and general-
izability of acoustic models.

2. Background
2.1. Extracting conventional acoustic features from speech

Some of the conventional features employed to describe acous-
tic characteristics of the voice applied to AD detection, include
fundamental frequency, jitter and shimmer [11]. In addition to
these features, there is also a range of elements properly ac-
companying linguistic emissions and which constitute signs and
clues but are not verbal. These characteristics of speech are
called paralinguistic features and have been used to obtain infor-
mation from the patient by means of the statistics of e.g. Cep-
stral Mel-Frequency Components (MFCC), among others [9].
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Different combinations of these features were used in multiple
previous studies when detecting AD from the speech collected
via picture description tasks [5, 6, 12, 13]. These works have
provided clear evidence on the potential of using simple spoken
tasks and conventional acoustic features to automatically assess
early dementia and its progression as well as to demonstrate that
technology allows automatic detection of AD.

2.2. Using pre-trained deep neural methods

In the recent years, pre-training of deep neural networks has
emerged as an effective approach to overcome the problem of
data scarcity [14, 15, 16, 10]. The key idea of such a technique,
which is also called “transfer learning”, is to learn general rep-
resentations in a setup where substantial amounts of labeled or
unlabeled data is available and to leverage the learned robust
representations to improve performance on a downstream task
for which the amount of data is limited.

In natural language processing, one of the most popular
transfer learning models is BERT [15], which trains “contextual
embeddings” wherein a representation of a sentence (or tran-
script) is influenced by the context in which the words occur
in sentences. In the field of speech processing, transfer learn-
ing models are mainly used for the purpose of automatic speech
recognition [10]. We focus on using pre-trained embeddings
from a self-supervised audio representation model, wav2vec 2.0
[10], for the task of AD detection from speech. In the wav2vec
2.0 model, audio is encoded via a multi-layer convolutional neu-
ral network and then masks spans of the resulting latent speech
representations similar to masked language modeling [15]. The
latent representations are fed to a Transformer network [17] to
build contextualized representations.

For the task of AD detection, transfer learning is particu-
larly useful, as it is difficult and costly to collect labelled data.
While several prior works have used pre-trained acoustic em-
beddings such as x-vectors and i-vectors for AD detection from
speech [18, 19], to the best of our knowledge, no works have
utilized self-supervised representations of speech for AD detec-
tion. Hence, we aim to benchmark a self-supervised represen-
tation learning methodology for AD detection.

2.3. A combination of pre-trained and conventional ap-
proaches

Incorporating domain-specific external knowledge in neural
language representations is a field of research that has been
actively explored with both acoustic and linguistic embed-
dings [20, 21]. However, a large amount of prior work is either
focused on linguistic based approaches or using simple acous-
tic embeddings such as x-vectors [10]. In contrast, we are us-
ing a combination of state-of-the art self-supervised techniques
for speech representations and combining these with domain-
knowledge informed conventional speech features.

3. Methodology
3.1. Dataset

The ADReSSo dataset we use in this work consists of set of
speech recordings of picture descriptions produced by cog-
nitively normal (or healthy) subjects and patients with an
AD diagnosis, who were asked to describe the Cookie Theft
picture [22] from the Boston Diagnostic Aphasia Examina-
tion [22]. There are speech samples from 237 participants in
total, out of which 166 are in the training set, and 71 in the test

set (70/30 split balanced for demographics). Out of the sam-
ples in the training set, 83 were cognitively healthy, while 83
had AD. The prediction dataset used is matched for age and
gender so as to minimise risk of bias in the prediction tasks us-
ing a propensity score. Along with the recorded speech data,
the dataset also included segmentation profiles for optional use.
For all our acoustic approaches, we use the full unsegmented
audio, following the baseline acoustic approach [7] and prior
works [18, 23].

3.2. Feature Extraction

3.2.1. Using conventional acoustic features from speech

We extract 168 acoustic features from the unsegmented speech
audio files. Those include several statistics such as mean,
variance, kurtosis, etc. of mel-frequency cepstral coefficients
(MFCCs), following prior work [4]. We only use samples from
the audio component provided with the dataset, and do not per-
form any Automatic Speech Recognition or linguistic analyses.

3.2.2. Using embeddings from pre-trained deep neural models
for audio representation

In order to create audio representations using this approach,
we make use of the huggingface1 implementation of the
wav2vec 2.0 [10] base model wav2vec2-base-960h. This base
model is pretrained and fine-tuned on 960 hours of Librispeech
on 16kHz sampled speech audio. We first represent each unseg-
mented audio file as a waveform with librosa2. We then tokenize
waveforms using Wav2Vec2Tokenizer and if necessary, divide
them into smaller chunks (with the maximum size of 320000
in our case) to fit into memory, afterwards we feed them into
the wav2vec 2.0 model. The last hidden state of the model is
used as an embedded representation of audio. When tokenized
waveforms are divided into several chunks, the mean value of
all chunks is computed to generate the final embedding.

3.2.3. A combination of both approaches

In this approach, we study if engineered feature and pre-trained
embeddings can augment each other by concatenating the rep-
resentations at audio sample level. We combine representations
from pre-trained models and conventional acoustic features by
simply concatenating them. Hence, the dimension of the over-
all representation is the sum of the individual dimensions (936-
dimensional representation vector overall).

3.3. Evaluation Methods

We evaluate performance primarily using accuracy scores, since
all train/test sets are known to be balanced. We also report pre-
cision, recall, and F1 with respect to the positive class (AD).

Cross-validation on ADReSSo train set: We use two
cross-validation strategies in our work – leave-one-subject-out
(LOSO) CV and 10-fold CV. We report evaluation metrics with
both these strategies for all models for direct comparison be-
tween approaches and with challenge baseline.

Predictions on ADReSSo test set: We generate predic-
tions from the top-5 performing classifiers – where these classi-
fiers are selected on the basis of highest LOSO-CV train accu-
racy, and challenge test predictions are generated from models
trained on the last LOSO train split. We report performance on
the challenge test set, as obtained from the challenge organizers.

1https://huggingface.co/models
2https://librosa.org/
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Table 1: 10-fold CV and LOSO-CV results averaged across all the folds on the ADReSSo train set. Bold indicates the best performing
approach for each model, bold+italics indicate the best overall performance for the metric.

Accuracy Precision Recall F1
Model 10-fold CV LOSO CV 10-fold CV LOSO CV 10-fold CV LOSO CV 10-fold CV LOSO CV
LR-feat 0.6084 0.6386 0.6774 0.7213 0.4828 0.5057 0.5638 0.5946
LR-embed 0.6867 0.6747 0.6882 0.6737 0.7356 0.7356 0.7111 0.7033
LR-combo 0.6807 0.6687 0.7024 0.6951 0.6782 0.6552 0.6901 0.6746
SVM-feat 0.6265 0.6566 0.8571 0.9167 0.3448 0.3793 0.4918 0.5366
SVM-embed 0.6687 0.6566 0.6818 0.6705 0.6897 0.6782 0.6857 0.6743
SVM-combo 0.6928 0.6807 0.7308 0.7297 0.6552 0.6207 0.6909 0.6708
NN-feat 0.6084 0.6265 0.6833 0.6923 0.4713 0.5172 0.5578 0.5921
NN-embed 0.6747 0.6566 0.6774 0.6705 0.7241 0.6782 0.7000 0.6743
NN-combo 0.6506 0.6928 0.6706 0.7000 0.6552 0.7241 0.6628 0.7119
DT-feat 0.5964 0.5843 0.6190 0.6071 0.5977 0.5862 0.6082 0.5965
DT-embed 0.6446 0.6807 0.6591 0.6809 0.6667 0.7356 0.6629 0.7072
DT-combo 0.6506 0.6867 0.6593 0.6882 0.6897 0.7356 0.6742 0.7111

Table 2: AD detection results on unseen, held-out ADReSS test
set. Bold indicates the best result.

Model Accuracy Precision Recall F1
Acoustic baseline 0.6479
SVM-feat 0.6479 0.9167 0.3143 0.4681
LR-embed 0.6056 0.6000 0.6000 0.6000
DT-embed 0.5775 0.5714 0.5714 0.5714
SVM-combo 0.6761 0.6364 0.8000 0.7089
LR-combo 0.6056 0.6000 0.6000 0.6000

3.4. Experiments

3.4.1. Using conventional acoustic features from speech

We classify acoustic features (see Section 3.2.1) extracted at
sample-level with several conventional linear and non-linear
ML models : Logistic regression (LR-feat), Support Vector Ma-
chines (SVM-feat), Neural Network (NN-feat), and Decision
Tree (DT-feat). We perform feature selection by choosing top-
k number of features, based on ANOVA F-value between la-
bel/features, where k was set to 10 based on LOSO-CV. All
model hyper-parameters were set to their default values as on
the scikit-learn [24] implementation for each of these: logistic
regression is trained with L2-penalty, SVM-feat is trained with
a radial basis function kernel with kernel coefficient 0.001, and
regularization parameter set to 1, NN-feat used has 1 layer with
10 units, and DT-feat with minimum samples per split set to 2.

3.4.2. Using embeddings from pre-trained deep neural models
for audio representation

In order to leverage information encoded by pre-trained au-
dio representation models, we extract embeddings from a pre-
trained audio model, wav2vec 2.0, as a representation for each
audio sample (see Section 3.2.2). We then classify these by
training: Logistic regression (LR-embed), Support Vector Ma-
chines (SVM-embed), Neural Network (NN-embed), and Deci-
sion Tree (DT-embed) with default hyper-parameters.

3.4.3. Combining conventional features and embeddings from
pre-trained deep neural models

Hence, a single representation with length equal to the sum of
features and the embedding-dimension is obtained (see Sec-
tion 3.2.3). We then classify these by training the following
models on these concatenated representations : Logistic regres-
sion (LR-combo), Support Vector Machines (SVM-combo),

Neural Network (NN-combo), and Decision Tree (DT-combo).
All model hyper-parameters were set to their default values as
on the scikit-learn implementation for each of these (i.e., same
as in previous sections).

4. Results
4.1. AD detection results on the ADReSSo train set

The results of both LOSO and 10-fold CV evaluation of clas-
sification models’ performance show that the conventional
features-based approach consistently under performs in terms
of accuracy, recall and F1 score (see Table 1). The feature-
based approach, however, outperforms all the other approaches
in terms of precision with the SVM model. With the NN and DT
models, feature-based approach reaches high precision levels,
although is not the best performing NN models (see Table 1).

Embedding-based and combo approaches compete for best
performance in terms of accuracy, recall and F1 score. With
logistic regression, embedding-based approach outperforms all
the other approaches both in terms of accuracy, recall and F1.
With the neural net model, the type of cross-validation deter-
mines whether it is the embedding-based or the combo approach
that performs the best. With decision trees, however, the combi-
nation of conventional features and embeddings of speech per-
form the best in all the cases, even in terms of precision.

4.2. AD detection results on the unseen ADReSSo test set

Five models were selected based on their performance on the
train set – magnitude as well as well as stability of accuracy in
the two modes of CV – to submit to the ADReSSo challenge
- SVM-feat to represent the feature-based approach, LR-embed
and DT-embed to represent the embedding-based approach, and
the LR-combo and SVM-combo to represent the combined ap-
proach. Out of these five models, SVM-feat had the highest
precision (see Table 2). The SVM-combo model achieved the
best performance in terms of accuracy, recall and F1, and was
able to beat the baseline acoustic model by 2.82%.

5. Discussion
5.1. Classification performance

The models employing the feature-based approach are perform-
ing the best on the train data in terms of precision, when evalu-
ated using LOSO CV. Both the highest achieved precision level
(91.67% with SVM-feat) and the second-best result (72.13%
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Table 3: Difference between test performance and performance of performance of the model evaluated using 10-fold CV (i.e. w/ 10-fold)
and LOSO CV (i.e. w/ LOSO). Positive results indicate that test performance was higher. Bold indicates the model that outperforms
the acoustic baseline.

Accuracy Precision Recall F1
Model w/ 10-fold w/ LOSO w/ 10-fold w/ LOSO w/ 10-fold w/ LOSO w/ 10-fold w/ LOSO
SVM-feat 2.14% -0.87% 5.96% 0.00% -3.05% -6.50% -2.37% -6.85%
LR-embed -8.11% -6.91% -8.82% -7.37% -13.56% -13.56% -11.11% -10.33%
DT-embed -6.71% -10.32% -8.77% -10.95% -9.53% -16.42% -9.15% -13.58%
SVM-combo -1.67% -0.46% -9.44% -9.33% 14.48% 17.93% 1.80% 3.81%
LR-combo -7.51% -6.31% -10.24% -9.51% -7.82% -5.52% -9.01% -7.46%

Table 4: Difference between LOSO and 10-fold CV classifica-
tion performance. Positive results indicate that LOSO CV per-
formance was higher than that of 10-fold CV.

Model Accuracy Precision Recall F1
LR-feat 3.02% 4.39% 2.29% 3.08%
SVM-feat 3.01% 5.96% 3.45% 4.48%
NN-feat 1.81% 0.90% 4.59% 3.43%
DT-feat -1.21% -1.19% -1.15% -1.17%
LR-embed -1.20% -1.45% 0.00% -0.78%
SVM-embed -1.21% -1.13% -1.15% -1.14%
NN-embed -1.81% -0.69% -4.59% -2.57%
DT-embed 3.61% 2.18% 6.89% 4.43%
LR-combo -1.20% -0.73% -2.30% -1.55%
SVM-combo -1.21% -0.11% -3.45% -2.01%
NN-combo 4.22% 2.94% 6.89% 4.91%
DT-combo 3.61% 2.89% 4.59% 3.69%

with LR-feat) are achieved by the models that make use of con-
ventional acoustic features. The test results reinforce the preci-
sion capability of the feature-based model, with the SVM-feat
model achieving more than 28% higher precision on the unseen
test set than any other model. However, feature-based models
perform very poorly in terms of recall. As such, feature-based
models could be a good candidate in a real-life deployment of
AD screening models, when high precision is much more im-
portant than recall or overall accuracy.

There is no clear difference in train performance between
the embedding-based and combo approaches. Combo models
tend to perform better when evaluated using LOSO CV method,
while embedding-based models often outperform combo mod-
els when evaluated using 10-fold CV. The test results show that
the SVM-combo model has the best result, but more detailed
analysis of generalizability of the three approaches is necessary.

5.2. Generalizability

In order to assess generalizability of the models, we first calcu-
late the difference in performance of the five submitted models
on the test and the train sets (see Table 3).

Feature-based model (SVM-feat) has no gap between test
and train performance in terms of precision, and even sur-
passes the 10-fold CV precision on the test set. This model
also achieves the highest precision levels both on the train and
test sets, which allows us to conclude that the feature-based ap-
proach is potentially the best candidate for models when preci-
sion is the most important metric. This is not surprising, as these
acoustic features were extracted based on several prior works on
the speech characterization of patients with AD [5, 6, 12, 4].

Both embedding-based models (LR-embed and DT-embed)
have a substantial gap between the test performance and the
cross-validated performance on the train set (6.7-13.6% differ-

ence, with the test performance always being lower). The com-
bination approaches on average, however, result in a smaller
gap, especially in terms of accuracy, recall and F1 score. The
SVM-combo model even performs better on the test set, when
evaluated using recall and F1 metrics. In terms of accuracy,
the SVM-combo model shows only 0.46% lower performance
on the test set than on the train set, when cross-validated us-
ing the LOSO method. Such a slight difference confirms that
the combination approach in general is a more generalizable
method to train the AD detection system, comparing to using
the embedding-based representations of speech alone.

We also aim to understand whether 10-fold or LOSO CV is
the best approach to evaluate the model in order to achieve the
result that is close to the expected test performance. For this,
we additionally compare performance of each model between
LOSO and 10-fold CV (see Table 4). With the feature-based
approach, LOSO CV results are usually higher than those of
10-fold CV. As these models are most suitable for precision-
focused cases (as we discussed above) and given test precision
does not differ much from the LOSO CV results, the best solu-
tion would be to use LOSO CV evaluation when training these
models on the data similar in size to the ADReSSo dataset.

With embedding-based and combo models, 10-fold CV
mostly tends to outperform LOSO CV. However, test perfor-
mance is in most cases closer to the LOSO CV performance.
So with these approaches, similarly as with the feature-based
approach, relying on the LOSO CV would be a more reliable
strategy, when data is similar to the ADReSSo dataset. Note
that these findings are dependant on the speech representation
and modelling strategies as well as dataset domain in our study.

6. Conclusions and Future Work
In this paper we study the performance of conventional acous-
tic feature-based and pre-trained embedding-based classifica-
tion approaches on Alzheimer’s Disease detection from speech
on the ADReSSo challenge dataset. We observe that feature-
based approaches have a higher precision in general, and hence
might be well-suited for screening AD via speech analysis.
However, a more balanced performance across multiple-metrics
is achieved by embedding-based approaches both while cross-
validating on the train set and when tested on the unseen test
set. Finally, we observe that a representation combining em-
beddings and conventional features outperforms both individual
approaches, and attains an accuracy 2.8% higher that the best
acoustic baseline in the challenge. With our careful compar-
isons, we hope to contribute to principled evaluations of the per-
formance and generalizability of classification strategies on the
important task of Alzheimer’s Disease detection from speech.
In future work, we will focus on different strategies to combine
and fine-tune embeddings and feature-based models.
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Abstract
Alzheimer’s disease (AD) is a neurodegenerative syndrome
which affects tens of millions of elders worldwide. Although
there is no treatment currently available, early recognition can
improve the lives of people with AD and their caretakers and
families. To find a cost-effective and easy-to-use method for de-
mentia detection and address the dementia classification task of
InterSpeech 2021 ADReSSo (Alzheimer’s’ Dementia Recogni-
tion through Spontaneous Speech only) challenge, we conduct
a systematic comparison of approaches to detection of cogni-
tive impairment based on spontaneous speech. We investigated
the characteristics of acoustic modality and linguistic modality
directly based on the audio recordings of narrative speech, and
explored a variety of modality fusion strategies. With an ensem-
ble over top-10 classifiers on the training set, we achieved an
accuracy of 81.69% compared to the baseline of 78.87% on the
test set. The results suggest that although transcription errors
will be introduced through automatic speech recognition, in-
tegrating textual information generally improves classification
performance. Besides, ensemble methods can boost both the
accuracy and the robustness of models.
Index Terms: Cognitive Decline Detection, Modality Fusion,
Alzheimer’s Disease, Computational Paralinguistics

1. Introduction
Dementia is a syndrome associated with a deterioration in mem-
ory, language, problem-solving, and other cognitive functions to
perform daily activities. According to the estimation of WHO,
there are around 50 million people having dementia worldwide,
and this number is increasing by nearly 10 million every year.
Amongst many different forms of dementia, Alzheimer’s dis-
ease is the most common one and contributes to 60–70% of
total cases [1]. Screening of Alzheimer’s dementia is typically
conducted through paper-and-pencil cognitive tests, such as the
Mini Mental Status Examination (MMSE) [2] and the Montreal
Cognitive Assessment (MoCA) [3]. Although cheap and quick
to administer, the scoring process totally relies on the personal
judgment of clinicians, which may introduce errors and result
in a high inter-rater variability [4]. To address these issues,
extensive studies have been carried out for the purpose of au-
tomated cognitive assessment [5]. One promising direction is
speech-based screening. Speech signals can be relatively easily
collected throughout the day without burdening the participants
or the researchers. Moreover, the rapid development of speech
technology and machine learning algorithms provides us a good
opportunity to utilize those speech data for automatic screening
of dementia [6] and finally translate speech-based methods into
clinical practice.

There are existing efforts on the acoustic characteristics of
AD. In [7], Warnita et al. extracted several sets of paralinguis-
tic features from speech utterances in DementiaBank Pitt Cor-

pus [8]. They trained a gated convolutional neural network for
utterance-level AD classification, and then made the final ver-
dict for each subject through majority voting. The best accu-
racy of 73.6% was achieved from this acoustic-only method.
Luz et al. [9] assessed the effectiveness of several other acous-
tic feature sets with different classifiers for AD detection on the
same data set. They showed that the eGeMAPS feature set pro-
vided the best single feature set accuracy and simple hard fu-
sion of feature sets could improve the accuracy from 71.34% to
78.70%. [10] used low-level descriptors of IS10-Paralinguistics
feature set [11] and Bag-of-Acoustic-Words (BoAW) for fea-
ture aggregation, and achieved a leave-one-subject-out (LOSO)
accuracy of 76.85% on the training set of InterSpeech 2020
ADReSS challenge. Moreover, there are evidences showing
that using manual transcripts of speech or a combination of
transcripts and speech audio can generally lead to better perfor-
mance compared to using audio alone. In [12], Yuan et al. ex-
plored disfluencies and language problems in Alzheimer’s Dis-
ease subjects, and achieved the best accuracy 89.6% on the test
set of the ADReSS challenge by fine-tuning Transformer-based
pre-trained language models. Syed et al. achieved an accuracy
of 85.45% on the same challenge task [10] by using both acous-
tic features and linguistic features from manual transcription.

In this paper, we conducted a systematic comparison of
methods of detecting cognitive impairment based on a narra-
tive speech from a picture description task, and extensively ex-
plored different modality fusion strategies. We first investi-
gated the characteristics of acoustic modality and trained ma-
chine learning classifiers based on speech paralinguistic feature
sets. Next, we generated two sets of transcripts through au-
tomatic speech recognition (ASR) and extracted linguistic fea-
tures, both deep text embedding, and human-defined psycholog-
ical features, from transcripts for dementia screening. Finally,
we compared different modality fusion strategies to boost the
performance of our model. Our proposed model outperformed
the ADReSSo challenge baseline for AD classification task on
both training partition and test partition.

2. Dataset
The ADReSSo challenge [6] released two distinct benchmark
datasets for three different tasks. The dataset for AD classifica-
tion consists of audio recordings of a picture descriptions task
from both cognitively healthy people and patients diagnosed
with AD. Participants were asked to describe the Cookie Theft
picture from the Boston Diagnostic Aphasia Examination [8].
Recordings were preprocessed with stationary noise removal
and audio volume normalization across audio segments to re-
duce the variation caused by recording conditions [6].

The resulting dataset includes 237 audio files. To minimize
the risk of bias in the prediction, these files are carefully parti-
tioned into training and test sets at a ratio of 7:3 so as to preserve
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Figure 1: Framework of automatic screening of AD.

the balance of gender and age distribution [6]. There are 166 in-
stances allocated to the training set. Among them, 87 subjects
are diagnosed with dementia and 79 are elderly normal controls.
The other 71 instances are allocated to the test set, among which
35 are with an AD diagnosis and 36 are cognitively normal.

3. Methodology
In this paper, we investigate the efficacy of logistic regression
(LR) model on AD screening, as well as modality fusion strate-
gies to boost the performance of the model. The schematic
workflow of audio-based and ASR transcripts-based screening
is shown in Figure 1.

3.1. Screening based on speech

In this section, we use python library librosa [13] and open-
source audio feature extraction toolkit openSMILE [14] for au-
dio preprocessing and paralinguistic acoustic feature extraction.
Paralinguistics have been widely used for emotion recognition
and detection of some other mental disorders such as depres-
sion [15] and bipolar disorder [16]. Evidence shows that AD pa-
tients have deterioration in emotional control [1] and may have
difficulty in expressing emotions in prosodies [17]. Based on
this, we hypothesize that paralinguistic acoustics is a good can-
didate for AD biomarkers. Five sets of acoustic features which
are known to represent paralinguistic characteristics of speech
are extracted as follows.

1. Mel-frequency cepstral coefficients (MFCCs)[18]
The first 13 MFCC bands (0-12), and corresponding 13
delta MFCCs and 13 delta-delta MFCCs, which reflect
the rate of change and the acceleration in MFCCs, are
extracted. Descriptive statistics functions are applied, to-
taling 468 features for one utterance.

2. The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS)[19]
GeMAPS contains the 18 low-level descriptors(LLD),
including frequency related parameters pitch, jitter, for-
mants, energy related parameters shimmer, loudness,
harmonics-to-noise ratio (HNR), and several spectral pa-
rameters. Statistical functionals are applied to each LLD,
totalling 62 parameters.

3. The extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS)[19]
An extension set, which contains 7 LLDs of cepstral and
dynamic parameters and corresponding functionals, is
added to the GeMAPS. In total, 88 features are extracted
per utterance.

4. INTERSPEECH 2016 Computational Paralinguistics
Challenge Feature Set (ComParE-2016)[20]
ComParE is the largest standard set of openSMILE with
6373 features. It is a brute-force feature set that has
proved to be useful for a variety of speech paralinguistic
tasks. ComParE-2016 is the most recent version of the
ComParE.

5. INTERSPEECH 2010 Paralinguistics Challenge Feature
Set (IS10-Paraling.)[11]
IS10-Paralinguistics contains 38 LLDs and 38 corre-
sponding delta coefficients. 21 functionals are applied
to these LLDs, totaling 76 LLD for one frame and 1582
features for one utterance. This feature set can be con-
sidered as a low-dimensional alternate to the ComParE.

Extracted feature sets are normalized by standard min-max scal-
ing and passed down to the logistic regression classifier as illus-
trated in the machine learning pipeline in Figure 1.

3.2. Screening based on auto-transcription

Language impairment is a distinguishing marker of demen-
tia [5]. In addition to analyzing acoustic characteristics of AD,
we also utilize ASR techniques to introduce the second modal-
ity, which is transcript text. Three sets of linguistic features are
then extracted from each auto-transcript, as illustrated in Fig-
ure 1.

3.2.1. Automated transcript generation through ASR

We use two different approaches to generate transcripts from
spontaneous speech. The first approach is using a pre-trained
English DeepSpeech model from Mozilla [21]. The second is
using Google Cloud standard speech-to-text service. Both tran-
scribing processes can be done automatically, with no need for
model fine-tuning or human intervention. Linguistic feature sets
are extracted from transcripts produce by each approach.

3.2.2. Linguistic feature based screening

The language feature sets can be largely categorized into two
classes. One is a transparent linguistic feature set, in which
each individual feature has a well-defined meaning and thus
having desirable interpretability. Linguistic Inquiry and Word
Count (LIWC) [22] is one such text analysis method. It counts
words in psychologically meaningful categories. Extensive
studies using LIWC demonstrated its ability to detect mean-
ing in a wide variety of experimental settings, such as atten-
tional focus, emotion, and thinking styles. Here we extract a
64-dimensional LIWC vector from each transcript.

Another category of linguistic feature is language embed-
ding which usually a dense numerical representation of a word
or a sentence. Those embeddings have already shown great suc-
cess in a variety of tasks of natural language processing [23].
We investigate the efficacy of pre-trained embeddings from
deep language model Bidirectional Encoder Representations
from Transformers (BERT) [24]. Specifically, we compute em-
bedding for each word(BERTword) and embedding for the whole
transcript(BERTsent) from pretrained BERT base uncased model
using the Huggingface Transformers library[25]. BERTsent, as a
768-dim linguistic feature, is passed to the downstream pipeline
directly, while BERTword are first aggregated by four kinds of
pooling functions (max, min, average, and standard deviation)
to generate a transcript-level representation. The outputs of
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Table 1: Summary of results for AD classification using acoustic
features on LOSO cross-validation

Feature Set Accu. F1 Spec.

MFCC 67.47 69.32 64.56
GeMAPS 68.67 70.79 64.56
eGeMAPS 74.10 75.98 69.62
ComParE 71.69 72.83 70.89
Paraling. 71.69 72.19 73.42

Maj. voting 77.11 78.41 74.68
Avg. fusion 74.7 75.58 74.68
Wgt. fusion 74.7 75.58 74.68

pooling operations are concatenated, resulting in a 6373-dim
vector, and passed down to the LR classifier (Figure 1).

3.2.3. Modality fusion

To make full use of audio and text modalities, we explored
a multimodal framework for the automatic screening of AD.
We first apply a straightforward early fusion or data-level fu-
sion [26] by selecting a good performing feature set in each
modality, and concatenating features into a single vector for
each sample. Different combinations of feature sets are inves-
tigated for comparison. Besides, we also applied the late fu-
sion (decision level fusion) strategy which uses input modal-
ities independently followed by fusion at a decision-making
stage. It is inspired by the popularity of ensemble methods [27].
Three different rules are used in this paper to combine indepen-
dently trained classifiers: a) majority voting of predicted class
labels, b) average fusion of predicted class probabilities, and c)
weighted average fusion of class probabilities with the weight
set as the accuracy of the corresponding base classifiers.

4. Experiments and Results
We use LR classifier for the AD classification task. Two hyper-
parameters are fine-tuned for optimized performance. Regular-
ization strength λ was tuned with grid search between a range
of 5e-5 and 1e2, and penalty is chosen from {L1, L2}.

4.1. LOSO evaluation of acoustic models

In Table 1, we show the classification results of five acoustic
feature sets. eGeMAPS outperforms other sets with a leave-
one-subject-out (LOSO) accuracy of 74.10% on the training set.
This result is closely followed by the Paraling. and ComParE
models which achieve the second-best single model accuracy
of 71.69%. Since Paraling. is a low-dimensional alternate to
the ComParE set, these tied results are as expected. The model
based on GeMAPS achieved an accuracy of 68.67%, which is
5.43% lower than the eGeMAPS based model. This indicates
that the 26 additional features in the extended minimalistic set
do have some contribution to dementia recognition. Further-
more, the ensemble methods can boost the overall performance
of audio modality to 77.11%.

4.2. LOSO evaluation of linguistic models

From the summary in Table 2, we see that models based on
transcripts generated by Google Cloud universally outperform
models based on DeepSpeech transcripts. Among them, BERT
word embedding model achieved the best LOSO accuracy of

Table 2: Summary of results for AD classification using linguis-
tic features on LOSO cross-validation

ASR Model Feature Set Accu. F1 Spec.

DeepSpeech LIWC 67.47 71.28 56.96
BERTword 68.07 71.04 60.76
BERTsent 70.48 73.22 63.29

Maj. Voting 69.88 72.53 63.29
Avg. Fusion 66.87 69.95 59.49
Wgt. Fusion 67.47 70.33 60.76

GoogleCloud LIWC 69.88 71.26 68.35
BERTword 75.30 76.30 74.68
BERTsent 72.89 74.58 69.62

Maj. Voting 75.30 76.84 72.15
Avg. Fusion 71.08 72.41 69.62
Wgt. Fusion 71.08 72.41 69.62

Overall Maj. Voting 73.49 75.0 70.89
Avg. Fusion 72.29 74.44 67.09
Wgt. Fusion 72.29 74.44 67.09

75.30%. This result is followed by the result of another em-
bedding based model BERTsent. LIWC based models from both
transcription settings have an accuracy of less than 70%.

We noticed that the average number of words is 60.9 for
transcripts generated by pretrained DeepSpeech and 91.2 for
those generated by Google Cloud speech-to-text service, which
indicates that the latter may have a better speech recognition
performance on this particular data set. This partially explains
why models based on the latter generally have better classifica-
tion performance.

4.3. Modality Fusion

An ideal feature set should be compact enough to be imple-
mented in a real-time system and robust enough to detect subtle
changes of spontaneous speech of people developing demen-
tia. Here we used early and late fusion strategies to investi-
gate the multi-modality classification problem and the results
are summarized in Table 3. Three linguistic feature sets based
on Google Cloud transcripts are combined with each one of the
top three acoustic feature sets in Section 4.1. The best accuracy
is achieved by simple early fusion of google-LIWC (g-LIWC)
and eGeMAPS. This combination also produces the most com-
pact feature set (152 features in total) in our modality fusion
settings. Furthermore, feature sets from both modalities are in-
terpretable, which can help us to have a better understanding of
the linguistic and paralinguistic characteristics of the disease.
The second-best performance comes from the late average fu-
sion of google-BERTword (g-BERTword) and eGeMAPS, which
is higher than the early fusion of the same sets. Late fusion,
however, does not always outperform early fusion. Late fusion
of g-LIWC and eGeMAPS, for example, has an accuracy 9%
lower than the early fusion. Besides, we also applied ensemble
methods to combine the predictions of either all of the twenty
single classifiers or the selected top ten classifiers. An early
fusion model is considered a single classifier here since it is
trained only once after feature concatenation. The best ensem-
ble accuracy is 80.72% following the majority voting rule.
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Table 3: Results of multimodal methods on training set LOSO
cross-validation

FS Feature Set Accu. F1 Spec.

Early g-LIWC+eGeMAPS 81.93 82.56 82.28
g-BERTword+eGeMAPS 75.90 76.74 75.95
g-BERTsent+eGeMAPS 74.10 75.71 70.89

g-LIWC+ComParE 71.69 73.45 68.35
g-BERTword+ComParE 74.70 75.58 74.68
g-BERTsent+ComParE 75.30 76.02 75.95

g-LIWC+Paraling. 75.90 76.74 75.95
g-BERTword+Paraling. 77.11 77.91 77.22
g-BERTsent+Paraling. 78.92 80.23 75.95

Late g-LIWC + eGeMAPS 72.29 74.16 68.35
g-BERTword + eGeMAPS 77.71 78.61 77.22
g-BERTsent + eGeMAPS 75.90 77.01 74.68

g-LIWC + ComParE 71.08 72.09 70.89
g-BERTword + ComParE 72.89 74.29 70.89
g-BERTsent + ComParE 72.29 73.26 72.16

g-LIWC + Paraling. 73.49 74.42 73.42
g-BERTword + Paraling. 72.29 74.73 65.82
g-BERTsent + Paraling. 71.08 71.76 72.15

Ens. Overall Avg. 75.3 76.84 72.15
Overall Maj. 77.11 79.12 70.89
Overall Wgt. 80.12 80.92 79.75

Top-10 Avg. 79.52 80.23 79.75
Top-10 Maj. 80.72 81.18 82.28
Top-10 Wgt. 79.52 80.23 79.75

4.4. Predictions for the test partition

ADReSSo challenge allows each team to submit the results of
five attempts. A summary of the baseline and our results for
the test set is provided in Table 4. For the first attempt, we use
predictions from the early fusion of g-LIWC and eGeMAPS,
which was the best performing model on the training partition
by achieving an accuracy of 81.93%. On the test set, however,
this model only achieved an accuracy of 64.79%, which indi-
cates overfitting on the training set. The second attempt is the
early fusion of g-BERTsent and Paraling., which is the second-
best early fusion model. The performance dropped a little bit
on the test set from 77.11% to 74.65%. The third attempt is the
majority voting of all the classifiers from audio modality which
achieved an accuracy of 67.61% on the test set. This indicates
that the information that audio modality offers is not robust
and sufficient enough for AD detection. The fourth and fifth
attempts used ensemble strategies. Majority voting and aver-
age fusion are applied separately on the top 10 best-performing
models. The resultant prediction accuracy scores for the test
partition are 80.28% and 81.69%, which are both better than the
challenge baseline of 78.87%. We also noticed that these two
models achieved similar accuracy on the training set and test
set, which shows that the ensemble increased the robustness of
the models.

5. Discussion
The effectiveness of several paralinguistic feature sets for
Alzheimer’s recognition was evaluated in Section 4.1. In ad-

Table 4: Summary of results for AD classification on test set

Feature Set Accu. F1 Spec.

g-LIWC+eGeMAPS 64.79 72.22 61.54
g-BERTsent+Paraling. 74.65 80.56 72.73
Audio Maj. 67.61 77.78 63.49
Top-10 Maj. 80.28 88.89 78.13
Top-10 Avg. 81.69 88.89 80.00

Challenge baseline[6] 78.87 77.78 78.87

dition to utilizing those predefined features sets, one future di-
rection could be introducing paralinguistic embeddings gener-
ated from a representation model pretrained on a large external
dataset to our dementia recognition pipeline. While representa-
tion learning models like BERT have achieved great success in
the text domain, such methods are underutilized in the speech
domain.

Our model built on linguistic and acoustic features achieved
the best accuracy of 81.69% on the test set, while paralinguis-
tics based model only had an accuracy of 67.61%. This indi-
cates that although paralinguistic changes are potential markers
of dementia, acoustic modality alone may not have enough in-
formation for the diagnosis of disease. Introducing linguistic
features through ASR often leads to a considerable improve-
ment to the predictions accuracy of the disease, despite the fact
that the ASR transcripts have a relatively high word error rate.

Another observation is that, from the aspect of accuracy
and robustness, ensemble methods generally gives better per-
formance, especially when we have lots of individual classifiers.
This is because the errors from multiple models are dealt with
independently.

We also noticed that the most promising model based on
eGeMAPS and g-LIWC on the training set performs worst
among the five attempts on the test partition. One explanation
for the performance gap between training and test stages might
be the disadvantage of LOSO cross validation. Even though
test-error is unbiased in each iteration, LOSO has a high vari-
ability as only one observation is predicted for validation. Strat-
ified 10-fold cross-validation or nested cross validation could be
applied in future study to alleviate the overfitting issue caused
by LOSO. Another possible explanation might be the choice of
base classifier. Our logistic regression model marginally out-
performed other machine learning classifiers, including SVM,
decision tree, and multilayer perceptron, regarding the LOSO
performance on the training set, while other classifiers might be
more robust to the outliers or have a better generalization capa-
bility.
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Abstract
In order to protect vulnerable people in telemarketing, organ-
isations have to investigate the speech recordings to identify
them first. Typically, the investigation is manually conducted.
As such, the procedure is costly and time-consuming. With
an automatic vulnerability detection system, more vulnerable
people can be identified and protected. A standard telephone
conversation lasts around 5 minutes, the detection system is ex-
pected to be able to identify such a potential vulnerable speaker
from speech segments. Due to the complexity of the vulnera-
bility definition and the unavailable annotated vulnerability ex-
amples, this paper attempts to address the detection problem
as three classification tasks: age classification, accent classi-
fication and patient/non-patient classification utilising publicly
available datasets. In the proposed system, we trained three
sub models using acoustic and textual features for each sub
task. Each trained model was evaluated on multiple datasets
and achieved competitive results compared to a strong baseline
(i.e. in-dataset accuracy).
Index Terms: vulnerability detection, speech and text process-
ing, age classification, accent classification, patient/non-patient
classification, feature extraction, feature selection

1. Introduction
Protecting vulnerable people is a vital part of government regu-
lation bodies and commercial companies in telemarketing [1, 2].
Vulnerability is a complex issue to detect as it is a multifaceted
phenomenon that involves considering biological, psycholog-
ical and social elements. According to [1, 2], everyone can
be vulnerable – people with health conditions, older adults and
children are arguably more likely to be vulnerable. Further, as
the conversations conducted are conducted in English, people
from non-English speaking countries may also be more vulner-
able to being mis-sold products. When there is no priority infor-
mation of the vulnerability criteria in the database, it is costly
and time-consuming for an investigator to access a large num-
ber of recordings to identify the vulnerable people. Given this,
there is an increasing demand to develop an automatic vulnera-
bility detection system [2]. To the best of our knowledge, few
studies [3, 4] have been conducted in the community on tackling
the vulnerability in Speech Processing, addressing a fraction of
vulnerability concerns. In order to adapt to a real-time system,
this paper reports the development of a detection system that is
able to work from a short speech segment (i.e. the average du-
ration of an audio clip is less than 10 seconds). Without directly
relying on the annotated vulnerability data to reduce product de-
velopment cost, we propose a multi-task data-driven approach
to detect the vulnerability through speech recordings by decom-
posing the task into a collection of sub-tasks, each of which can
be solved by learning from publicly available data. Automatic

Speech Recognition (ASR) techniques have been greatly devel-
oped in the recent decade such as Deep Speech [5], we use both
the speech transcriptions and acoustic waves to support the de-
tection. More specifically, we investigated acoustic and textual
feature selection that can be used for classifying speakers by
age (i.e. child, adult or older adult), accent (i.e. native En-
glish speaker or non-native English speaker) and health status
(i.e. patient with commonplace neurological difficulties or non-
patient).

Our main contributions can be summarised as follows:
• We develop a vulnerability detection system for short

speech segments with transcription by indicating the
speaker’s age group, accent group and health status.

• We study the feature extraction to detect the vulnerable
people from speech segments. We found using a combi-
nation of acoustic and textual features works better than
one modality (i.e. either speech or text) in most cases.

• Unlike prior research on investigating each feature, we
investigate all possible combinations of feature groups.

• We evaluate three sub models on multiple benchmark
datasets. Limited data resources are publicly available
for evaluating the patient model, we collected and an-
notated a set of patient/non-patient speech segments ac-
companied with transcription from YouTube 1.

2. Related Work
Prior works demonstrated the potential of identifying vulner-
able people such as patients with dementia [6], aphasia [7]
and older adults [3, 4] using speech-based approaches. Fea-
ture extraction is an essential step to traditional approaches and
deep learning approaches [8]. With the acquired popularity in
ASR, extracting textual features from speech recordings along
the acoustic features for speech classification become more re-
liable. In this section, we review some acoustic and textual
features that have been frequently used in the prior works and
can be applied to detect the vulnerability. Fundamental Fre-
quency (F0) is a common measure for age and gender detec-
tion. Women have a higher F0 compared to men, and chil-
dren have a higher F0 compared to adults [9, 10]. Spectral
features such as Mel-frequency Cepstral Coefficients (MFCCs),
Filter Bank Energies (FBEs) and Spectral Centroid Coefficients
(SCCs) are frequently used in a number of applications [3, 6].
Voicing features such as the duration and number of unvoiced
segments [6], and voiced utterances [9, 11] have shown the ef-
fectiveness in detecting language disorders. Jitter is a measure
of frequency instability whereas shimmer is a measure of am-
plitude instability [9]. They are frequently used to detect the
fluctuation and perturbation in speech signal respectively [12].

1https://www.youtube.com/
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Harimonicity refers to Harmonic-to-Noise Ratio (HNR) and
Noise-to-Harmonic Ratio (NHR) that measure the voice qual-
ity and are reported as a better measure for discriminating older
adults and young people [13]. Mean of autocorrelation is an-
other measure of voice quality estimating the pitch period of
a given speech signal [6]. The Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) vectors are used to measure the repet-
itiveness by the cosine similarity between documents [14]. Part-
Of-Speech (POS) features are represented by the frequency of
various POS tags, such as interjections (i.e. filler words) were
reported frequently in the use of detecting behaviour patterns
and personality recognition [15]. Type Token Ratio (TTR) mea-
sures the weight of unique words in a document and shows
the vocabulary richness (i.e. lexical diversity) of a document.
A more advanced measure is moving-average type-token ratio
(MATTR) [16], which computes the ratio by moving a fixed-
size window within the document. Vulnerable people such as
patients with memory problems and second language speak-
ers are expected to have a lower TTR [11]. Psycholinguistic
features were used for speech transcripts summarisation [17].
Older adults and people with certain health condition usually
have memory problems. Several emotional categories from psy-
cholinguistic features (e.g. depression, anxiety and stress) are
often considered as causes for memory problems. In addition,
the topical categories from psycholinguistic features can pro-
vide some insight to evidence on the speaker’s life events.

3. Methods
We developed an automatic vulnerability detection system us-
ing a data-driven approach based on feature extraction and clas-
sification techniques. Below, we introduce the datasets and pre-
processing (Section 3.1), feature extraction (Section 3.2) and
classifier training details (Section 3.3).

3.1. Data

All sub-models were created and evaluated using features ex-
tracted from three English speaking TalkBank datasets (Aphasi-
aBank [18], DementiaBank [19] and RHDBank [20]) and
three large ASR datasets (Common Voice 2, VoxForge 3 and
VCTK 4). For ASR datasets such as Common Voice, we use the
official validated subset. TalkBank datasets contain videos con-
ducted and recorded by investigators and students, which are in-
terviews with patients or people from health control group. The
original video files were firstly converted into audio files via
MoviePy 5. Then, the audio files were trimmed into short clips
by the timestamp and speaker label. In our scenario, models
are created without any hand-crafted information, or probably
based on the transcription from ASR. Therefore, the transcripts
were downsampled. All hand-crafted information within the
transcripts (e.g. timestamps for sub-sentences, POS tags, and
manually-corrected words) were removed. Due to the recording
devices, we found some audio files in the TalkBank are noisy,
this was also reported in Al-hameed et al. [6]. Therefore, we
used spectral gating [21] to reduce the stationary noise from
the audio clips. Furthermore, we extracted available speaker
information such as age, accent and gender for annotating the
datasets. Depending on the model, we selected 1000 instances
from each class to form a validation set for each model.

2https://voice.mozilla.org/
3http://www.voxforge.org/
4https://datashare.ed.ac.uk/handle/10283/3443
5https://zulko.github.io/moviepy/

3.2. Feature Extraction

The feature extractor plays an important role in the system. Two
sets of features we extract from recording and transcription are
shown in Table 2. We implemented an acoustic feature extrac-
tor using parselmouth 6 and librosa 7. Following Al-hameed et
al. [6] and Teixeira et al. [22], we extracted acoustic features
including 2 F0 variants (mean and covariance), first 42 MFCCs
and their skewness, kurtosis, mean with kurtosis and skewness
of the mean, 26 FBEs, 26 SCCs, 5 pitch variants (mean, median,
standard deviation, minimum and maximum), 4 pulses variants
(number of pulses, number of periods, mean of and standard de-
viation of the periods), 3 voicing (fraction of locally unvoiced
frames, number and degree of voice breaks), 5 jitter variants (lo-
cal, local-absolute, the relative average perturbation, five-point
perturbation quotient and the average absolute difference), 6
shimmer variants (local, local-dB, three point amplitude pertur-
bation, five-point amplitude perturbation quotient ,eleven-point
amplitude perturbation quotient and the average absolute differ-
ence) and 3 harmonicity variants (mean of the autocorrelation,
NHR and NHR). We implemented a textual feature extractor us-
ing scikit-learn 8. We extracted textual features including 3000
dimensional TF-IDF features, POS features, TTR and MATTR,
psycholinguistic features and sentiment. We used the Universal
POS tags [23] to form POS features, other POS tag marks such
as Penn Treebank POS tags 9 can also be used. We use the pre-
trained Convolutional Neural Networks (CNN) based sentiment
analyser from stanza [24] to produce the sentiment feature. We
use Empath [25] to extract a vector of 200 lexical categories to
form the topic and emotion features.

3.3. Training

We address the vulnerability detection problem as three classifi-
cation tasks to find the related indicators from speech recordings
and corresponding transcriptions. A collection of three separate
classification models were created: an age model to classify the
speaker’s age group (below 20 as child, between 20 and 60 as
adult, and over 60 as older adult), a non-native model to clas-
sify the speaker’s accent group (native and non-native English
speaker) and a patient model to classify the speaker’s health sta-
tus (patient with aphasia, dementia or RHD and non-patient).

The number of instances used for training each sub model is
summarised as (a) age model: child (14,472), adult (18,162) and
older adult (9,943); (b) non-native model: native (31,500) and
non-native English speaker (31,500); (c) patient model: patient
(7,000) and non-patient (7,000). Due to incomplete speaker in-
formation available in the six datasets, we use different subsets
for training different model. We employ a simple data fusion
technique to combine multiple data sources in training. We
learn a weight wi for each training dataset, where wi maximises
the prediction accuracy on a validation set. The weights are
learned using Bayesian Optimisation [26].

The age model is trained on a combination of six datasets:
Common Voice, VCTK, VoxForge, AphasiaBank, Dementia-
Bank and RHDBank. Their audio clips and corresponding tran-
scripts are categorised into three age groups. We found the
datasets are strongly imbalanced, we adjusted the class weight
for training. In addition to the original age model, we train

6https://parselmouth.readthedocs.io/en/stable/
7https://librosa.org/doc/latest/index.html
8https://scikit-learn.org/
9https://www.ling.upenn.edu/courses/Fall 2003/ling001/

penn treebank pos.html
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Table 1: Average classification accuracy (acc) with standard
deviation (std), train and test time (in seconds) over 5-fold
cross-validation using various learning algorithms for the age
model using a vaildation dataset from Common Voice.

Classifier acc±std Train Time Test Time

Nearest Neighbors 0.6190±0.0227 1.2412 1.1662
Decision Tree 0.6390±0.0332 2.5636 0.1759
Random Forest 0.7565±0.0131 1.5734 0.2663
MLP 0.6060±0.0883 17.5251 0.1973
AdaBoost 0.7070±0.0058 15.5314 0.3440
Naı̈ve Bayes 0.6110±0.0312 0.8323 0.2026
QDA 0.5090±0.0394 8.5438 0.9927
Logistic Regression 0.6885±0.0333 1.6408 0.1595
Linear SVM with SGD 0.5565±0.0446 1.2600 0.1667

a variant with separating training data into gender-age groups
(e.g. female child, elderly male) and then map the gender-
age groups back to their age groups. The non-native model
is trained on a combination of three datasets: Common Voice,
VCTK and VoxForge, of which the audio clips and transcripts
are categorised into the two groups of native and non-native En-
glish speakers. We define native speakers by a list of native
English speaking countries 10. Unlike prior works that studied
individual long-term illness and tried to differentiate patients
from people in the health control group, we explored the pos-
sibility to discriminate the patients from non-patients in a more
general sense. We train a patient model that aims at discriminat-
ing patients and non-patients by combining the three TalkBank
datasets. In this scenario, we mix the data that are labelled as pa-
tients from the three datasets and use them as positive instances
for training. Negative training instances are randomly selected
from Common Voice.

4. Experiments
We conducted experiments on classification (Section 4.1), fea-
ture selection (Section 4.2) and evaluated each sub model on
multiple datasets (Section 4.3).

4.1. Classification
To choose a proper classifier, we experimented several learning
algorithms: Nearest Neighbors, Decision Tree, Random For-
est, Multi-layer Perceptron (MLP), AdaBoost, Naı̈ve Bayes,
Quadratic Discriminant Analysis (QDA), Logistic Regression
and Linear Support Vector Machine (SVM) with Stochastic
Gradient Descent (SGD). We randomly selected 1000 older
adult and 1000 non-older adult examples from Common Voice
to train a binary classifier. We used the classifier implementa-
tion from scikit-learn 11. Table 1 shows the average results using
different classifiers over 5-fold cross validation. Random Forest
classifier has shown improvements in a couple of speech clas-
sification tasks such as speech/non-speech discrimination [27]
and speech emotion recognition [28]. We observed Random
Forest classifier also shows a promising performance in speech
age group classification and reaches competitive time efficiency
in both training and testing.

4.2. Feature Selection

We conducted a comprehensive study into feature extraction
and selection. More specifically, we run 5-fold cross-validation
on each model over all possible combinations (32,767 combi-
nations in total for 15 feature groups). Table 3 shows the top

10https://www.gov.uk/english-language/exemptions
11https://scikit-learn.org/stable/

Table 2: Features with their dimensionality (dim). (·) denotes
the shorthand name for each feature.

Features dim

Acoustic Features

Mel-frequency Cepstral Coefficients (mfcc) 506
Filter Bank Energy (fbank energy) 26
Spectral Centroid Coefficients (spectral centroid) 26
Fundamental Frequency (f0) 2
Pitch (pitch) 5
Pulses (pulses) 4
Vocing (vocing) 3
Jitter (jitter) 5
Shimmer (shimmer) 6
Harmonicity (harmonicity) 3

Text Features

TF-IDF (tf idf) 3000
Part-of-Speech Tags (pos counts) 17
Type Token Ratio (ttr) 2
Topic and Emotion (empath) 194
Sentiment (sentiment) 1

5 feature combination candidates for the age model and the top
combination candidates are sorted by classification accuracy de-
scendingly. In contrast to the prior works using either text [29]
or audio features [4, 30] for estimating the age, we observe that
most of the top candidates are combinations of both text and au-
dio features (4 out of 5). Table 4 shows the ablation study of fea-
ture selection, the classification accuracy falls around 0.02 when
we remove the text features such as TTR and sentiment. SCCs
improve the performance significantly (i.e. around 0.07). Fur-
thermore, we rank each feature by its occurrence in the top 10
combination candidates. Table 5 shows the frequently-occurred
candidate features in top 10 combinations, the first row is the
most frequently-occurred candidate feature and we add others
to the following rows by their occurrence in the top 10 combi-
nations. The results indicate audio features take a major role
in the feature extraction for the age model. Using FBEs alone
gains a good performance on the classification accuracy (0.574).
MFCCs are frequently used as a promising feature for the audio
classification, however, we find using MFCCs alone achieves
around 0.59 in accuracy, which is more computational costly
(i.e. the dimensionality of MFCCs is 506) and does not perform
as well as a combination of the other audio features with lower
dimensionality. In our preliminary experiments, we found TF-
IDF feature had a strong impact on the performance. TF-IDF
usually fails if a test sentence contains many out-of-vocabulary
words. To expand the feature space to overcome this issue, one
of the possible solutions is to use word embeddings. Table 6, we
compare the TF-IDF feature (tf idf), topic and emotion feature
(empath) with some popular word embeddings such as Fast-
Text (crawl and news) [31], Extended Dependency Skipgram
(extvec) [32], GloVe (glove) [33], Skip-gram (twitter) [34] and
Turian (turian) [35]. We use the implementation from flair [36]
and each sentence is represented by a fix-length 100 dimen-
sional embedding. The age model is a three-class classifier, both
TF-IDF and word embeddings do not improve the classification
accuracy significantly (i.e., close to 0.3333). Due to the page
limit, we presented the results on one of the sub models, similar
trend is also observed in the other models.

4.3. Model Evaluation

Table 9 shows the average classification accuracy of three sub
models with an additional age model variant evaluated on mul-
tiple datasets. We first evaluate the trained age model on all
six datasets. Table 7 shows the classification accuracy on each
dataset’s test set. In-dataset accuracy denotes the classification
accuracy using the given dataset, and it is often considered as a
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Table 3: Top 5 feature combination candidates for the age
model with the acc and std on 5-fold cross validation, sorted
by the accuracy descendingly.

Features acc±std dim

pulses + harmonicity + fbank energy + spectral centroid +
f0 + sentiment + ttr

0.662± 0.023 64

pitch + voicing + jitter + harmonicity + fbank energy + spec-
tral centroid + f0 + ttr

0.660± 0.019 72

pitch + fbank energy + spectral centroid + sentiment 0.660± 0.014 58
pitch + pulses + harmonicity + fbank energy + spec-
tral centroid + f0

0.660±0.017 66

pitch + harmonicity + fbank energy + spectral centroid + f0 0.659±0.018 62

Table 4: Ablation study of the feature combination (age model).

Features acc±std dim

pulses + harmonicity + fbank energy + spectral centroid
+ f0 + sentiment + ttr

0.662±0.023 64

(-ttr) 0.648±0.021 62
(-sentiment) 0.642±0.016 63
(-f0) 0.650±0.020 62
(-spectral centroid) 0.597±0.019 38
(-fbank energy) 0.624±0.017 38
(-harmonicity) 0.647±0.023 61
(-pulses) 0.646±0.027 60

Table 5: Frequently-occurred candidate features (age model).

Features acc±std dim

fbank energy 0.574±0.013 26
fbank energy + spectral centroid 0.623±0.023 52
fbank energy + spectral centroid + harmonicity 0.636±0.010 55
fbank energy + spectral centroid + harmonicity + f0 0.648±0.024 57
fbank energy + spectral centroid + harmonicity + f0 + pitch 0.659±0.018 62
fbank energy + spectral centroid + harmonicity + f0 + pitch + pulses 0.660±0.017 66
fbank energy + spectral centroid + harmonicity + f0 + pitch +
pulses + sentiment

0.648±0.014 67

fbank energy + spectral centroid + harmonicity + f0 + pitch +
pulses + sentiment + ttr

0.653±0.012 69

fbank energy + spectral centroid + harmonicity + f0 + pitch +
pulses + sentiment + ttr + voicing

0.637±0.024 72

fbank energy + spectral centroid + harmonicity + f0 + pitch +
pulses + sentiment + ttr + voicing + jitter

0.655±0.014 77

Table 6: Evaluation on embedding features (age model).

Embedding crawl extvec glove news
acc+std 0.3647±0.0266 0.3690±0.0191 0.3643±0.0087 0.3473±0.0302
Embedding turian twitter tf idf empath
acc+std 0.3643±0.0284 0.3507±0.0203 0.3530±0.0128 0.3393±0.0182

Table 7: Classification accuracy tested on various datasets for
the age model. #test denotes the number of test examples.

Dataset #test In-dataset Data Fusion Data Fusion
+ Gender Separation

Common Voice 9000 0.7249 0.7414 0.7460
VoxForge 3579 0.8178 0.8128 0.8268
VCTK 4000 0.9423 0.9398 0.9480
AphasiaBank 1099 0.6016 0.6497 0.6261
DementiaBank 73 0.8493 0.7808 0.7945
RHDBank 772 0.9391 0.9443 0.9313

strong baseline for evaluating the model generalisation. Com-
mon Voice and VoxForge contain data from all three age groups.
We observe a slight improvement by data fusion and gender
separation compared to the in-dataset accuracy. VCTK does
not contain any data from older adult class and the age range
is narrow (speakers are 18 to 30 years old). In this case, a bi-
nary in-dataset classifier is trained. AphasiaBank, Dementia-
Bank and RHDBank have a similar situation that there is no or
few data from the child class and the age range is close to the
pre-defined boundary. We observe the proposed model still per-
forms competitively under this challenging condition. In gen-
eral, by using data fusion to introduce additional data sources,
a few improvements can be observed in the classification ac-

Table 8: Classification accuracy tested on various datasets for
the non-native model.

Dataset #test In-dataset Data Fusion

Common Voice 18000 0.8066 0.8042
VoxForge 6000 0.860 0.8584
VCTK 3000 0.967 0.9553

Table 9: Average classification accuracy evaluated on multiple
datasets for all trained models with top feature combination and
dimensionality.

Model acc Top Feature Combination dim

Age
(+Gender Separation) 0.8121 jitter + shimmer + fbank energy + spectral centroid +

f0 + sentiment + ttr 64

Age 0.8115 pulses + harmonicity + fbank energy +
spectral centroid + f0 + sentiment + ttr 68

Non-Native 0.8726 pitch + voicing + jitter + shimmer + fbank energy
+ spectral centroid 71

Patient 0.6840 shimmer + harmonicity + mfcc + fbank energy
+ spectral centroid + f0 + pos counts + ttr 588

curacy across these datasets. With the help of gender separa-
tion, 4 out of 6 datasets perform slightly better than the orig-
inal age model. Table 8 shows the classification accuracy for
the non-native model tested on ASR datasets. Common Voice
contains a large number of non-native speakers that are In-
dian, whereas VoxFroge contains a large number of non-native
speakers are European. VCTK was claimed as a native English
speaker dataset in the original publication. However, we found
it contains one speaker from India. Considering the diversity
of the three datasets, the proposed data fusion model is rela-
tively robust that the test accuracy is slightly lower than the in-
dataset accuracy. For evaluating the patient model, we retrieved
59 videos from YouTube using some patient related keywords:
aphasia+example, dementia+example, mental+ill+patient and
patient+voices+nhs. “+” denotes an AND relation in a search
query. We also retrieved the associated transcription. We con-
verted these videos into audio and trim them into short clips by
the timestamp in the transcription. However, no speaker infor-
mation is available for this dataset. We randomly select 510
audio clips from this dataset and manually annotate them as pa-
tient (124) or non-patient (386) voice clips. Due to the tran-
scription quality, this model was evaluated under a challenging
noisy condition and the results can be treated as a baseline for
future development. The patient model achieved a classification
accuracy of 0.684 (Table 9). We observed a relatively low false
positive rate (0.1891) but a low true positive rate (0.2903).

5. Conclusion and Future Work
We studied the features extracted from short speech segments
and their transcription. We address the detection problem by
dividing it into three separate classification tasks: age classifi-
cation, accent classification and patient/non-patient classifica-
tion. We trained an age model, a non-native model and a pa-
tient model respectively. We evaluated the age and non-native
models on multiple benchmark datasets. The patient model
was evaluated on a manually-annotated dataset collected from
YouTube. We presented a data-driven approach to address the
vulnerability detection problem. The models were trained us-
ing supervised learning algorithms on extracted features. We
plan to extend this work using semi-supervised learning and
pre-trained deep learning models for speech to reduce the num-
ber of labelling data required for training. In the future, we will
adapt the vulnerability detection system to the practice.
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Abstract
Automatic recognition of elderly and disordered speech remains
a highly challenging task to date. Such data is not only dif-
ficult to collect in large quantities, but also exhibits a signif-
icant mismatch against normal speech trained ASR systems.
To this end, conventional deep neural network model adapta-
tion approaches only consider parameter fine-tuning on lim-
ited target domain data. In this paper, a novel Bayesian para-
metric and neural architectural domain adaptation approach is
proposed. Both the standard model parameters and architec-
tural hyper-parameters (hidden layer L/R context offsets) of two
lattice-free MMI (LF-MMI) factored TDNN systems separately
trained using large quantities of normal speech from the English
LibriSpeech and Cantonese SpeechOcean corpora were domain
adapted to two tasks: a) 16-hour DementiaBank elderly speech
corpus; and b) 14-hour CUDYS dysarthric speech database.
A Bayesian differentiable architectural search (DARTS) super-
network was designed to allow both efficient search over up to
728 different TDNN structures during domain adaptation, and
robust modelling of parameter uncertainty given limited tar-
get domain data. Absolute recognition error rate reductions of
1.82% and 2.93% (13.2% and 8.3% relative) were obtained
over the baseline systems performing model parameter fine-
tuning only. Consistent performance improvements were re-
tained after data augmentation and learning hidden unit contri-
bution (LHUC) based speaker adaptation was performed.
Index Terms: speech recognition, domain adaptation, Bayesian
learning, neural architecture search

1. Introduction
Despite the rapid progress of automatic speech recognition
(ASR) technologies targeting normal speech [1–5] in the past
few decades, accurate recognition of atypical speech task do-
mains represented by, for example, elderly and dysarthric
speech, remains a highly challenging task to date [6–9].

Ageing presents enormous challenges to health care and
current speech technologies. Neurocognitive disorders (NCDs),
such as Alzheimer’s disease (AD), are often found among older
adults [10] and manifest themselves in speech and language im-
pairments including weakened neuro-motor control in speech
production and imprecise articulation [11, 12]. Speech disor-
ders such as dysarthria can also be caused by a range of other
conditions including cerebral palsy, amyotrophic lateral sclero-
sis, stroke or traumatic brain injuries [13]. People with speech
impairment often experience co-occurring physical disabilities
and mobility limitations.

∗ Equal contribution

Elderly and dysarthric speech exhibit a wide spectrum of
challenges for current deep neural networks (DNNs) based ASR
technologies that predominantly target normal speech. First, a
large mismatch between such data and non-aged, healthy adult
voice is often observed. Such difference manifests itself across
many fronts including articulatory imprecision, decreased vol-
ume and clarity, changes in pitch, increased dysfluencies and
slower speaking rate [14, 15]. State-of-the-art ASR systems
designed for normal speech often produce very high recogni-
tion error rate above 40% when being applied to elderly or im-
paired speech [9, 16, 17]. Second, the co-occurring disabilities,
mobility or accessibility limitations often found among elderly
and disordered speakers lead to the difficulty in collecting large
quantities of such data that are essential for current data inten-
sive deep learning based ASR system development.

To this end, a range of techniques designed to address the
above domain mismatch and data sparsity issues have been
studied in recent years primarily in the context of dysarthric
speech recognition. Motivated by the spectral-temporal level
differences of disordered speech from normal speech such as
slower speaking rates, recent research in data augmentation
has been largely focused on tempo-stretching [18], vocal tract
length perturbation (VTLP) [19], and speed perturbation [20]
of normal speech recorded from healthy control speakers. The
resulting “disordered like” speech carrying a slower speaking
rate and modified overall vocal tract spectral shape is then used
to augment the limited dysarthric speech training data. Alterna-
tive approaches based on cross-domain DNN model or feature
adaptation [21–23], domain adversarial training [24], transfer
learning [25, 26], knowledge distillation [27], and voice con-
version [28, 29] have also been investigated.

Among the above, model based domain adaptation ap-
proaches benefit not only from a tight integration of domain
dependently estimated parameters with the underlying speech
recognition error cost based on, for example, the lattice-free
maximum mutual information (LF-MMI) criterion [25], or se-
quence to sequence learning objective functions, for example,
used in recurrent neural network (RNN) transducers [22], but
also fine modelling granularity in adapted parameters when suf-
ficient target domain data is available.

However, there are two issues associated with model based
domain approaches when being applied to elderly or disordered
speech recognition tasks. First, due to the difficulty in collect-
ing large quantities of such data, and the often limited amounts
of existing elderly [30] or dysarthric speech datasets [31], direct
fine-tuning of large numbers of out of domain, normal speech
data estimated DNN model parameters on limited elderly or
dysarthric speech data is generally problematic. The severe data
sparsity issue and the resulting modelling uncertainty need to be
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addressed. Second, the underlying neural architecture designs
in current ASR systems are often designed using expert knowl-
edge and empirical evaluation within individual task domains,
for example, conversational telephone speech [32], or meet-
ing transcription [33]. For example, the left and right splicing
context offsets in the hidden layers of state-of-the-art LF-MMI
trained time delay neural network (TDNN) systems [3, 34] rep-
resent the range of temporal contexts that can be exploited in
modelling. The DementiaBank Pitt corpus [30], the largest pub-
licly available elderly speech database, contains 4.8 words per
utterance on average, in contrast to the normal speech data from
the LibriSpeech corpus [35] of approximately 31 words per ut-
terance. Similar designs based on shorter sentences also feature
in current dysarthric speech corpora [31].

In order to address these issues, a novel Bayesian para-
metric and neural architectural domain adaptation approach
is proposed in this paper. Both the standard model parame-
ters and architectural hyper-parameters (hidden layer left and
right context offsets1) of two LF-MMI factored TDNN sys-
tems separately trained using large quantities of normal speech
from the English LibriSpeech and Cantonese SpeechOcean cor-
pora were domain adapted to two tasks: a) 16-hour Dementia-
Bank elderly speech corpus; and b) 14-hour CUDYS dysarthric
speech database. Bayesian learning of differentiable architec-
tural search (DARTS) [38] super-network was employed to al-
low both efficient search over up to 728 different TDNN struc-
tures during domain adaptation, and robust modelling of pa-
rameter uncertainty given limited target domain data. Absolute
recognition error rate reductions of 1.82% and 2.93% (13.2%
and 8.3% relative) were obtained over the baseline systems per-
forming model parameter fine-tuning only. Consistent perfor-
mance improvements were retained after data augmentation and
learning hidden unit contribution (LHUC) based speaker adap-
tation was performed. To the best of our knowledge, this is the
first work to consider both parametric and architectural cross-
domain adaptation for elderly and dysarthric speech recogni-
tion. In contrast, the majority of previous researches on domain
adaptation for the same tasks have been focused on direct pa-
rameter fine-tuning [22, 23, 25, 26] while the data sparsity and
architecture mismatch issues remain unsolved.

The rest of this paper is organized as follows. Section
2 presents Bayesian domain adaptation of LF-MMI trained
TDNN systems. A novel differentiable architecture search ap-
proach automatically learning the L/R context offsets hyper-
parameters of Bayesian TDNN systems is proposed in Section
3. Section 4 presents the experiments and results. Finally, the
conclusions are drawn in Section 5.

2. Bayesian TDNN Adaptation
In contrast to conventional model adaptation methods perform-
ing fixed-value, deterministic parameter fine-tuning given lim-
ited target domain data, Bayesian adaptation approaches ad-
dress the data sparsity issue by modelling parameter uncertainty
using the following predictive distribution. Given an adaptation
data set D = {Or,Hr}, where Or and Hr are the r-th speech
utterance and the reference word sequences, respectively. The

1Prior researchers suggested [36, 37] that TDNN context offset set-
tings significantly affect the resulting system’s temporal modelling res-
olution and recognition performance, while other hyper-parameters, e.g.
the hidden layer dimensionality, were used to control the overall system
complexity, thus not considered here.

prediction over the r-th test utterance O∗r is given by

p(H∗r |O∗r ,D) =
∫
p(H∗r |O∗r ,w)p(w|D)dw (1)

where H∗r denotes the predicted word sequence for the test ut-
terance r, w is the Bayesian adaptation parameters and p(w|D)
is its posterior distribution learned from the adaptation data.

LF-MMI Trained TDNNs: TDNNs [39] produced state-
of-art performance on different tasks [34, 40, 41]. TDNN is
an instance of 1-dimension convolutional neural networks with
parameters tying over different time steps. The lower TDNN
layers are designed to learn narrower, local temporal contexts,
while the higher layers learn wider, longer range contexts. The
TDNN hidden left and right splicing context offsets are im-
portant hyper-parameters controlling its hierarchical temporal
modelling ability. This paper adopted the factored TDNN [40].

In contrast to the conventional cross entropy criterion, se-
quence level error costs more closely related recognition accu-
racy, for example, the MMI [1] criterion, is widely used in state-
of-the-art ASR systems [3, 42, 43].

FMMI(D;Θ) =
∑
r

log
p(Or|Hr)

κP (Hr)∑
Ĥr

p(Or|Ĥr)κP (Ĥr)
(2)

where Θ contains both hyper-parameters such as hidden layer
context offsets and normal TDNN weight parameters, κ is the
acoustic scaling factor and Ĥr is the possible word sequence in
the decoded speech lattice for utterance r. The efficient lattice-
free MMI training [3] that alleviates the explicit denominator
lattice generation is considered in this paper.

Bayesian TDNN Model Adaptation: During domain
adaptation, the parameter posterior distribution p(w|D) re-
quired in the form of Bayesian prediction in Eqn. (1) can be
learned by maximising the following MMI criterion marginali-
sation over all parameter estimates.

F = log

∫
exp{FMMI(D;Θ)}Pr(w)dw (3)

where w ∈ Θ and Pr(w) is the prior distribution of adapta-
tion parameters. Direct optimisation of the above integral is
nontrivial. An alternative more efficient variational inference is
utilized to learn the adaptation parameter posterior distribution
by optimising the following lower bound,

F ≥
∫
q(w)FMMI(D;Θ)dw −KL(q(w)||Pr(w))

= LMMI
1 − LMMI

2 = LMMI (4)

where q(w) is the variational approximation of the posterior
distribution p(w|D) and KL(q(w)||Pr(w)) is the Kullback-
Leibler (KL) divergence between q(w) and Pr(w). For effi-
ciency, and based on the previous research findings [41], both
q(w) = N (µ,σ2) and Pr(w) = N (µr,σ

2
r) are assumed

to be Gaussian distributions. The first term LMMI
1 is approxi-

mated with Monte Carlo sampling method, which is given by

LMMI
1 ≈ 1

N

∑N

k=1
FMMI(D;Θ,µ+ σ � εk) (5)

where εk is the k-th Monte Carlo sampling value drawn
from the standard normal distribution N (0, 1) and � is the
Hadamard product. The KL divergence based second term
LMMI

2 in Eqn. (4) can be explicitly calculated as

LMMI
2 =

1

2

∑
i

(
σ2
i + (µi − µr,i)2

σ2
r,i

+ 2 log
σr,i
σi
− 1) (6)
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where {µr,i, σr,i} and {µi, σi} are the i-th hyper-parameters
of the prior distribution {µr,σr} and variational distribution
{µ,σ}, respectively. The variational distribution parameters
are updated during back propagation.

Implementation Details over several crucial settings are:
1) The first TDNN layer parameters practically exhibit more
uncertainty due to the larger input data variability than those
observed at higher layers designed to produce more invariant
features. Based on our previous findings [41, 44], Bayesian
domain adaptation was applied to the first layer of all TDNN
systems in this paper, while the other higher layers parameters
were fine-tuned to the target domain data. 2) The prior for all
Bayesian adapted TDNN systems is based on the comparable
fully converged standard fixed-parameter fine-tuning adapted
TDNN systems. Other parameters in the Bayesian adapted
TDNN systems are initialized using those of the halfway fine-
tuned TDNN systems during adaptation. 3) The variational dis-
tribution variance is shared among all nodes of the first layer,
which allows the number of parameters in Bayesian adapted
TDNN system to be comparable to that of the standard fixed-
parameter adapted system. 4) For efficiency, only one param-
eter sample is drawn in Eqn. (5) to ensure the computational
cost in Bayesian adaptation to be comparable to that of the stan-
dard fine-tuning adapted TDNN system. During recognition
time, the predictive inference integral in Eqn. (1) is efficiently
approximated by the expectation of Bayesian adapted TDNN
model parameters.

3. TDNN Architecture Adaptation
The general problem of TDNN hyper-parameter domain adap-
tation is transformed into a domain adaptive neural architecture
search [36, 45] task within the DARTS [38] framework that
allows both the architecture hyper-parameters and TDNN, or
Bayesian TDNN parameters to be optimized consistently dur-
ing adaptation to elderly or disordered speech data. An over-
parameterized super-network containing paths connecting all
neural architecture candidates is trained first, before the selec-
tion weights over each neural architecture candidate within the
super-network are learned in the search stage. On convergence
of the super-network model, the optimal architecture is obtained
by pruning lower weighted paths. For example, the output hl of
l-th layer in the DARTS super-network is given by

hl =
∑Nl−1

i=0
λliφ

l
i(W

l
ih
l−1) (7)

where N l denotes the number of architecture candidate selec-
tions in the l-th layer and λli is the weight of the i-th architecture
candidate in the l-th layer. Wl

i and φli are the linear transforma-
tion parameter matrix and activation function for the i-th candi-
date system in the l-th layer, respectively.

Pipelined Gumbel-Softmax DARTS: In order to minimize
the confusion between different architectures found in conven-
tional Softmax based DARTS [38], a Gumbel-Softmax distri-
bution [46] is used to produce approximately a one-hot vector,
categorical architecture weights as the following

λli =
exp((logαli +Gli)/T )∑Nl−1

j=0 exp((logαlj +Glj)/T )
(8)

where αli is the parameter in the Gumbel-Softmax distribution,
Gli = - log(- log(U li ))) is the Gumbel variable, U li is a random
variable sampled from a uniform distribution. T is the temper-
ature hyper-parameter annealed from 1 to 0.03 in this paper.

Following [36, 46], the update of TDNN parameters and ar-

Affine 

layer

…

…

1/0 1/0 1/1

1/01/01/1

)Bayesian 

layer

Linear

layer

Figure 1 Example DARTS super-network for Bayesian TDNNs
(Bayesian layer in yellow square). Dashed lines in different
colors are different Left/Right context offsets. The blue integers
denote the super-network system using all context offsets, while
the red integers represent a candidate offset choice of ± 2.

chitecture weights were performed in two stages, in a pipelined
fashion, to avoid sub-optimal selection of architectures. In or-
der to prevent overfitting to the training data, a separate held-out
data set taken out of the original training data is used. In the first
stage, the TDNN parameters are updated to convergence using
the training data first, while randomly sampled one-hot archi-
tecture weights drawn from a uniform distribution are used in
back-propagation. In the second stage, the TDNN parameters
estimated in the first stage in the super-network are fixed and
the architecture weights are updated using the held-out data.

TDNN-F Context Offset Search Space: The context off-
sets of TDNNs are crucial for modeling long temporal infor-
mation in speech. Manually setting these hyper-parameters by
evaluating a large number of possible system configurations is
impractical. To this end, parameter sharing within the super-
network can be used [47]. As shown in Fig. 1, all possible
choices of context offsets to the left ({-d, 0}, ···, {1, 0}, {0, 0})
and right ({0, 0}, {0, 1}, · · ·, {0, d}) at each layer are incorpo-
rated into the TDNN-F super-network. The super-network de-
signed for a L hidden layers TDNN contains (d+1)2L possible
candidate models, each of which is indicated by setting the cor-
responding connecting weights as 1, while others as 0.

Architectural and Parametric Adaptation of Bayesian
TDNNs is performed in three stages: a) Architecture adapta-
tion is performed by first constructing a Bayesian TDNN super-
network shown in Fig. 1 that contains all possible hidden layer
context offset settings using the source domain data alone, be-
fore being adapted to the target domain. In this process, the
very large number of standard TDNN parameters, often in tens
of millions, are Bayesian adapted to ensure robustness on lim-
ited target domain data as described in Section 2, while the
comparatively much smaller number of architecture selection
weights, 2L(d+1) in total, linearly related to the number of
hidden layers L and maximum context offset d, are fine-tuned
during adaptation. b) Architecture search performed over the
resulting domain adapted Bayesian TDNN super-network will
then be searched over to produce the 1-best TDNN context
offset settings. c) Bayesian model adaptation is finally per-
formed by first constructing a TDNN system that features the
above adapted architecture configurations but uses the source
domain training data. The standard model parameters of this
prior TDNN system are then further adapted in a Bayesian fash-
ion to the target domain speech to produce the full architecture
plus parameter adapted system.

4. Experiments
The proposed Bayesian parametric and architectural domain
adaptation approach was investigated on two tasks for LF-
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MMI factored TDNN systems: 1) from the English LibriSpeech
speech corpus to DementiaBank elderly database; 2) from the
Cantonese SpeechOcean corpus to the CUDYS dysarthric data.

Experimental Setup: The data sets and the baseline sys-
tems used in the two adaptation tasks are described below.

English Elderly Adaptation Task: A 1000 Hour Lib-
riSpeech data set [35] is adopted as the source domain data. The
DementiaBank database [30] is the target domain data, which
includes 15.74-hour training set (9.72-hour elderly participant
and 6.03-hour investigator data) and 3.14-hour test set (1.93-
hour elderly participant and 1.21-hour investigator data) after
silence stripping [8]. The word and duration per utterance on
average in LibriSpeech (DementiaBank) corpus are 31 (4.8) and
11.3 (1.9) second, respectively. The training set was expanded
to 59 hours when speed perturbation was performed. A 4-gram
language model described in [8] was used.

Cantonese Dysarthric Adaptation Task: A Cantonese
CUDYS dysarthric speech corpus [31] containing a 14.09-hour
training set and 3.61-hour testing set with low and high intel-
ligibility groups after silence stripping and speed perturbation
[19] is utilized as the target domain data. 19.77-hour external
data extracted from 163-hour Cantonese SpeechOcean normal
speech corpus was mixed with 14.09-hour CUDYS training set
for source-domain acoustic model training. The word and du-
ration per utterance on average in the SpeechOcean (CUDYS)
data set are 9.3 (1.6) and 4.0 (1.6) second, respectively. A 80k
word 4-gram language model in [19] was used in recognition.

Baseline TDNN Systems: For the two domain adaptation
tasks, LF-MMI factored TDNNs of 14 (English) and 7 (Can-
tonese) hidden layers were used2, with the GMM-HMM system
configuration the same as [8]. 40-dim filter-bank input features
were used in both tasks. 100-dim i-vector features were ap-
pended for Librispeech and DementiaBank systems, while 3-
dim pitch features were used for Cantonese SpeechOcean and
CUDYS systems. For both tasks, the Bayesian architecture and
parameter adaptation procedure in Section 3 was performed3.

Table 1 WERs (%) of TDNN systems trained using LibriSpeech
or DementiaBank data alone, before domain adaptation of
model parameters and optionally architecture (context offsets)
w/o Bayesian estimation. (a,b) in the ”context offsets” column
denotes the context offsets {-a, 0} to left and {0, b} to right.
† denotes a statistically significant difference obtained over the
parametric fine-tuning baseline system (Sys. 3, 8, 13).

Sys. Data
sets

Domain adaptation Context offsets
1-th to 14-th layer

Data
aug.

LHUC
SAT

DEV. Eval. ALLArch. Para. PAR INV PAR INV

1 LIBRI 7 7
1,1 1,1 0,0 3,3 3,3 3,3 3,3
3,3 3,3 3,3 3,3 3,3 3,3 3,3 7 7 - - - - 99.59

2 DEMEN 7 7
same as Sys. (1)

7 7

51.16 22.01 38.78 21.53 36.34
3

LIBRI
−→

DEMEN

7 FineTune 49.70 20.77 38.97 21.31 35.28
4 7 Bayes [8, 41] 47.48 20.01 36.72 19.09 33.65†

5 DARTS FineTune 5,0 0,4 0,2 0,4 5,4 2,6 0,6
0,6 0,5 6,5 6,5 6,6 6,5 6,6 46.45 19.16 35.78 18.87 32.73†

6 Bayes Bayes 1,1 4,3 5,3 5,2 4,3 6,2 4,4
4,5 4,5 4,6 5,6 5,6 6,6 6,6 45.31 19.86 34.35 19.53 32.35†

7 DEMEN 7 7
same as Sys. (1)

3 7

46.94 20.06 36.97 19.98 33.53
8

LIBRI
−→

DEMEN

7 FineTune 46.91 19.29 36.64 20.09 33.15
9 7 Bayes[8, 41] 45.90 19.84 35.15 19.53 32.71

10 DARTS FineTune 0,6 0,5 5,5 4,5 6,6 6,5 0,6
0,6 0,6 0,6 0,5 0,6 0,6 6,5 45.25 18.94 35.46 21.09 32.19†

11 Bayes Bayes 1,1 4,6 4,5 4,4 4,4 3,3 3,6
4,3 4,5 6,6 6,6 6,6 6,5 6,6 44.56 19.66 33.68 17.87 31.81†

12 DEMEN 7 7
same as Sys. (1)

3 3

44.95 18.52 35.33 17.54 31.77
13 LIBRI

−→
DEMEN

7 FineTune 44.16 19.12 34.16 19.42 31.56
14 7 Bayes[8, 41] 44.08 19.11 34.22 18.87 31.52
15 DARTS FineTune same as Sys. (10) 43.75 18.37 33.84 19.53 31.04†

16 Bayes Bayes same as Sys. (11) 43.36 19.07 32.08 17.98 30.83†

Performance of English Elderly DementiaBank: Table 1

2The DARTS systems perform the search over 728 (English) and
714 (Cantonese) TDNN-F choices with the maximum contexts of ±6.

3A matched pairs sentence-segment word error based statistical sig-
nificance test was performed at a significance level α=0.05.

demonstrates the performance of the DementiaBank corpus.
Several trends are observed. First, the systems considering both
architectural and parametric adaptation (Sys. 5, 6) outperform
the corresponding systems only considering parameter adapta-
tion (Sys. 3, 4) by up to 2.55% absolute word error rate (WER)
reductions. Second, further improvement by 0.38% absolute
WER reduction was obtained in the Bayesian architectural and
parametric adapted systems (Sys. 6) over the corresponding ar-
chitectural and parametric adapted systems without Bayesian
estimation (Sys. 5). Finally, consistent performance improve-
ments were retained after data augmentation and LHUC based
speaker adaptation. In the cross-domain adapted systems, the
largest absolute WER reduction up to 2.93% was achieved by
the Bayesian parametric and architectural adapted system (Sys.
6) over the parameter fine-tuning system (Sys. 3).

Performance of Cantonese Dysarthric CUDYS: Results
conducted on the CUDYS corpus are presented in Table 2 with
similar trend to the DementiaBank task, absolute character er-
ror rate (CER) reductions of up to 1.61% were obtained in the
systems considering both architectural and parametric adapta-
tion (Sys. 6, 7) over the corresponding parameter fine-tuning
adapted systems (Sys. 4, 5). Second, the Bayesian architectural
and parametric adapted systems (Sys. 7, 12) perform the best
among other systems before and after speaker adaptation. In
the cross-domain systems, the greatest absolute CER reduction
up to 1.82% was obtained by the Bayesian parametric and ar-
chitectural adapted TDNN system (Sys. 7) over the parameter
fine-tuning TDNN system (Sys. 4).

Table 2 CERs (%) of TDNN systems trained using SpeechOcean
or CUDYS data alone, before domain adaptation of model
parameters and optionally architecture (context offsets) w/o
Bayesian estimation. † denotes a statis. sig. diff. obtained
over the parametric fine-tuning baseline system (Sys. 4, 9).

Sys. Data
sets

Domain adaptation Context offsets
1-th to 7-th layer

LHUC
SAT

DEV. Eval. ALLArch. Para. High Low High Low
1 SPOC

7 7 1,1 1,1 0,0 3,3 3,3 6,6 6,6 7
32.92 98.51 14.24 94.97 36.12

2 CUDY 9.94 88.09 1.30 85.89 19.80
3 SP. & CU. 7 7

same as Sys. (1)
7

4.97 85.32 0.72 70.36 15.37
4 SP. & CU.

−→
CUDY

7 FineTune 5.67 79.47 1.02 57.14 13.74
5 7 Bayes 4.13 74.68 0.90 52.30 12.22†

6 DARTS FineTune 5,6 6,6 6,6 5,6 6,6 6,5 6,6 5.14 71.17 1.17 48.88 12.13†

7 Bayes Bayes 6,4 5,6 6,6 6,6 6,6 6,6 6,6 4.77 66.06 1.49 49.05 11.92†

8 SP. & CU. 7 7
same as Sys. (1)

3

1.85 76.91 0.60 63.12 12.74
9 SP. & CU.

−→
CUDY

7 FineTune 1.91 75.74 0.44 52.07 11.15
10 7 Bayes 1.15 71.81 0.44 50.92 10.51†

11 DARTS FineTune same as Sys. (6) 2.01 67.87 0.40 45.49 9.96†

12 Bayes Bayes same as Sys. (7) 1.51 69.47 0.69 41.51 9.41†

5. Conclusions
The paper proposed a Bayesian parametric and neural archi-
tectural domain adaptation approach to rapidly port LF-MMI
trained TDNNs based state-of-the-art ASR systems developed
using large amounts of normal speech data to elderly and dis-
ordered speech task domains of more limited quantities. Ex-
perimental results suggest Bayesian adaptation can effectively
mitigate the risk of overfitting when directly cross domain fine-
tuning systems containing a large number of parameters. Ar-
chitecture adaptation can further improve the generalization of
systems using parameter adaptation only. Future research will
focus on the adaptation of more advanced neural architectures.
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Abstract
This paper describes our submission to the ADreSSo Chal-
lenge, which focuses on the problem of automatic recognition
of Alzheimer’s Disease (AD) from speech. The audio samples
contain speech from the subjects describing a picture with the
guidance of an experimenter. Our approach to the problem is
based on the use of embeddings extracted from different pre-
trained models — trill, allosaurus, and wav2vec 2.0 — which
were trained to solve different speech tasks. These features
are modeled with a neural network that takes short segments
of speech as input, generating an AD score per segment. The
final score for an audio file is given by the average over all seg-
ments in the file. We include ablation results to show the per-
formance of different feature types individually and in combi-
nation, a study of the effect of the segment size, and an analysis
of statistical significance. Our results on the test data for the
challenge reach an accuracy of 78.9%, outperforming both the
acoustic and linguistic baselines provided by the organizers.
Index Terms: computational paralinguistics, ADreSSo chal-
lenge, Alzheimer’s Disease recognition

1. Introduction
For many health problems, like speech pathologies, Parkinson’s
disease, Alzheimer’s Disease (AD), and respiratory problems,
the patient’s speech is routinely used by doctors as one of the
tools for diagnosis and monitoring of disease progression [1].
In particular, AD is characterized by a progressive decline of
cognitive and functional abilities over time [2] often includ-
ing language impairment, even at early stages [3]. As a con-
sequence, many studies rely on the analysis of the speech signal
as a source of clinical information for AD [4, 5].

In this work, we present results and analysis of our sub-
mission to the ADreSSo (Alzheimer’s Dementia Recognition
through Spontaneous Speech only) Challenge [6]. This chal-
lenge is focused on the automatic detection of AD using record-
ings of interviews with the subjects. A previous version of this
challenge, called ADreSS, took place last year. In that case,
manual transcriptions of the speech signals were provided to
the participants along with the recordings. In this year’s chal-
lenge, manual transcriptions are not provided, so systems have
to rely solely on the speech signal for classification. The chal-
lenge includes three tasks: AD classification, Mini-Mental State
Examination (MMSE) score regression, and cognitive decline
inference. In this work, we present results on the AD classifica-
tion task.

AD may affect the patient’s speech production in terms of
paralinguistic aspects like the prosodic patterns, pause patterns

or quality of speech, and in terms of linguistic aspects, like
choice of words or grammatical forms. Previous works have
found that both acoustics and linguistic information can be used
for automatic prediction of AD. In a paper about the ADreSS
challenge [7], a comparison of acoustic and linguistic features
showed that acoustic features resulted in an accuracy of 64.5%
while linguistic features from manual transcriptions resulted in
an accuracy of 85.42%. A similar trend is observed in the base-
line results for this year’s challenge [6], although with relatively
poorer performance for the linguistic features due to the absence
of manual transcriptions, which are replaced by automatic ones.
In our work for this challenge, we focus on the use of acous-
tic features, without extracting automatic word transcriptions.
Further, considering the sparsity of the available training data,
we propose to use transfer learning approaches. To this end, we
leverage recently released speech-based embedding models that
aim to represent different aspects of the speech signal.

Pre-trained speech-based embeddings are currently being
used in several speech recognition tasks, such as speech emo-
tion recognition [8, 9, 10, 11] and automatic speech transla-
tion [12]. These compact representations can encode different
speech attributes depending on the way the models are trained.
Information about prosody, phonetic or lexical content may be
emphasized in the representations, depending on the task used
to train the models. The use of these representations, in combi-
nation with neural networks for the modeling stage, often pro-
vides an improvement over directly using signal processing fea-
tures like mel frequency cepstral coefficients (MFCC) or Mel-
spectrograms.

In this paper, we present our results using different types of
embeddings and traditional prosodic features for the task of AD
classification. We use a simple deep neural network for model-
ing each individual feature and their combinations. The model
takes relatively short segments of speech as input and averages
the resulting scores over all segments in an audio sample to cre-
ate the final score. We show different analysis, including an
ablation study to find the most useful features, a study of sta-
tistical significance, a comparison of the effect of the window
length, and an analysis of the effect of the presence of experi-
menter speech in the signals. Our results on the challenge data
are significantly better than the acoustic-only baseline results
implemented by the organizers and also outperform the linguis-
tic baseline that uses automatic transcriptions [6].

2. Dataset
The development dataset provided by the ADreSSo challenge
consists of 166 recordings of 87 patients with AD diagnosis and
79 cognitively normal subjects. All the subjects were asked to
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describe the Cookie Theft picture from the Boston Diagnostic
Aphasia Exam. Audio files contain both the speech from the
subjects and the experimenter conducting the interview. A test
set with audio files from 71 subjects was used for blind eval-
uation of the models. Challenge participants are not provided
AD labels for this test data. The complete dataset description
is available in [6]. The challenge includes three tasks: an AD
classification, an MMSE score regression and a cognitive de-
cline (disease progression) inference task. We participated on
the classification task, where the goal is to determine whether
a subject is a control (CN) subject or a patient with AD, based
only on the speech signal from the interview.

Since recordings include both the speech from the subject
and the experimenter, the dataset includes segmentation infor-
mation indicating where each of the two speakers speaks. In our
initial inspection of the development data, though, we found
that this information was inaccurate for several of the audio
files. Further, we found a case where the recording included
speech from more than two speakers and was also not accu-
rately segmented to identify the subject’s speech. For these rea-
sons, we decided to work with the full audio files, without using
the provided manual segmentation, assuming that the speech
from the experimenters and any other speakers represent only a
relatively small portion of the speech present in the signal. In
Section 5.4, we show results that indicate that including the seg-
ments from the experimenters did not degrade the performance
of our system.

3. Acoustic Features
Our approach for AD classification is to use embeddings, i.e.,
vector representations, extracted from a set of pre-trained mod-
els. These models are deep neural networks (DNN) trained on
large speech dataset to solve different tasks. The embeddings
are then extracted from the output of some layer of the DNN.
In general, embeddings are extracted over relatively short re-
gions of the signal and may contain only local information or
include contextual information about the rest of the signal. The
details on the embeddings used for this paper are described be-
low. Further, we also include traditional features, designed for
tasks like emotion recognition. All features were normalized by
subtracting the mean and dividing by the standard deviation of
that feature over each recording. This normalization approach
resulted in better performance than global normalization where
every feature is normalized with the mean and standard devia-
tion obtained over all the training data.

3.1. eGeMAPS features
The extended Geneva minimalistic acoustic parameter set
(eGeMAPS) [13] is a set of features designed specifically for af-
fective speech tasks and includes pitch, loudness, formants and
voice quality features among others. The set includes both low-
level features, extracted every 10 ms of speech over windows
of 25 ms, and high-level features that correspond to different
statistics extracted from the low-level features. We use only the
low-level descriptors of the eGeMAPS v2.0 set which contains
25 features for every time step.

3.2. Trill features
The trill model was trained to generate a non-semantic repre-
sentation of speech [14]. The model minimizes a triplet loss de-
signed to solve the task of classifying whether a segment of au-
dio comes from the same or from a different original audio file
as another segment. The resulting embeddings were evaluated

in many different non-semantic tasks including speaker identi-
fication, emotion recognition and others. Authors also tested
the model on AD recognition using the Dementia Bank dataset
[15], showing good results when fine-tuning the model to this
task. We used the distilled version of the trill model, which gen-
erates embeddings of size 2048.1 For this work, we resampled
the trill embeddings, which are produced every 167 ms to 100
vectors per second (one every 10 ms) to match the resolution of
the other features.

3.3. Allosaurus features
Allosaurus2 is a universal phone recognition model that in-
cludes pre-trained acoustic and language models [16]. It can be
used to generate phonetic transcriptions and phone logits given
by log(p/(1 − p)), where p is the phone posterior probability,
producing one set of logits every 10 ms. The model was trained
with 11 languages and over 2000 utterances. For English, the
output logits are 39-dimensional. The information contained in
these logits could help us model specific pronunciation issues
in the AD subjects, as well as some indirect information about
word usage which could be found in the frequency of certain
phones.

3.4. Wav2vec 2.0 features
Wav2Vec 2.0 (from now on wav2vec2) is a framework for self-
supervised learning of representations from raw audio [17]. The
model can generate contextualized embeddings that can be later
integrated in end-to-end speech-to-text models to generate tran-
scriptions. Thus, these embeddings preserve the phone content
of the signal among other information. We used the model avail-
able from the Transformer Python library which gives embed-
dings of size 768 and was fine-tuned with 960 hours of Lib-
riSpeech.3 Large audio files had to be segmented in 20 sec-
onds long fragments to compute the features since they could
not otherwise be processed by the model. This may be sub-
optimal since it prevents the model from extracting contextual
information from the full signal. The wav2vec2 embeddings are
produced every 20 ms. As for the trill features, we resampled
these vectors to obtain 100 per second, matching the resolution
of the other features.

4. Classification model
We use deep neural networks as models for the different indi-
vidual features and their combinations. The input to the net-
works are 5-second segments extracted from the original audio
with 1-second overlap between segments. This results in 3178
segments extracted from the development data. The final score
for each audio file is obtained by computing the mean over the
scores for all the segments in the file. As explained above, we
use the full audio file, which means that some of the segments
contain speech from the experimenter. Section 5.4 shows results
on the effect of the experimenter’s speech on the performance
of the system.

The architecture is depicted in Figure 1 for the configura-
tion where all features are used. Each feature set has a corre-
sponding branch that performs a first reduction of the embed-
ding with a 1D convolution with kernel size 1 (equivalently, a
time-distributed dense layer) followed by a 1D convolution with

1https://tfhub.dev/google/nonsemantic-speech-benchmark/trill-
distilled/3

2https://github.com/xinjli/allosaurus
3https://huggingface.co/facebook/wav2vec2-base-960h
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Figure 1: Neural network architecture for the configuration in
which all the features are used. The value k indicates the size of
the kernel in the time dimension.

kernel size 3. After the second convolution, the dimension of
the output for each branch is 128. Then the activations from the
four branches are concatenated and a second 1D convolution is
performed, reducing the dimension back to 128. Finally, the
output of this layer is averaged across time and a dense layer
computes the prediction scores. Batch normalization and ReLu
activations are used in every layer. When considering only a
subset of the features, the same model is used with only the
corresponding branches included.

5. Results
In this section we show results for the proposed systems, includ-
ing an ablation study, statistical significance results, an analysis
of the influence of the segment size and of the effect of the ex-
perimenter speech on the performance of the system. We run
experiments using 6-fold cross-validation (CV) on the devel-
opment data provided to challenge participants. The folds are
determined by subject to prevent segments from the same sub-
ject being in the training and the test set for a certain fold, which
would make the CV results overly optimistic. The models used
to obtain scores for the challenge’s evaluation data were trained
on the full training set.

5.1. Ablation Results
The middle column in Table 1 shows the results on the devel-
opment set obtained with cross-validation, for several systems
including single feature sets, 2-way combinations, and the 4-
way combination. The best individual features are trill and
wav2vec2. We hypothesize that this may be partly because
these two features sets have large dimensionality, 2048 for trill
and 768 for wav2vec2 (compared to the other two which have
25 features for eGeMAPS and 39 for allosaurus), allowing these
features to contain a richer representation of the audio. Larger
dimensions could also result in the model overfitting the train-
ing data, which would lead to poor results, but this effect is
discouraged by the small architectures we use.

Feature set Dev Test

eGeMAPS 63.9% -
trill 72.9% 69%
allosaurus 66.3% -
wav2vec2 75.3% 78.9%
eGeMAPS, allosaurus 63.9% -
eGeMAPS, wav2vec2 72.3% -
eGeMAPS, trill 71.1% -
trill, allosaurus 72.9% 70.4%
trill, wav2vec2 75.2% 69%
allosaurus, wav2vec2 70.5% -
all 74.7% 70.4%

Table 1: Accuracy values for different combinations of features
for development and test data. The five best performing models
on the development set were submitted to the challenge. Results
on the test set are shown for those cases.

Fusion results show no gains with respect to the best in-
dividual system, wav2vec2. This could imply that the other
three sets of features are redundant given the wav2vec2 fea-
tures. That is, that wav2vec2 features contain all the informa-
tion in eGeMAPs, trill and allosaurus features that is impor-
tant for AD classification. In fact, we would expect allosaurus
and wav2vec2 features to be somewhat redundant since they
are trained to solve similar tasks: phone recognition and speech
recognition, respectively. On the other hand, we would also
expect trill or eGeMAPs to provide some complementary in-
formation to those two set, since they are designed to contain
information beyond the phonetic content. Hence, a more likely
explanation for the lack of gain from fusion is that our down-
stream model is not able to effectively combine the information
from all these sets. In the future, we will continue exploring
different architectures for the combination of these features.

Finally, the right column in Table 1 shows the results for the
5 best systems based on the development results, which were the
ones selected for submission to the challenge. In the test results,
as in the development results, wav2vec2 alone was the best per-
forming model, with an accuracy of 78.9%. This result is supe-
rior to the acoustic baseline results presented in [6], which have
an accuracy of 64.79%. Further, they are also superior to the lin-
guistic baseline results in that paper, which has an accuracy of
77.46%. This is not too surprising since wav2vec2 features are
designed to contain phonetic information and, hence, are prob-
ably able to implicitly represent some information about word-
usage, as well as pronunciation patterns. Further, wav2vec2 em-
beddings have a very distinct pattern over non-speech regions.
Hence, our downstream model could potentially be learning
patterns of usage of pauses, which are likely to be useful for
differentiating AD from control subjects.

5.2. Statistical Significance Study

Given the relatively small number of samples available both
in the development and the evaluation sets, we conducted a
bootstrapping analysis on the development scores to determine
confidence intervals for each of the systems submitted to the
challenge. We sampled with replacement the 166 development
scores obtained with CV to get 5000 new sets of scores, each
with 166 samples. For each of these bootstrap sets, we com-
puted the accuracy. The purple bars in Figure 2 show the 5%
and 95% percentiles of the resulting set of accuracy values. We
can see that the intervals are wide: all systems overlap with the
others making it impossible to conclude whether there is, in-
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Figure 2: Confidence intervals from bootstrapping experiment
for the 5 best-performing models on the development set. The
purple bars show the confidence intervals with bootstrap sets
of size 166, the same as the original set, while the blue bars
show the intervals with sets of size 71, the size of the test set.
Black lines show the accuracy for each model on the develop-
ment and test sets. Further, the green lines correspond to the
test accuracy for the two baseline systems in [6].

deed, a significant difference between them.
Further, since the test set is smaller than the development

set, containing 71 subjects instead of 166, we repeated the boot-
strap analysis on the development scores, but this time selecting
only 71 samples per bootstrap set. The resulting confidence in-
tervals are, of course, wider, and reflect the variability we could
expect when testing these systems on a dataset of that size. No-
tably, the actual test results (shown in dashed black lines in Fig-
ure 2) fall within the estimated blue intervals suggesting that the
test data is well represented by the training data.

Finally, the green lines in Figure 2 show the baseline results
provided by the organizers in [6]. We can see that results for all
our systems are significantly better than the acoustic baseline
results. The wav2vec2 results are also better than the linguistic
baseline results, though not by a significant margin.

5.3. Effect of the segment size
Our downstream model takes relatively short segments as in-
put, extracted from the original audio with some overlap. The
final score for each audio file is then given by an average of
the segment-level scores. In this section, we study the effect
of the segment size. Figure 3 shows the accuracy results at au-
dio level (i.e., one sample per subject, as in all other results in
this paper) and at segment level, using varying segment sizes.
For this figure, segments are shifted by 2 seconds instead of 4,
as in previous results, so that no speech is lost when using 2-
second segments. Note that, since the shift is fixed, the number
of segments for a certain audio file is approximately the same
for all segment sizes. Further, to improve the stability of the re-
sults, we run each model with 3 different seeds to determine the
cross-validation folds. The results shown in the plot correspond
to the average accuracy over those 3 runs.

Figure 3 shows an interesting trend. As intuition would
suggest, segment-level results improve as the segment size in-
creases, since more information is available to make the classi-
fication decision. On the other hand, when averaging the scores
from all segments in an audio file, the optimal segment size is
around 5 seconds; longer segments degrade performance. We
hypothesize that this is because, in longer segments, the effect
of some short-term phenomena that might be a strong indicator
for classification may be washed out. On the other hand, when
using shorter segments, the model may be able to focus on these
local phenomena and produce more discriminative scores for
the segments that contain them. Further analysis is necessary
to prove or disprove this hypothesis. If proven true, this may
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Figure 3: Average accuracy over three seeds for the wav2vec2-
only model, varying the segment size, for segment- and subject-
level scores.

suggest an interesting research direction: the development of
hierarchical models that would take the output of our segment-
level scores and effectively combine their outputs to emphasize
the more informative scores, for example, using attention mech-
anisms.

5.4. Analysis of the influence of the experimenter speech

As mentioned above, our systems obtain the final scores for
each subject as an average over all segments in an audio file.
A portion of these segments contain at least some speech from
the experimenter. To explore whether these segments had a
negative impact on our results, we performed the following ex-
periment. We computed the average accuracy over three seeds
using only the audio files for which the manual segmentation
had no obvious issues (139 out of the 166 files). Using the
wav2vec2-only model from the previous section, with segment
size of 5-seconds and shifts of 2-seconds, this gave an accuracy
of 76.97%. We then discarded the scores from all the segments
with any speech from the experimenter (33% of them) and re-
computed the average score for each audio file. The accuracy
for these new average scores did not significantly change. Given
this result, we can conclude that the effect of the experimenter’s
speech is not harmful once the model is fixed. On the other
hand, it is possible that a model trained without segments in-
cluding speech from the experimenter would work better. This
analysis is left for future work.

6. Conclusions

We presented our work on Alzheimer’s Disease recognition, us-
ing the data from this year’s ADreSSo challenge. Our approach
uses speech-based embeddings from three different pre-trained
models recently released to the public: trill, allosaurus and
Wav2vec 2.0. We also include eGeMAPS, a set of features tra-
ditionally used for emotion recognition and related tasks. The
features are modeled with a simple neural network that takes
short segments of audio and generates scores which are then av-
eraged to obtain the final score for each audio file. Word tran-
scriptions are not used by our system. We show that the best
results are obtained using Wav2vec 2.0 features, though all fea-
tures perform similarly, considering the wide confidence inter-
vals. Our results significantly outperform the acoustic baseline
provided by the organizers, reaching an accuracy of 78.87% on
the challenge’s test set.
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Abstract
Building on the success of the ADReSS Challenge at Inter-
speech 2020, which attracted the participation of 34 teams from
across the world, the ADReSSo Challenge targets three dif-
ficult automatic prediction problems of societal and medical
relevance, namely: detection of Alzheimer’s Dementia, infer-
ence of cognitive testing scores, and prediction of cognitive de-
cline. This paper presents these prediction tasks in detail, de-
scribes the datasets used, and reports the results of the base-
line classification and regression models we developed for each
task. A combination of acoustic and linguistic features ex-
tracted directly from audio recordings, without human interven-
tion, yielded a baseline accuracy of 78.87% for the AD classifi-
cation task, a root mean squared error (RMSE) of 5.28 for pre-
diction of cognitive scores , and 68.75% accuracy (F1 = 66.67)
for the cognitive decline prediction task.
Index Terms: Cognitive Decline Detection, Affective Comput-
ing, Alzheimer’s dementia, computational paralinguistics

1. Introduction
Alzheimer’s dementia (AD) is a category of neurodegenerative
diseases which entail long-term and usually gradual decrease of
cognitive functioning. As the main risk factor for AD is age,
it is increasingly prevalent in our ageing society. Due to the
severity of the disease, institutions and researchers worldwide
are investing considerably on dementia prevention, early detec-
tion and disease progression monitoring [1]. There is a need for
cost-effective and scalable methods for early detection of AD
and prediction of disease progression.

Methods for screening and tracking the progression of de-
mentia traditionally involve cognitive tests such as the Mini-
Mental Status Examination (MMSE) [2] and the Montreal Cog-
nitive Assessment (MoCA) [3]. MMSE and MoCA are widely
used because, unlike imaging methods, they are cheap, quick
to administer and easy to score. Despite its shortcomings in
specificity in early stages of dementia, the MMSE is still widely
used [4]. The promise of speech technology in comparison to
cognitive tests is twofold. First, speech can be collected pas-
sively, naturally and continuously throughout the day, gathering
increasing data points while burdening neither the participant
nor the researcher. Furthermore, the combination of speech
technology and machine learning creates opportunities for au-
tomatic screening and diagnosis support systems for dementia.
These opportunities need to be systematically assessed through
common evaluation frameworks.

The ADReSSo Challenge aims to foster systematic compar-
ison of approaches to the detection of cognitive impairment and
decline based on spontaneous speech. As has been pointed out
elsewhere [5, 6], the lack of common, standardised datasets and

tasks has hindered the benchmarking of the various approaches
proposed to date, resulting in a lack of translation of these
speech based methods into clinical practice. The ADReSSo

Challenge thus provides a forum for researchers working on ap-
proaches to cognitive decline detection based on speech data
to test their existing methods or develop novel approaches on
a new shared standardised dataset. The approaches that per-
formed best on last year’s dataset [5] employed features ex-
tracted from manual transcripts which were provided along with
the audio data [7, 8]. The best performing method [8] made in-
teresting use of pause and disfluency annotation provided with
the transcripts. While this provided interesting insights into the
predictive power of these paralinguistic features for detection of
cognitive decline, extracting such features, and indeed accurate
transcripts from spontaneous speech remains an open research
issue. This year’s ADReSSo (Alzheimer’s Dementia Recog-
nition through Spontaneous Speech only) tasks provide more
challenging and improved spontaneous speech datasets, requir-
ing the creation of models straight from speech, without manual
transcription, though automatic transcription is encouraged.

The ADReSSo datasets are carefully matched so as to avoid
common biases often overlooked in evaluations of AD detec-
tion methods, including repeated occurrences of speech from
the same participant (common in longitudinal datasets), varia-
tions in audio quality, and imbalances of gender and age distri-
bution. The challenge defines three tasks:
1. an AD classification task, where participants were required

to produce a model to predict the label (AD or non-AD) for
a short speech session. Participants could use the speech
signal directly (acoustic features), or attempt to convert the
speech into text automatically (ASR) and extract linguistic
features from this automatically generated transcript;

2. an MMSE score regression task, where participants were
asked to create models to infer the patients’ MMSE score
based solely on speech data; and

3. a cognitive decline (disease progression) inference task, for
prediction of changes in cognitive status over time, for a
given speaker, based on speech data collected at baseline
(i.e. the beginning of a cohort study).
These tasks depart from neuropsychological and clinical

evaluation approaches that have employed speech and language
[9] by focusing on prediction and recognition using sponta-
neous speech. Spontaneous speech analysis has the potential to
enable novel applications for speech technology in longitudinal,
unobtrusive monitoring of cognitive health [10], in line with the
theme of this year’s INTERSPEECH, “Speech Everywhere!”.

This paper describes the ADReSSo dataset and presents
baselines for all tasks, including feature extraction procedures
and models for AD detection, MMSE score regression and cog-
nitive decline prognosis.
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2. Related work
There has been increasing research on speech technology for
dementia detection over the last decade. The majority of this
research has focused on AD classification, but some of it tar-
gets MCI detection as well [6, 11]. These objectives are most
closely related with our first task, namely, the AD classification
task. Such related research includes the best performing models
presented in the ADReSS challenge in 2020. These achieved an
85.45% [7] and 89.6% [8] accuracy in AD classification using
acoustic features and text-based features extracted from manual
transcripts, respectively. Another approach that builds on man-
ually transcribed text and disfluency annotation, incorporating a
time-based representation achieved a maximum 93.75% classi-
fication accuracy [12]. Classification based on acoustic features
only was also attempted in [7], and obtained 76.85% accuracy
with the IS10-Paralinguistics feature set (a low dimensional ver-
sion of ComParE [13]) and Bag-of-Acoustic-Words (BoAW).

Few works rely exclusively on acoustic features or text fea-
tures extracted through ASR. One of these achieved a 78.7%
accuracy on a subset of the Cookie Theft task of the Pitt dataset,
using different comprehensive paralinguistic feature sets and
standard machine learning algorithms [14]. Another approach,
using the complete Pitt dataset, obtained 68% accuracy with
only vocalisation features (i.e. speech-silence patterns) [10].
A classification accuracy of 62.3% was reported in a study that
used fully automated ASR features with a different dataset [15].

As regards the second task, regression over MMSE scores,
there is less literature available and most of it has been presented
in recent workshops [6]. Several of these works used the above
mentioned Pitt dataset to extract different linguistic and acoustic
features and predict MMSE scores. A recent study captured dif-
ferent levels of cognitive impairment with a multiview embed-
ding and obtained a mean absolute error (MAE) of 3.42 [16].
Another study reported a MAE of 3.1 relying solely on acous-
tic features (a set of 811 features) [17]. Error scores as low as
2.2 (MAE) have been obtained, but relying on non-spontaneous
speech data elicited in semantic verbal fluency (SVF) tasks [18].

Studies addressing disease progression are far less com-
mon. Notable in this category is [19], which incorporated a
comprehensive set of features into a Bayesian network, report-
ing a MAE of 3.83 on prediction of MMSE scores across study
visits. Two other studies account for disease progression in
classification experiments. One study based on the speech fea-
tures from the ISLE dataset achieved 80.4% accuracy for intra-
subject change detection (i.e. distinguishing healthy partici-
pants who remained healthy from those who developed cog-
nitive impairment) [20]. The second study used SVF scores to
build a machine learning classifier able to predict changes from
MCI to AD over a 4-year follow-up, with 84.1% accuracy [21].

3. The ADReSSo Datasets
We provided two distinct datasets for the ADReSSo Challenge:
(1) a dataset consisting of speech recordings of Alzheimer’s pa-
tients performing a category (semantic) fluency task [22] at their
baseline visit, for prediction of cognitive decline over a two year
period, and (2) a set of recordings of picture descriptions pro-
duced by cognitively normal subjects and patients with an AD
diagnosis, who were asked to describe the Cookie Theft picture
from the Boston Diagnostic Aphasia Examination [23, 24].

The recorded data also includes speech from different ex-
perimenters who gave instructions to the patients and occasion-
ally interacted with them in short dialogues. No transcripts were

provided with either dataset, but segmentation of the recordings
into vocalisation sequences with speaker identifiers [25] were
made available for optional use. The ADReSSo challenge’s par-
ticipants were asked to specify whether they made use of these
segmentation profiles in their predictive modelling. Recordings
were acoustically enhanced with stationary noise removal and
audio volume normalisation was applied across all speech seg-
ments to control for variation caused by recording conditions
such as microphone placement.

The dataset used for AD and MMSE prediction was
matched for age and gender so as to minimise risk of bias in the
prediction tasks. We matched the data using a propensity score
approach [26, 27] implemented in the R package MatchIt [28].
The dataset was matched according to propensity scores defined
in terms of the probability of an instance of being treated as AD
given covariates age and gender. All standardised mean differ-
ences for the age and gender covariates were < 0.001 and all
differences for age2 and two-way interactions between covari-
ates were well below .1, indicating adequate balance. Propen-
sity scores were estimated using a probit regression of the treat-
ment on covariates age and gender as probit generated a better
balanced than logistic regression. The matching is summarised
in Figure 1, which shows the respective (empirical) quantile-
quantile plots for the original and balanced datasets. A plot
showing instances near the diagonal indicates good balance.
The resulting dataset encompasses 237 audio files. These were
split into training and test sets, with 70% of instances allocated
to the former and 30% allocated to the latter. These partitions
were generated so as to preserve gender and age matching.

Figure 1: Quantile-quantile plots for data before (left) and after
matching (right) by age and gender.
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The dataset for the disease prognostics task (prediction of
cognitive decline) was created from a longitudinal cohort study
involving AD patients. The time period for assessment of dis-
ease progression spanned the baseline and year-two visits of the
patients to the clinic. The task involves classifying patients into
’decline’ or ’no-decline’ categories, given speech collected at
baseline as part of a verbal fluency test. Decline was defined
as a difference in MMSE score between baseline and year-two
greater than or equal 5 points This dataset has a total of 105
audio recordings split into training and test sets as with the di-
agnosis dataset (70%/30%).

Table 1 describes both datasets. These data, including man-
ual transcrips which were not distributed for the challenge, are
now available from DementiaBank [29].

Table 1: Composition of the datasets.
Tasks 1 and 2 Task 3

AD CN Decline No decline
Age 69.38 (sd = 6.9) 66.06 (6.3) 69.84 (9.3) 70.26 (8.5)
Men 35.2% (n = 43) 34.8% (40) 24.0% (6) 47.5% (38)
Women 64.8% (79) 65.2% (75) 76.0% (19) 52.5% (42)
MMSE 17.8 (5.5) 28.9 (1.2) 17.9 (4.6) 20.7 (5.2)
Duration 65.7s (38.6) 61.6s (26.9) 58.2s (16.0) 48.9s (19.5)

4. Data representation
4.1. Acoustic features

We applied a sliding window with a length of 100 ms on the au-
dio files of the dataset with no overlap and extracted eGeMAPS
features over such frames. The eGeMAPS feature set [30] re-
sulted from an attempt to reduce the somewhat unwieldy fea-
ture sets above to a basic set of acoustic features based on their
potential to detect physiological changes in voice production, as
well as theoretical significance and proven usefulness in previ-
ous studies. It contains the F0 semitone, loudness, spectral flux,
MFCC, jitter, shimmer, F1, F2, F3, alpha ratio, Hammarberg
index and slope V0 features, as well as their most common sta-
tistical functionals, totalling 88 features per 100ms frame. We
then applied the active data representation method (ADR) [14]
to generate a frame level acoustic representation for each audio
recording. The ADR method has been used previously to gener-
ate large scale time-series data representation. It employs self-
organising mapping to cluster the original acoustic features and
then computes second-order features over these cluster to ex-
tract new features (see [14] for details). Note that this method is
entirely automatic in that no speech segmentation or diarisation
information is provided to the algorithm.

4.2. Linguistic Features

We used the Google Cloud-based Speech Recogniser to auto-
matically transcribe the audio files. The overall mean word er-
ror rate (WER) for these transcripts was 60 (±20.9), computed
against manual transcripts using NIST’s Sclite tool [31]. A po-
tential explanation for this relatively high WER is the fact that
AD speech often involves an imprecise use of language (e.g.,
ungrammatical sentences), which current ASR systems are not
optimised to handle [6]. The ASR transcripts were converted
into CHAT format which is compatible with CLAN [32], a set
of programs that allows for automatic analysis of a wide range
of linguistic and discourse structures. Next, we used the auto-
mated MOR function to assign lexical and morphological de-
scriptions to all the words in the transcripts. Then, we used two

commands: EVAL which creates a composite profile of 34 mea-
sures, and FREQ to compute the Moving Average Type Token
Ratio [33]. For comparison, we also applied the same procedure
to generate linguistic features from manual transcripts.

5. Diagnosis baseline
5.1. Task 1: AD Classification

The AD classification experiments were performed using five
different methods, namely: decision trees (DT, with leaf size
optimised through grid search within a range of 1 to 20), nearest
neighbour (KNN, where the K parameter is optimised through
grid search from 1 to 20), linear discriminant analysis (LDA),
Tree Bagger (TB, with 50 trees, and leaf size optimised through
grid search from 1 to 20), and support vector machines (SVM),
with a linear kernel, box constraint optimised by grid search be-
tween 0.1 to 1.0, and a sequential minimal optimisation solver.

The results for accuracy in the AD vs Control (CN) classi-
fication task are summarised in Table 2. As indicated in bold-
face, the best classifier in leave-one-subject-out cross valida-
tion (CV) was DT, achieving 78.92% and 72.89% accuracy us-
ing acoustic and linguistic features, respectively. On the test
set, however, the results were reversed, with linguistic features
producing an overall best accuracy of 77.46%, with the SVM
classifier. Late fusion of the acoustic and linguistic models im-
proves the accuracy on the test set further to 78.87% (Figure 2,
left). Also shown on the table are the results for linguistic fea-
tures generated from manual transcripts. One can see that man-
ual transcription leads to overall improvements in CV and to a
slight punctual improvement on testing. This suggests that even
though the ASR WER was high (60), the automatically gener-
ated transcripts still contribute appreciably to the models.

Table 2: Task1: AD classification accuracy on CV and test
data, for fully automatic acoustic and ASR features. Best re-
sults shown in boldface. Performance for features from manual
transcription (Transcript) are shown in italics for comparison.

LDA DT SVM TB KNN mean (sd)

CV
Acoustic 62.65 78.92 69.28 65.06 65.06 68.19 (6.4)
ASR 72.29 72.89 72.89 75.90 65.06 71.81 (4.0)
Transcript 80.12 77.71 80.72 76.51 69.28 76.87 (4.6)

Test
Acoustic 50.70 60.56 64.79 63.38 53.52 58.59 (6.2)
ASR 76.06 74.65 77.46 73.24 59.15 72.11 (7.4)
Transcript 76.06 67.61 78.87 66.20 60.56 69.86 (7.5)

Figure 2: Late (decision) fusion of the best results of acoustic
and linguistic models for Task 1 (left) and Task 3 (right). Preci-
sion (Pre) , recall (Rec), accuracy (Accu) and mean F1 scores
are shown on the margins.

5.2. Task 2: MMSE prediction

For this task we used five types of regression models: linear re-
gression (LR), DT, with leaf size 20 and CART algorithm, sup-
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port vector regression (SVR, with a radial basis function ker-
nel, box constraint of 0.1 and sequential minimal optimisation
solver), Random Forest regression ensembles (RF), and Gaus-
sian process regression (GP, with a squared exponential kernel).
The regression methods are implemented in MATLAB [34].

Table 3: Task2: MMSE score prediction error scores (RMSE)
for CV and test data. Results for manual transcripts in italics.

LR DT SVR RF GP mean (sd)

CV
Acoustic 6.88 6.88 6.96 7.89 6.71 7.06 (0.47)
ASR 6.65 5.92 6.42 7.02 6.50 6.50 (0.40)
Transcript 5.77 6.20 5.75 6.94 5.52 6.04 (0.56)

Test
Acoustic 6.23 6.47 6.09 8.18 6.81 6.75 (0.84)
ASR 5.87 6.24 5.28 6.94 5.43 5.95 (0.67)
Transcript 4.49 6.06 4.65 6.07 4.35 5.12 (0.87)

The results are summarised in Table 3. As with classifica-
tion, DT regression outperformed the other models in CV, with
ASR linguistic features outperforming acoustic ADR features.
This trend persisted in the test set, with linguistic features pro-
ducing a minimum RMSE of 5.28 in a SVR model. We then
fused the best results of linguistic and acoustic features and took
a weighted mean, finding the weights through grid search on
the validation results, which resulted in an improvement (6.37)
on the validation dataset. We then used the same weights to
fuse the test results and obtained an RMSE of 5.29 (r = 0.69).
For this task, manual transcripts produced substantial improve-
ments (a 14% error reduction on average, with as much as 18%
improvement for the best model).

6. Prognosis baseline (Task 3)
We tested the same classification methods used in Task 1 for the
task of identifying patients who went on to exhibit cognitive de-
cline within two years of the baseline visit in which the speech
samples used in our models were taken. The acoustic and lin-
guistic features were generated as described in Section 4. The
results of this prediction task are summarised in Table 4. As the
classes for this task are imbalanced we report average F1 results
rather than accuracy, Once again DT performed best on CV, but
the F1 results for the test set was considerably lower, reaching
only 66.67% for linguistic and 61.02% for acoustic features.

Table 4: Task3: cognitive decline progression results (mean of
F1Score) for leave-one-subject-out CV and test data.

LDA DT SVM TB KNN mean (sd)

Val
Acoustic 59.89 84.94 55.64 63.85 65.92 66.05 (11.27)

ASR 55.19 76.52 45.24 63.10 55.25 59.06 (11.64)

test
Acoustic 61.02 53.62 40.74 40.74 38.46 46.91 (9.89)

ASR 54.29 66.67 40.74 56.56 39.62 51.58 (11.41)

As before, we fused the predictions of the best models for
each feature type, hoping that the diversity of models might im-
prove classification. The confusion matrix for the fusion model
is shown in Figure 2, right. This time, however, decision fusion
did not yield any improvement in accuracy, although sensitivity
(recall) improved from 40% to 70% for patients whose cogni-
tive function declined.

7. Discussion
The AD classification baseline yielded a maximum accuracy of
78.87% on the test set, through the fusion of models based on

linguistic and acoustic features. Despite the fact that the ASR
transcripts had relatively high WER, linguistic features con-
tributed considerably to the predictions. The overall baseline
results for this task are in fact comparable to results obtained
for similar picture description data using manual transcripts (see
Section 2). We further tested this observation by generating
language models out of manual transcripts, and verified that
the accuracy improvements by those models was slight. The
good performance of the classifiers on ASR data is somewhat
puzzling. We speculate that as WER varies widely across the
recordings, ASR quality itself might have been detected by the
models. As deterioration in speech quality (low loudness and
intelligibility) correlates positively with AD and negatively with
the ASR performance, poor performance might be indirectly
providing an AD predictor. This warrants further investigation.
Finally, DT classifiers performed well on the CV experiments,
but accuracy decreased on the test set, indicating probable over-
fitting. Overall, however, all models proved fairly robust.

A similar picture was observed in the MMSE regression
task. ASR generated linguistic features contributed appreciably
to the prediction, despite transcription errors. In this case, how-
ever, late fusion only improved the RMSE score in CV; the test
set RMSE remained practically unchanged. Also of note is the
fact that on this task manual transcription would have substan-
tially reduced RMSE, showing that fully automatic processing
still faces challenges in predicting subtler cognitive differences.

The prognosis task proved to be the most difficult. The CV
results varied considerably among models, specially the linguis-
tic models (sd = 11.64). The test set results were also varied,
reaching a maximum F1 score of 66.67%, even when the best
model predictions were fused. Although the acoustic features
produced the best classification results in CV (F1 = 66.05%
vs 59.06% for linguistic features), these results were not born
out by test set evaluation, suggesting that the acoustic features
made the classifiers more prone to overfitting. It is possible that
this could be mitigated by training the acoustic feature extractor
(ADR) on a larger set of off-task recordings (data augmentation)
and fine tuning the resulting model on the ADReSSo data.

8. Conclusions
The ADReSSo Challenge is the first shared task to target
cognitive status prediction using raw, non-annotated a non-
transcribed speech, and to address prediction of changes in
cognition over time. We believe this moves the speech pro-
cessing and machine learning methods one step closer to the
real-world of clinical applications. A limitation the AD clas-
sification and the MMSE regression tasks share with most ap-
proaches to the use of these methods in dementia research is
that they provide little insight into disease progression. This
has been identified as the main issue hindering translation of
these technologies into clinical practice [6] and, hence, preclin-
ical modelling emerges as clear avenue for future research [35].
However, these tasks remain relevant in application scenarios
involving automatic cognitive status monitoring, in combina-
tion with wearable and ambient technology. The addition of the
progression task should open avenues for relevance also in more
traditional clinical contexts.

9. Acknowledgements
Work funded by the European Union’s Horizon 2020 pro-
gramme, under grant agreements 769661 (SAAM) and 825153
(EMBEDDIA). SG is supported by the Medical Res Council.

3783



10. References
[1] K. Ritchie, I. Carrière, L. Su, J. T. O’Brien, S. Lovestone,

K. Wells, and C. W. Ritchie, “The midlife cognitive profiles of
adults at high risk of late-onset Alzheimer’s disease: The PRE-
VENT study,” Alzheimer’s & Dementia, vol. 13, no. 10, pp. 1089–
1097, 2017.

[2] M. F. Folstein, S. E. Folstein, and P. R. McHugh, ““mini-mental
state”: a practical method for grading the cognitive state of pa-
tients for the clinician,” Journal of psychiatric research, vol. 12,
no. 3, pp. 189–198, 1975.

[3] Z. S. Nasreddine, N. A. Phillips, V. Bédirian, S. Charbonneau,
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C. Busso, L. Y. Devillers, J. Epps, P. Laukka, S. S. Narayanan
et al., “The Geneva minimalistic acoustic parameter set GeMAPS
for voice research and affective computing,” IEEE Trans. Affect.
Comput., vol. 7, no. 2, pp. 190–202, 2016.

[31] NIST, “SCTK, the NIST scoring toolki,”
https://github.com/usnistgov/SCTK, 2021, accessed 28-3-21.

[32] B. MacWhinney, “Tools for analyzing talk part 2: The CLAN
program,” 2017, pittsburgh, PA: Carnegie Mellon University.
[Online]. Available: http://talkbank.org/manuals/CLAN.pdf

[33] M. A. Covington and J. D. McFall, “Cutting the gordian knot: The
moving-average type–token ratio (mattr),” Journal of quantitative
linguistics, vol. 17, no. 2, pp. 94–100, 2010.

[34] MATLAB, version 9.6 (R2019a). Natick, Massachusetts: The
MathWorks Inc., 2019.

[35] S. de la Fuente, C. Ritchie, and S. Luz, “Protocol for a
conversation-based analysis study: Prevent-ED investigates dia-
logue features that may help predict dementia onset in later life,”
BMJ Open, vol. 9, no. 3, 2019.

3784



Identifying cognitive impairment using sentence representation vectors

Bahman Mirheidari1, Yilin Pan1, Daniel Blackburn2, Ronan O'Malley2, and Heidi Christensen1

1Department of Computer Science, University of Sheffield, Sheffield, UK
2Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK

{b.mirheidari,heidi.christensen}@sheffield.ac.uk

Abstract
The widely used word vectors can be extended at the sen-
tence level to perform a wide range of natural language pro-
cessing (NLP) tasks. Recently the Bidirectional Encoder Rep-
resentations from Transformers (BERT) language representa-
tion achieved state-of-the-art performance for these applica-
tions. The model is trained with punctuated and well-formed
(writ-ten) text, however, the performance of the model drops
significantly when the input text is the – erroneous and un-
punctuated– output of automatic speech recognition (ASR). We
use a sliding window and averaging approach for pre-processing
text for BERT to extract features for classifying three diagnostic
categories relating to cognitive impairment: neurodegenerative
dis-order (ND), mild cognitive impairment (MCI), and healthy
controls (HC). The in-house dataset contains the audio record-
ings of an intelligent virtual agent (IVA) who asks the partic-
ipants several conversational questions prompts in addition to
giving a picture description prompt. For the three-way classi-
fication, we achieve a 73.88% F-score (accuracy: 76.53%) us-
ing the pre-trained, uncased base BERT and for the two-way
classifier (HCvs. ND) we achieve 89.80% (accuracy: 90%).
We further improve these by using a prompt selection tech-
nique, reaching the F-scores of 79.98% (accuracy: 81.63%) and
93.56% (accuracy:93.75%) respectively.
Index Terms: Dementia detection, language representation,
speech recognition, processing of pathological speech

1. Introduction
Dementia affects the cognitive and communication abilities of
people which impairs their speech and language as well as their
general ability to undertake daily activities. The number of
people living with dementia in the UK is over 850,000 and it
is expected to rise to one million by 2025 [1]. Dementia and
Alzheimer’s is one of the top leading causes of death in the UK
[2]. Detecting the early stages of dementia is a challenging task
due to overlapping symptoms with normal ageing, limited ca-
pability of existing screening tools, and the high risk associated
with some procedures such as exposure to radiation. Current
cognitive tests routinely assess the speech and communication
ability of people but these are inaccurate and difficult to inter-
pret for non-specialists. Therefore, developing automatic as-
sessments methods is of great importance. Recently, we have
developed an automatic system analysing people’s conversa-
tion with an intelligent virtual agent (IVA) to detect cognitive
decline [3, 4]. The IVA prompts the users to answer a num-
ber of questions as well as to perform some standard cognitive
tests including the Cookie Theft description task [5]. In our
previous work, we have extracted a number of acoustic, lex-
ical, conceptual and conversational analysis features from the
whole conversations between the participants and the IVA, and
we showed how the features can be used to reliably distinguish

betwee neurodegenerative disorder (ND), mild cognitive im-
pairment (MCI) and healthy controls (HCs) [6, 7, 4]. In this
paper, we explore the role of each prompt in the classification
accuracy. We use the word vector and language representation
(sentence level vectors) to extract the context of the answers
given to each question.

Word embedding techniques are widely used in natural lan-
guage processing (NLP) applications. The early techniques
were bag-of-words (BOW) [8] and Frequency Inverse Docu-
ment Frequency (TF-IDF) [9] which did not consider the order
of words nor the context. The next techniques were trained us-
ing neural networks such as W2Vec [10] and GloVE [11] which
captured the co-occurrences of words and the context of the
text. However recently, state-of-the-art performances have been
achieved by using transformer-based models like the BERT lan-
guage model [12]. BERT has been widely used in a variety of
natural language processing (NLP) applications like question
answering, topic detection, summarisation and semantic search.

Common for those types of applications is that the input text
is well-formed and well-punctuated, i.e., matching what the em-
bedding model has been trained on. However, if using BERT in
a speech-driven pipeline, the input text will no longer be a good
match but instead be a continuous string of predicted words. In
this paper, we investigate how the automatic speech recogni-
tion (ASR) errors and lack of punctuation in the text may affect
the performance of BERT model for a system aiming to detect
cognitive impairment in spontaneous speech. Using the word
vectors and language representation (sentence level vectors) as
features, we can train efficient classifiers with high performance
to distinguish between different levels of cognitive impairment
related to dementia. Using the features we determine a subset
of questions that are more useful for the classification (question
selection process).

The remainder of the paper contains the following: Section
2 is a brief introduction to related work of using word vector
and sentence/text vector techniques. Section 3 contains our ex-
perimental setup, especially how we train the ASR, extract the
sentence vectors and train the classifiers. Section 4 and 5 cover
the results and conclusions.

2. Related work
BERT models have been recently introduced for dementia de-
tection and state-of-the-art results have been reported [13].
There has been a number of studies using BERT in the ADReSS
challenge 2020 [14] containing Cookie Theft descriptions, in
which the authors shared a training set containing 78 audio files
with the corresponding human transcripts of Alzheimer’s Dis-
ease (AD) participants as well as 78 transcript for non-AD peo-
ple, and a test set with 48 recordings (24 for each group). The
data was taken from the Dementia Bank Corpus [15] to per-
form two tasks: classification between AD and non-AD, and
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predicting the mini-mental state examination (MMSE) scores.
The successful models in the challenge were mostly trained on
the manual transcripts of the recordings. In reality it is not de-
sirable to rely on the manual transcripts as it would be costly
and time-consuming to provide them. Instead fully automated
systems should be explored, which can take as input the audio
recordings. This means they need to be able to deal with the
challenges of using ASR systems and combining the automatic
transcripts with models such as BERT.

Different groups in the challenge reported different perfor-
mances. In particular, the models using BERT achieved good
accuracies ranging between 75% and 85.4%, e.g. [16] (combin-
ing x-vectors and the manual transcripts) reported 75% accu-
racy; [17] got 81.25% and [18] 83.3%; [19] (adding pauses and
disfluency to the transcripts) achieved 85.4% accuracy, similar
to the accuracy gained by [20] with a multi-modal (using both
audio signals and manual transcripts) BERT.

The ASR errors can affect the word vector techniques sig-
nificantly. In our previous work, we used GloVe word vec-
tors on 473 recordings of the Dementia Bank dataset and we
achieved an accuracy of 75.6% using the manual transcripts
without the punctuation. However, the accuracy dropped signif-
icantly to 62.3% when we replaced the manual transcripts with
the ASR outputs (45.3% WER) [21]. Therefore, we can expect
that when using BERT adding the erroneous text from the ASR
affects the results considerably. This paper analyses the effect
of using ASR transcripts with BERT in a cognitive impairment
application and proposes a way of mitigating the effects.

3. Experimental setup
The IVA dataset was collected between 2016 and 2020 at
the Department of Neurology, University of Sheffield, UK
(Royal Hallamshire Hospital). A total of 168 participants were
recorded of which 98 were chosen for this study (61 HC, 19 ND
and 18 MCI 1). The other recordings were only used for training
the ASR. The IVA conversation includes nine questions, and the
Cookie Theft description task.

3.1. ASR

The LIBRISPEECH dataset was used for training a time delay
neural networks (TDNN) acoustic model based on Kaldi’s LIB-
RISPEECH recipe [22]. Then using a 10 fold cross-validation ap-
proach, the base acoustic model was adapted to the IVA dataset
following the transfer learning technique of [23] (transferring
all layers). One epoch of training was carried out on the tar-
get dataset (IVA) to adapt the acoustic model. For the language
model, the four-gram model was used with Turing smoothing
interpolated with the language model of the LIBRISPEECH text.
An average 27.9% WER was achieved using the 10-fold cross
validation approach.

3.2. Classifiers

Two types of classifiers were chosen for the experiments in this
study: the conventional Logistic Regression (LR) classifier and
a Transformer based sequence classifiers. The LR classifier is
efficient and quick and produces deterministic results, while the
Transformer classifiers need longer time to be trained and tuned
and each time produce different results depending on the ini-

1These are the numbers that we have collected so far. The numbers
of each classes are not balanced, so we did calculate weighted F-score,
precision and recall.
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Figure 1: Averaging technique to build the sentence vectors on
the the BERT model: each input text is divided into a number of
fixed length text (using a sliding window). Then the average of
the layers and the standard deviations are combined to build a
sentence and whole text vector.

tialisation of the layers’ weights. To gain stabilised results, the
Transformer classifiers were run five times and then, using a
voting approach, the labels were predicted. LR needs a fixed-
length feature vector as its input, whereas the Transformers are
fed with a fixed-length sequence of vectors.

3.3. Sentence vectors

The Transformer based classifiers can handle input text of vary-
ing lengths. If the input text is shorter than a maximum length
of words, the spaces are padded with a specific token, while the
longer sentences are truncated. BERT models were trained on
punctuated corpora. The authors of BERT trained both cased
and uncased 2 models of BERT with different sizes of corpora
(tiny, small, medium and large). In this study, we use the pre-
trained model with a normal size corpus, as well as the large
size: uncased BERT base (for convenience we refer to it as
BERT), and uncased BERT large (BERT-large).

A sentence can be passed to the pre-trained BERT model
as its input and the corresponding sentence vector can be ex-
tracted from the weights of the network’s layers. However, as
mentioned before, the LR classifier works on fixed-length input
features. So for BERT with 12 layers and each layer having
768 neurons, per each input word we can extract a vector of
12×768 = 9216 dimensions. Assume that the maximum word
length is 150, then the BERT model can represent the whole
input with a vector of 150 × 9216 = 1, 382, 400 dimensions
(3.7 million dimensions for BERT-large), which is not feasible
to use with an LR classifier. We therefore need to construct a
compact version of the sentence/text vectors. To this end, we
firstly calculate the average of the vectors as the representation
for the sentence. We have tried different approaches and found
that averaging the weights on all layers of the model, combined
with the standard deviation of the weights (so representation
with 2 × 768 = 1536 dimensions instead of 1.4 million), was
the best; see Figure 1. We also observed that better representa-
tion can be achieved by using smaller sentences. So instead of
using the whole text we split it into smaller sentences, and us-

2dealing with uppercase and lowercase words, respectively.
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Table 1: Two-way classification results on the ADReSS dataset
using manual transcript with punctuation (Weighted Preci-
sion: WPr, Weighted Recall: WRc, WeightedF-score: WFs, Ac-
curacy: Ac).

Classifier WPr % WRc % WFs % Ac %
LR (GloVe) 80.00 79.17 79.02 79.17
LR (BERT) 81.75 81.25 81.18 81.25
LR (BERT-large) 79.37 79.17 79.13 79.17
Transformer (GloVe) 75.17 75.00 74.96 75.00
BERT classifier 82.67 81.25 81.04 81.25
BERT-large classifier 88.57 87.50 87.41 87.50

ing the same averaging technique, we calculate the average of
those small sentence representations to represent the whole text
(i.e. 4× 768 = 3072 dimensions for BERT, 4× 1024 = 4048
demotions for BERT-large, and 4×300 = 1200 dimensions for
GloVe).

If the input text contains punctuation, the whole text can
be divided into smaller pieces using the positions of full stops,
exclamation or question marks. However, if there is no punctu-
ation (as is the case when working with the output of conven-
tional ASRs) we can split the whole text into a fixed-length se-
quence of words using the sliding window technique. We found
that a window size of 10 and two-word steps for training the LR
classifiers resulted in the best best performing classifiers.

4. Results
Before investigating which questions of the IVA dataset are
more informative for the classification, it is interesting to first
quantify the effect of removing the punctuation and ASR errors.
We will do this by investigating this in the ADReSS dataset as
well as in our IVA Cookie Theft descriptions.

4.1. Effect of removing punctuation

To demonstrate the effect of the punctuation on the classi-
fiers’ performance, we first used the manual transcripts of the
ADReSS challenge with and without punctuation by applying
the sliding window technique. Table 1 and 2 show the perfor-
mance of the classifiers in terms of precision, recall, F-score
and accuracy measures. Using the sentence word representation
based on the punctuation marks, the best performance, achieved
by the LR classifier trained on vectors from BERT, was an F-
score of 81.18% and an accuracy of 81.25%. However, the best
classifier was BERT-large which achieved 87.41% F-score and
87.50% accuracy (comparable to the highest results reported by
the ADReSS challenge [14]). Removing the punctuation from
the manual text reduced the performance of the BERT-large
based classifier (an almost 10% drop to 77.08%). However, the
LR classifiers trained on the features, obtained using the sliding
window and averaging, were more robust; all reached almost
81% F-score and accuracy. Since we observed more robustness
from the LR classifiers than the Transform based ones, we only
used the LR classifiers for the following experiments.

4.2. IVA three-way classification

Our IVA contains Cookie Theft picture descriptions that are di-
rectly comparable to those in the ADReSS dataset. The IVA
has three diagnostic classes though, ND, MCI and HC, and so
we first performed the three-way classification tasks. Section

Table 2: Two-way classification results on the ADReSS dataset
using manual transcript without punctuation (Weighted Preci-
sion: WPr, Weighted Recall: WRc, WeightedF-score: WFs, Ac-
curacy: Ac).

Classifier WPr % WRc % WFs % Ac %
LR (GloVe) 84.16 81.20 80.84 81.25
LR (BERT) 84.16 81.20 80.84 81.25
LR (BERT-large) 84.16 81.20 80.84 81.25
Transformer (GloVe) 75.00 75.00 75.00 75.00
BERT classifier 81.75 81.25 81.18 81.25
BERT-large classifier 78.31 77.08 76.83 77.08

4.3 contains the two-way classifications (HC vs. ND). The tree-
way classification task is naturally more difficult than the two-
way classification not just because of a lower chance-level, but
the classes are also more confusable in terms of how the speech
and language is affected with MCI having some resemblance to
both HC and ND classes. To show the effect of using the ASR-
generated transcripts, we will perform the classification on the
manual transcripts then compare them with the classifications
using the ASR outputs. Table 3 shows that using the manual
transcripts, LR (BERT-large) achieved 72.19% F-score (74.49%
accuracy) (LR (BERT) gained a slightly lower F-score). How-
ever, as can be seen from the table, using the erroneous ASR
transcripts reduced the performance of the three LR classifiers.
The best three-way LR classifier was LR (BERT-large) with
68.76% F-score and 71.43% accuracy.

Table 3: Three-way classification results on IVA Cookie
Theft dataset using manual (Man) transcript vs. ASR outputs
(Weighted Precision: WPr, Weighted Recall: WRc, WeightedF-
score: WFs, Accuracy: Ac).

Classifier Man/ASR WPr % WRc % WFs % Ac %
LR (GloVe) Man. 72.11 72.45 67.75 72.45
LR (BERT) Man. 72.78 74.49 72.12 74.49
LR (BERT-large) Man. 72.27 74.49 72.19 74.49
LR (GloVe) ASR 65.60 66.33 60.99 66.33
LR (BERT) ASR 66.57 70.41 66.62 70.41
LR (BERT-large) ASR 70.26 71.43 68.76 71.43

4.3. IVA two-way classification

As the next step, the LR classification tasks were repeated
on only the two classes (ND vs. HC, which is similar to the
ADReSS challenge task). Table 4 shows the LR classifier per-
formances using only the Cookie Theft part of the recordings
versus using Cookie Theft and questions. As can be seen given
having only Cookie Theft the binary LR (GloVe) classifier out-
performed the two other classifiers with 83.60% F-score and
83.75% accuracy. However, adding the nine questions, LR
(BERT) achieved 89.80% F-score (90% accuracy).

4.4. Prompt selection

In our previous work, we have always included all of the
prompts (questions and various cognitive tasks) given by the
IVA. Here we explore whether this is warranted or perhaps dif-
ferent prompts contribute different amounts and so, using only
a subset might improve performance. Table 5 shows the results

2943



Table 4: Two-way classification results on IVA dataset Cookie
Theft (CT) using ASR outputs vs. Cookie Theft and all questions
(CT + Q’s) (Weighted Precision: WPr, Weighted Recall: WRc,
WeightedF-score: WFs, Accuracy: Ac).

Classifier Prompts WPr % WRc % WFs % Ac %
LR (GloVe) CT 83.47 83.75 83.60 83.75
LR (BERT) CT 79.96 81.25 80.20 81.25
LR (BERT-large) CT 79.33 80.00 79.61 80.00

LR (GloVe) CT+Q’s 87.04 87.50 86.96 87.50
LR (BERT) CT+Q’s 89.76 90.00 89.80 90.00
LR (BERT-large) CT+Q’s 89.79 90.00 89.57 90.00

of the three-way classifiers using all questions plus the Cookie
Theft text produced by the ASR. As can be seen, adding the
text from the questions to the picture descriptions, has improved
the performance of the three classifiers. More specifically, LR
(BERT) achieved 73.88% F-score and 76.53% accuracy.

Table 5: Three-way classification results on the IVA dataset
(all questions and Cookie Theft) using ASR outputs (Weighted
Precision: WPr, Weighted Recall: WRc, WeightedF-score: WFs,
Accuracy: Ac).

Classifier Prompts WPr % WRc % WFs % Ac %
LR (GloVe) CT+Q’s 65.79 69.39 66.58 69.39
LR (BERT) CT+Q’s 73.76 76.53 73.88 76.53
LR (BERT-large) CT+Q’s 73.82 75.51 73.13 75.51

For the two types of classification (three-way and two-way)
the five most important prompts were selected on the best-
performing classifiers from Tables 5 and 4 (we calculated all
possible combination of nine questions and Cookie Theft de-
scription and then selected the combination with the highest F-
score). The results are in Table 6. The prompts selection im-
proved the three-way F-score of the LR (BERT) classifier from
73.88% to 79.98% (accuracy rose from 76.53% to 81.63%).
The five best prompts were questions 3 (asking who’s most wor-
ried about the condition), 4, 5 & 8 (recent memory) in combina-
tion with the Cookie Theft prompt. For the two-way scenario,
the LR (BERT) classifier achieved 93.56% F-score (93.75% ac-
curacy), and the five best prompts were questions 3 & 6 (dis-
tant memory), 7 & 8 (recent memory), and 9 (who manages fi-
nances). The two common best prompts amongst the three-way
and two-way classifiers were questions 3 and 8.

To show the effect of question selection on the individ-
ual classes, confusion matrices of the classifiers were analysed;
Figures 2 and 3. For the three-way classification, the question
selection slightly decreased the percentage/number of correctly
recognised HC participants (from 96.72% (59) to 95.08% (58)),

Table 6: Prompt (Prmpt) selection for the best three and two
way classifiers (Cl.) (Weighted Precision: WPr, Weighted Re-
call: WRc, WeightedF-score: WFs, Accuracy: Ac).

Cl. 5 best Prmpt’s WPr % WRc % WFs % Ac %
3-way 3, 4, 5, 8, CT 81.14 81.63 79.98 81.63
2-way 3, 6, 7, 8, 9 93.75 93.75 93.56 93.75

Figure 2: Confusion matrix of the three-way LR (BERT) classi-
fier using all questions vs. the best 5 questions.

Figure 3: Confusion matrix of the two-way LR (BERT-Large)
classifier using all questions vs. the best 5 questions.

however, the percentage/number of correctly recognised ND in-
creased from 57.89% (11) to 68.42% (13) and for MCI more
improvement can be seen from 27.78% (5) to 50% (9). How-
ever, the MCI group was the most confused group having more
overlap with the other groups. For the two-way classification,
the question selection improved the percent/number of correctly
recognised ND participants from 68.42%(13) to 78.95%(15),
and the number of correctly recognised HC from 96.72%(59) to
98.36% (60).

5. Conclusions
In this paper, we have shown that even though a BERT model
can outperform other approaches such as GloVe embedding in
many applications, their performance can be affected by the
lack of punctuation and the errors introduced when using ASR
in fully automated systems. We proposed using a sliding win-
dow and averaging technique to produce a sentence representa-
tion that can be successfully used as a feature to train a robust
LR classifier to identify cognitive decline with high accuracy.
Even more improvement was achieved by selecting a subset of
the prompts which are more informative for the classification
tasks. This demonstrates that the clinically diagnostic conver-
sational questions asked by the IVA should be carefully chosen
and that even quite a small set of prompts is capable of giving a
very high performance, when used in conjunction with a model
like BERT and careful pre-processing of ASR transcripts. For
future work, we plan to further investigate technique to mitigate
the effect of ASR transcripts on the quality of BERT output.

6. Acknowledgements
This work is supported by the European Union’s H2020 Marie
Skłodowska-Curie programme (TAPAS; Grant Agreement No.
766287), the Rosetrees Trust and the Stoneygate Trust (COM-
PASS, Grant Agreement No. M934 and the Fast ASsess-
ment and Treatment in Healthcare funded by EPSRC (Refer-
ence. EP/N027000/1).

2944



7. References
[1] D. UK, “What is dementia?” https://www.dementiauk.org, 2021,

accessed on March 25, 2021.

[2] Dementia Statistics, “Deaths due to dementia,” 2018, accessed
on October 12, 2021. [Online]. Available: https://www.
dementiastatistics.org/statistics/deaths-due-to-dementia

[3] B. Mirheidari, D. Blackburn, R. O’Malley, T. Walker, A. Venneri,
M. Reuber, and H. Christensen, “Computational cognitive assess-
ment: Investigating the use of an intelligent virtual agent for the
detection of early signs of dementia,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2019, pp. 2732–2736.

[4] B. Mirheidari, D. Blackburn, R. O’Malley, A. Venneri, T. Walker,
M. Reuber, and H. Christensen, “Improving cognitive impairment
classification by generative neural network-based feature augmen-
tation,” Proc. Interspeech 2020, pp. 2527–2531, 2020.

[5] H. Goodglass, E. Kaplan, and S. Weintraub, BDAE: The Boston
Diagnostic Aphasia Examination. Lippincott Williams &
Wilkins Philadelphia, PA, 2001.

[6] B. Mirheidari, D. Blackburn, K. Harkness, T. Walker, A. Venneri,
M. Reuber, and H. Christensen, “An avatar-based system for iden-
tifying individuals likely to develop dementia,” Proc. Interspeech,
pp. 3147–3151, 2017.

[7] B. Mirheidari, Y. Pan, D. Blackburn, R. O’Malley, T. Walker,
A. Venneri, M. Reuber, and H. Christensen, “Data augmentation
using generative networks to identify dementia,” arXiv preprint
arXiv:2004.05989, 2020.

[8] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp.
146–162, 1954.

[9] K. Sparck Jones, “A statistical interpretation of term specificity
and its application in retrieval,” Journal of documentation, vol. 28,
no. 1, pp. 11–21, 1972.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[11] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors
for word representation,” in Proc. EMNLP, 2014, pp. 1532–1543.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[13] J. Glass et al., “Classifying alzheimer’s disease using audio and
text-based representations of speech,” Frontiers in Psychology,
vol. 11, p. 3833, 2020.

[14] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhin-
ney, “Alzheimer’s dementia recognition through spontaneous
speech: The adress challenge,” arXiv preprint arXiv:2004.06833,
2020.

[15] J. T. Becker, F. B. F, O. L. Lopez, J. Saxton, and K. L. McGonigle,
“The natural history of Alzheimer’s disease: Description of study
cohort and accuracy of diagnosis,” Arch Neurol, vol. 51, pp. 585–
594, 1994.

[16] R. Pappagari, J. Cho, L. Moro-Velazquez, and N. Dehak, “Us-
ing state of the art speaker recognition and natural language pro-
cessing technologies to detect alzheimer’s disease and assess its
severity,” Proc. Interspeech 2020, pp. 2177–2181, 2020.

[17] E. L. Campbell, L. Docio-Fernandez, J. Jiménez-Raboso, and
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Abstract
Exploring acoustic and linguistic information embedded in

spontaneous speech recordings has proven to be efficient for au-
tomatic Alzheimer’s dementia detection. Acoustic features can
be extracted directly from the audio recordings, however, lin-
guistic features, in fully automatic systems, need to be extracted
from transcripts generated by an automatic speech recognition
(ASR) system. We explore two state-of-the-art ASR paradigms,
Wav2vec2.0 (for transcription and feature extraction) and time
delay neural networks (TDNN) on the ADReSSo dataset con-
taining recordings of people describing the Cookie Theft (CT)
picture. As no manual transcripts are provided, we train an ASR
system using our in-house CT data. We further investigate the
use of confidence scores and multiple ASR hypotheses to guide
and augment the input for the BERT-based classification. In to-
tal, five models are proposed for exploring how to use the audio
recordings only for acoustic and linguistic information extrac-
tion. The test results on best acoustic-only and best linguistic-
only are 74.65% and 84.51% respectively (representing a 15%
and 9% relative increase to published baseline results).
Index Terms: Automatic speech recognition, Alzheimer’s de-
mentia, computational paralinguistics

1. Introduction
Research on patients’ speech has revealed that linguistic and
acoustic abilities are affected even at the early stages of
Alzheimer’s dementia (AD) [1, 2]. Automatic methods for de-
tecting such impoverishment has focused on extracting acous-
tic and linguistic information and learning distinguishable pat-
terns for people with and without dementia. For embedding the
linguistic information, multiple approaches e.g., word2vec [3],
hierarchical neural network systems [4], and BERT [5, 6] has
been proven to be effective in previous research. For extracting
acoustic features, both the traditional pipeline systems based on
conventional acoustic features [7,8] and the more recent end-to-
end systems for learning task-specific acoustic feature extrac-
tion [8, 9] have been explored.

The Alzheimer’s Dementia Recognition through Sponta-
neous Speech (ADReSSo) challenge is organized for advancing
research into automatic AD detection [10]. It contains audio

* equal contribution

recordings of people describing the Cookie Theft picture. The
challenge has not provided manual transcripts of the recordings,
in order to reflect more real applications in which it is costly and
time-consuming to provide human transcripts. However, auto-
matic approaches to cognitive assessment rely on a combination
of linguistic and acoustic information to detect symptoms more
comprehensively [11]. To learn linguistic information, the most
widespread approach is to first transcribe the audio into text
with an automatic speech recognition (ASR) system. Not hav-
ing manual transcripts of the recordings makes training a good
ASR system challenging. To overcome some of these chal-
lenges two types of ASR paradigms are explored: i) the tradi-
tional ASR systems, based on a pipeline comprising of acoustic,
language and lexical models, and ii) end-to-end systems, which
directly map a sequence of input acoustic waveforms into a se-
quence of graphemes or words with an integral structure. For
the traditional ASR system, time delay neural network (TDNN)
has been used in our previous research and got an outstanding
result on dementia-related speech recognition [12–14].

In this paper, BERT is used for extracting linguistic in-
formation. However, to mitigate the problems of using ASR-
generated transcripts (with erroneous words and lacking punc-
tuation), we explore the use of ASR lattice information. An
ASR lattice provides time alignment, recognised words and
confidence scores for different hypotheses. Usually, only the
most likely hypothesis is selected for the subsequent AD detec-
tion [4, 12]. Here, we explore both the use of multiple hypothe-
ses (can be seen as a form of data augmentation) as well as using
the hypothesis with the highest word confidence scores (High-
ConfHyp). In addition, we incorporate the confidence scores
into the BERT sequence classifier.

Wav2vec2.0 (denoted as w2v in the following), as a self-
supervised end-to-end ASR system, can achieve similar perfor-
mance as the traditional ASRs (supervised systems) but with
less transcribed audio data. For the w2v structure, information
embedded in the transformer layers has been explored in previ-
ous research [15, 16]. In our paper, w2v is used both for audio
transcription and embedded acoustic feature extraction.

The contribution of the paper can be summarized as fol-
lows: (1). Using the acoustic features and automatic transcripts
extracted by the w2v results in a superior performance com-
pared to the baseline features reported in [10]. (2). Using mul-
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tiple ASR hypotheses and confidence scores as an input to the
BERT system improves the performance compared to using just
the best hypothesis as in previously proposed approached [12].
(3). Exploring the performance of feature fusion on the acoustic
and linguistic information improves results on the provided test
set. In the remainder of the paper, Section 2 presents the related
work. Section 3 introduces the acoustic and linguistic features
used. The experimental setup and the results are discussed in
Section 4 and Section 5. Conclusions are given in Section 6.

2. Related work
In the ADReSS Challenge, the predecessor to the ADReSSo
challenge, the organisers provided both the acoustic recordings
and the corresponding manual transcripts. The best perfor-
mances were achieved by [6] and [5] using acoustic-only and
linguistic-only systems, respectively. Among the 34 participat-
ing teams, 7 out of 13 Interspeech-2020 papers used BERT for
linguistic-based modelling, thus demonstrating the efficiency
of BERT when manual transcripts are available. However, for
fully automatic systems, the transcription task is handled by an
ASR which introduces word-level errors. It has been found
that fine-tuning using such noisy text data, can negatively im-
pact the performance of BERT [17]. Our paper explores how
to increase the performance of BERT-based classification when
working with ASR transcripts.

Disfluencies and unclear pronunciation can decrease the
performance of ASR systems, whilst at the same time be bene-
ficial if the related information is used to inform the classifica-
tion [5, 12]. In [5], the pause and disfluency annotation was
used for punctuation generation providing important linguis-
tic information in addition to the manual transcripts. In [12],
ASR-transcribed words with low confidence scores were re-
moved from the generated transcripts to successfully guide the
linguistic information extraction. The time alignment informa-
tion from the ASR output is used for designing the rhythm fea-
tures for assisting the extracted acoustic features.

Table 1: Analysis of HighConfHyp on HC and AD.

parameters (mean&var) AD HC

word duration (s) .129±(.013) .120±(.013)
pause duration (s) .267±(.589) .126±(.154)
confidence score .867±(.036) .886±(.033)
#words/transcript 65± (1910) 81± (3207)

The lack of manual transcripts in the challenge means that
it is difficult to train an ASR system tailored to the specifics of
ADReSSo. It also makes it more challenging to evaluate the
outputs of any transcripts produced for the ADReSSo data. To
get around this, confidence scores are used as a proxy measure
for accuracy, essentially replacing the information provided by
monitoring WERs for different ASR systems during develop-
ment. To assess the meaningfulness of using this approach, we
analysed the transcripts produced by our system [12] when run
on the ADReSSo dataset. Table 1 shows that the mean and vari-
ance of pause duration in the AD group was longer than the
HC (healthy control) group. Likewise, fewer words were recog-
nised in the AD group compared to the HC group. This might
be because people living with AD tend to speak less and with
more disfluencies. Moreover, a significant number of the words
pronounced by people living with AD are typically not clear
enough to be recognised correctly by the ASR as demonstrated

in our previous work [12].

3. Acoustic and linguistic features

In this section, two ASR paradigms are introduced for transcrib-
ing the audio recordings for linguistic information extraction
using BERT. The w2v, is also used for acoustic information ex-
traction. The feature fusion is implemented on the ASR tran-
scripts and the extracted acoustic features.

3.1. Automatic speech recognition

To transcribe the audio recordings into texts, we trained a con-
ventional Kaldi-based ASR which produces decoding lattices
allowing us to construct different hypotheses (extracted text
from different paths in the lattice). For each hypothesis it is
possible to calculate the confidence scores of the words, reflect-
ing how confident the ASR is in recognizing each word.

Table 2: Datasets used for training the ASR. Len.:the total
length in hours/mins, Utts.:number of utterances, Spks.:number
of speakers, and Avg.Utts.:Average utterance length in seconds.

Dataset (No) Len. Utts. Spks. Avg. Utts.
DR INTERVIEWS (295) 64.3h 39.2k 736 5.9s
IVA (168) 26.7h 8.3k 219 11.5s
HALLAM (54) 26.14h 10.5k 139 4.8s
SHEFMAN CT (238) 3.9h 0.2k 238 11.5s
LIBRISPEECH (281241) 961.1h 281.2k 5466 12.3s
AMI (682) 95.5h 133.9k 171 2.6s

Since the manual transcripts of the training set of the
challenge were not available and using any part of Dementia
Bank not permitted, training a high performance ASR tuned
to recognise spontaneous speech, ideally of people describing
the Cookie Theft picture, was challenging. LIBRISPEECH is
a well-known dataset containing almost 1000 hours of audio
recordings of people reading books. It was used to build a base
TDNN ASR following Kaldi’s LIBRISPEECH recipe [18]. Since
the dataset is read speech, a transfer learning technique was
applied to adapt to spontaneous speech data using a number
datasets: (AMI [19], DR INTERVIEWS, IVA, and HALLAM.
Table 2 shows information such as length, number of utterances
and speakers of the datasets. DR INTERVIEWS , and HALLAM
are two datasets collected locally at the Sheffield Royal Hal-
lamshire hospital. They contain audio interviews between neu-
rologists and people with seizure/non-epileptic attacks, and de-
mentia or other memory issues, respectively. In addition, the
IVA dataset (also in-house) contains conversation between pa-
tients and an Intelligent Virtual Agent. Moreover, 238 Cookie
Theft description from Sheffield and Manchester universities
(SHEFMAN CT) were used for a second round of adaptation.
Of these, a small subset of 20 out of 238 samples was held out
for ASR testing and the rest were added to the other datasets
for transfer learning. Following [20] (using both the structure
and weights of the base ASR and then running one epoch of the
DNN model to adapt to the new datasets) the acoustic model
of our ASR was constructed. To train the language model, the
four-grams with Turing smoothing was applied on the training
set. Decoding on a held out set of the SHEFMAN CT data
(10%) resulted in a WER of 8.23%.
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3.2. Acoustic feature extraction

W2v as an end-to-end ASR paradigm was used for both the
audio transcription and the acoustic feature extraction. W2v
encodes raw wave X with multiple Convolutional Neural Net-
works (CNNs) into latent representations Z ∈ z1, ..., zT for T
time-steps. Before passing the inputs to the Transformer to get
the textualized representation, first Z was fed to a quantization
module [21] for masking [22–24]. The model was first trained
on the unlabeled data and then fine-tuned on a small labelled
dataset with a Connectionist Temporal Classification (CTC)
loss [25, 26]. Research has shown that the representations un-
derlying pre-trained w2v can capture the speaker features and
language features [15] embedded in the acoustic recordings.
The contextualized representations of the input raw wave were
built into the 24 layers transformer architecture. For extracting
the acoustic features from the w2v structure, the transformer
layers’ outputs were extracted as the acoustic representations of
the input waveform segments. For each hidden layer output,
the extracted hidden feature matrix [N ∗ feat dim] was aver-
aged across the length N of the feature. At the same time, the
transcribed words for the waveform were used for the following
linguistic-based information modelling.

The pre-trained model1 (named as pre-trained w2v for con-
venience) is adapted on the IVA dataset (see Table 2) for a
better performance on the ADReSSo data. The IVA recordings
were split into 60/20/20 parts training, evaluation and testing.
After data adaptation, the WER decreased from 31.9% to 18.6%
on this IVA test set. The ASR transcripts are used as the input
of BERT for linguistic information modelling.

3.3. Combining linguistic and acoustic features

The acoustic features described in Section 3.2 and the linguis-
tic features extracted from the last transformer layer in BERT
by concatenating with a fully connected layer are combined as
follows. The acoustic features V ∈ [N ∗ feat dim] were aver-
aged over feature numbers into a vector v1 ∈ feat dim. After
dimension reduction with a fully connected layer, the feature v1
was concatenated with the BERT last-second layer output fea-
ture v2 for fine-tuning.

3.4. Using ASR hypotheses and confidence scores

Concatenated hidden states

Dense (2)

Dense (1024)

Concatenation

Input ids Attention mask Confidence score

Bert sequence classifier

3 Last hidden states

102410241024

Figure 1: The last three states of the BERT sequence classifier
are concatenated with the confidence score input, before the last
classification output layer.

1https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self

A range of ASR hypotheses can be derived from the de-
coder lattices using different parameters: the language weights
were between 6 and 10 with a word insertion penalty of 0, 0.5
and 1 producing 30 different hypotheses for each recording.
The average confidence scores of the words were calculated for
each of the hypotheses. Two models (with different maximum
word length of the input sequence: 105 and 100) were built us-
ing the uncased BERT large sequence classifier and hypotheses
with the confidence scores. Figure 1 shows the structure of the
models which was simply a concatenation of the last three hid-
den states of the BERT classifier with the input confidence score
layer. The combination of these two layers was passed finally
to the output layer to classify between AD and HC transcripts.
Using a variety of outputs from the ASR (which we know are er-
roneous) alongside the corresponding confidence scores, could
help the network to be trained more robustly on the words pro-
duced by the ASR.

4. Experimental setup
Table 3 shows the list of the five models submitted to the chal-
lenge. Model 1 and Model 2 correspond to the acoustic features
and ASR transcripts as output by the w2v model described in
3.2, while Model 3 corresponds to the feature fusion proposed
in Section 3.3. For these three models, 10-fold cross-validation
(CV) was applied2. Then the results (Section 5) were averaged
across the 10 folds, and the test labels were estimated by the
majority voting on the predict labels from the 10 folds trained
models. However, for Model 4 and Model 5 corresponded to
Section 3.4, since it was a time-consuming process to run mul-
tiple fold-based evaluations, instead a single evaluation set was
constructed by holding out 20% of the training set.

4.1. Model setup

BERT-for-Sequence-Classification3 [27] was used for mod-
elling the linguistic information. Two configurations of BERT
models were used with a transformer layer inside the models of
12 layers (BERTbase) and 24 layers (BERTlarge). Two dense
layers were added to the BERTbase for feature fusion with 256
dimensions. To fine-tune the BERTbase and BERTlarge using
the ASR-derived transcripts of the ADReSSo training set, the
parameters were set as in Table 3. For fine-tuning the w2v, 168
IVA recordings, shown in Table 2, were used.

4.2. Model selection

We used our evaluation set to select the five models submit-
ted to the challenge. As part of this process, we also evaluated
a number of proposed models based on our and other’s previ-
ous work. Using the approach in [5], the performance of the
HighConfHyp on BERTbase using 10 fold averaged accuracy
was 72.77% on our evaluation set. Also, we replicated the ex-
periments in [5] on the BERT3p model (the best performance
with BERT in the paper) based on the HighConfHyp. The time
alignment information was used for generating the punctuation
insertion instead, and the 10-fold CV averaged accuracy on the
evaluation set was 75.06%. Inspired by the experiments in [12],
the transcribed words in the HighConfHyp are selected with the
confidence scores by replacing the word with the confidence
score lower than 0.87 (selected based on the average confidence
score of the two classes in Table 1) by <unk>. The 10-fold CV

2nine folds of training set for training and one fold for evaluation
3https://github.com/huggingface/transformers
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averaged accuracy on the evaluation set is 76.65%. The evalu-
ation result on the pre-trained w2v transcripts is 78.01% under
the same parameters as in Model 2.

Table 3: AD detection models, TB=Tree Bagger, CS=confidence
scores, model parameter: e=epochs, mwl=max word length,
ne=number of estimators, bs=batch size]

Alias Information Input Classifier Parameters

Model 1 w2v acoustic feat. TB ne=10
Model 2 fine-tuned w2v ASR BERTbase. mwl=512;

e=8;bs=4
Model 3 w2v outputs fusion BERTbase mwl=512;

e=8;bs=4
Model 4 ASR hypotheses+CS BERTlarge mwl=105;

e=1; bs=64
Model 5 ASR hypotheses+CS BERTlarge mwl=100;

e=1; bs=64

5. Results
5.1. Acoustic feature comparison

For classifying the extracted acoustic features, four linear clas-
sifiers were selected, namely decision trees (DT), nearest neigh-
bour (KNN), TB and support vector machines (SVM). The
acoustic features are normalized before classifying. The acous-
tic features’ evaluation results corresponding to the 24 trans-
former layers extracted from the pre-trained w2v model and
fine-tuned model are shown in Figure 2 respectively. As shown,
the highest accuracy (80.08%) was achieved by the TB classi-
fier with the 16th hidden layer features extracted from the pre-
trained model; this was selected as model 1.

Figure 2: Comparing classifiers using acoustic features ex-
tracted from the wav2vec2-large-960h-lv60 pre-trained model
(left) and fine-tuned model (right).
5.2. Evaluation results

The baseline results on the leave-one-subject-out (LOSO) eval-
uation (CV) set reported by the authors of the challenge [10]
were 78.92% and 72.89% on the acoustic and linguistic-based
models respectively. The results corresponding to our five mod-
els are listed in Table 4. All models outperform the CV base-
line4. In particular, the feature fusion result on the evaluation set
(83.47%) from model 3 is better than the acoustic-only result
(80.06% for model 1) and linguistic-only (81.59% for model
2), though not as good as the multiple ASR hypotheses and

4A direct comparison on evaluation data is difficult, as we have not
been able to evaluate using LOSO because of time constraints and have
instead evaluated using 10-fold CV (models1, 2 and 3) or on 20% held
out data (models 4 and 5).

Table 4: Final classification results on the evaluation set. Pr:
Precision, Rc: Recall, Fs: F-score,Ac: Accuracy

Model Pr % Rc % Fs % Ac %

HC AD HC AD HC AD
Model 1 80.69 81.04 78.39 81.17 78.72 80.50 80.06
Model 2 83.63 83.02 79.82 83.08 79.32 82.25 81.59
Model 3 86.25 86.33 83.57 83.08 82.80 82.65 83.47
Model 4 98.69 96.26 95.78 98.85 97.22 97.54 97.39
Model 5 98.46 95.19 94.51 98.66 96.45 96.90 96.69

Table 5: Final classification results on the test set. Pr: Preci-
sion, Rc: Recall, Fs: F-score,Ac: Accuracy

Model Pr % Rc % Fs % Ac %

HC AD HC AD HC AD
Model 1 72.50 77.42 80.56 68.57 76.32 72.73 74.65
Model 2 76.19 86.21 88.89 71.43 82.05 78.13 80.28
Model 3 76.92 81.25 83.33 74.29 80.00 77.61 78.87
Model 4 85.29 81.08 80.56 85.71 82.86 83.33 83.10
Model 5 87.88 81.58 80.56 88.57 84.06 84.93 84.51

confidence scores corresponded models (model 4 and model 5),
which achieved accuracies of 97.39% and 96.69% respectively.

5.3. Test results

The baseline results on the test set were 64.79% and 77.46% for
the acoustic and linguistic systems, respectively [10]. The final
classification results of the five models we proposed are shown
in Table 5. The acoustic-only and best linguistic-only results
achieved 74.65% and 84.51% accuracy respectively (models 1
a& 5), which all outperforms the baseline models. Interestingly,
the feature fusion based model (model 3) performed better than
model 1 and model 2 on the evaluation set, but not as well as
the linguistic-only models on the test set. This might indicate a
mismatch between the evaluation set and the test set.

6. Conclusion
In our paper, two ASR paradigms were adopted for linguistic
and acoustic feature extraction. For modelling the linguistic
information, multiple ASR hypotheses and confidence scores
were passed to the pre-trained BERT for model tuning on the
ASR transcripts from the ADReSSo training set. The acoustic
features were extracted from the transformer outputs of the pre-
trained w2v model. The BERT model based combination of the
acoustic and linguistic information improved the performance
of the classifier on the evaluation set, but not on the test set.
In the future, the combination between the acoustic information
and the multiple ASR hypotheses is expected to be explored to
improve the test set performance.
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• Prevalence of Alzheimers (AD) and related demen7as in the USA for 
popula7ons older than 65 is 11.5%

• Language impairment is commonly observed sign in AD affected pa7ents 
among other signs
• Inability to find correct words – pa7ents likely describe the word meaning 

but can not recall the word itself
• Frequent use of verbal filters such as /um:/ or /eh:/
• StuOering, repe77on of ideas and ques7ons happen in advanced stages
• Frequent difficul7es in forming simple sentences

• Can we detect AD and assess its severity from speech and its content alone? It 
could assist doctors in diagnosis

• Can we exploit advances in speech and language technologies to detect 
Alzheimer beOer?
• Explora7on of efficacy of transfer learning from speech recogni7on, 

speaker recogni7on, audio event detec7on models
• Evalua7on of several ASR transcrip7ons using linguis7c models

Introduction

Experimental setup

The ADReSSo challenge

• Detection models specifics:
• Logistic regression is used for classification on embeddings
• Fine-tuning – Replace the last layer of the pre-trained model with task-specific layer and optimize cross-entropy 

loss function 
• Choosing best epoch based on best f-score on development set

• MMSE prediction model specifics:
• Gradient boosting regressor is used for MMSE prediction on embeddings
• Fine-tuning – Replace the last layer of the pre-trained model with task-specific layer and optimize RMSE loss 

function 
• Choosing best epoch based on best RMSE on development set

• Adam optimizer with default parameters is used for training
• Score-level fusion -- we extract output scores of all the recordings from the considered models and their concatenated 

vector acts as input to fusion model (logistic regression)
• 10-fold Cross-validation to estimate models reliably

• For the evaluation data, we average predictions from all fold models and feed it to fusion model
• Metrics:

• F1-score (harmonic average of precision and recall) for detection task
• Root mean square error (RMSE) for MMSE prediction task 

• AD detec7on task: classifica7on of subjects with and without AD using a short 
speech session

• MMSE predic7on task: predic7on of mini-mental status evalua7on (MMSE) 
from the same short speech sessions used for AD detec7on 

• Training dataset: 87 recordings from subjects with AD and 79 from control 
subjects

• Evalua7on dataset: 71 recordings (labels are not known to the par7cipants)

Raghavendra Reddy Pappagari
Center for Language and Speech Processing,
Johns Hopkins University, USA
Email: rpappag1@jhu.edu

Contact References

Conclusions and future work
• Linguistic models:

• Transcriptions obtained with language model interpolation performed 6.4% f-score better
• Commercial ASRs outperformed ASpIRE models
• Improvement in transcriptions translates to better results in AD detection and MMSE prediction

• Acoustic models:
• Adaptation of x-vector model and SpeechBrain ASR embeddings performed similarly, and their fusion provided 1.8% 

improvement
• Fine-tuning of x-vector models with augmentation did not help (results not shown above)

• Prosody features and embeddings extracted from event detection models were producing almost random predictions
• Linguistic + Acoustic Fusion:

• Improvements in detection score (5.2%), MMSE score (0.21) in cross-validation but did not improve on challenge test set
• Linguistic models performed best on challenge test set for both detection and MMSE prediction tasks
• In future, we plan to explore multi-modal techniques to exploit temporal cues in acoustic and linguistic modalities

1. Raghavendra Pappagari, J. Cho, L. Moro-Vel´azquez, and N. Dehak, “Using state of the art speaker recognition and natural language processing technologies to detect alzheimer’s disease 
and assess its severity,” Proc. Interspeech 2020, pp. 2177–2181, 2020.

2. Raghavendra Pappagari, Tianzi Wang, Jesus Villalba, Nanxin Chen, and Najim Dehak, “x-vectors meet emotions: A study on dependencies between emotion and speaker recognition,” in 
IEEE International Conference on Acous- tics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 7169–7173. 

Methods and results

ADReSSo Audio 
Recordings

Linguis7c models
(using ASR trans.)

ASpIRE AM + 
ASpIRE LM

ASpIRE AM + LM 
(ASpIRE+ADReSSo 

interpola7on)

AWS ASR

Otter.ai  ASR

Acoustic models

Speaker 
recognition

x-vector model 
fine-tuning

Speech 
recogni7on 

SpeechBrain 
Enc/Dec ASR 
embeddings

Prosody 
features

DigiPsychProsody 
and eGeMAPS

Audio Event 
detection 

AudioSet model 
embeddings

63.1%, 6.74 – Cross-validation

69.5%, 5.90 – Cross-valida7on

76.1%, 5.44 – Cross-valida7on
84.5%, 4.26 – Challenge evalua7on

73.3%, 5.39 – Cross-validation
No. Sub, 3.85 – Challenge evaluation

71.1%, 6.97 – Cross-valida7on

71.7%, 6.44 – Cross-validation

61.5%, 6.89  – Cross-validation

60.8%, 6.92  – Cross-validation

Fusion 73.5%, 6.60 – Cross-valida7on
74.7%, No. Sub – Challenge evalua7on

81.3%, 5.23 – Cross-valida7on
84.5%, 4.62 -- Challenge evalua7onFusion

*Results are in the form -- (f1-score, RMSE)
*f1-score – lower is beOer, RMSE – higher is beOer
*AM – Acous7c model
*LM – Language model
*ASR – Automa7c speech recogni7on
*trans. – transcrip7ons
*No. Sub. – Not submiOed to the challenge evalua7on
*Linguis7c models are adapted from BERT pre-trained models
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Abstract

In this study, we analyze the use of speech and speaker recog-
nition technologies and natural language processing to detect
Alzheimer disease (AD) and estimate mini-mental status eval-
uation (MMSE) scores. We used speech recordings from In-
terspeech 2021 ADReSSo challenge dataset. Our work focuses
on adapting state-of-the-art speaker recognition and language
models individually and later collectively to examine their com-
plementary behavior for the tasks. We used speech embedding
techniques such as x-vectors and prosody features to charac-
terize the speech signals. We also employed automatic speech
recognition (ASR) with interpolated language models to ob-
tain transcriptions used to fine-tune the BERT models that clas-
sify and assess the speakers. Our results indicate that the fu-
sion of scores obtained from the multiple acoustic and linguis-
tic models provides the best detection results, suggesting that
they contain complementary information. A separate analysis
of the models indicates that linguistic models outperform acous-
tic models in detection and prediction tasks. However, acoustic
models can provide better results than linguistic models under
certain circumstances due to the errors in ASR transcriptions,
which indicates that the performance of linguistic models re-
lies on the performance of ASRs. Our best models provide
84.51% accuracy in automatic detection of AD and 3.85 RMSE
in MMSE prediction.
Index Terms: Alzheimer Disease, Automatic Speech Recogni-
tion, Mini-Mental Status Evaluation

1. Introduction
The most common signs of Alzheimer disease (AD)1, are mem-
ory decline, disorientation, confusion, and behavior changes.
This leads to loss of independence, having a clear impact on
patients, their families, and the society [2]. The prevalence of
AD and related dementias in the USA for populations older than
65 years old is 11.5%, with an increasing incidence due to the
improvement in life expectancy in the coming decades, which
would double the associated burden by 2060 [3].

While two of the most typical signs of AD are memory and
cognitive decline, language impairment is also common, as it is
linked to cognitive and memory-related problems and neurode-
generative processes. In this respect, speech technologies can
deliver new precision medicine tools that will provide an objec-
tive quantitative analysis and reliable proof, analysis, compari-
son, and circulation for a faster diagnosis.

1The possessive form has been deliberately removed in this article,
following the World Health Organization and the US National Institutes
of Health recommendations [1].

The literature suggests some common signs in the speech
of AD patients related to articulatory aspects such as apraxia of
speech [4] or others linked to communication and word retrieval
deficits such as progressive, logopenic, or anomic aphasia [5, 6],
or anomia [4]. In this respect, pause and silence-related features
allow characterizing the loss of verbal fluency, which is associ-
ated with AD [7]. These problems of verbal fluency are caused,
in part, by the difficulties that patients have in recalling words,
finding the appropriate vocabulary, or finishing sentences. The
use of verbal fillers such as /um:/, or /eh:/ or the description of a
word instead of the use of that word, are also common. In more
advanced stages, stuttering, repetition of ideas and questions,
and difficulties forming simple sentences become frequent [7].

In the Interspeech 2020 ADReSS challenge [8], numerous
teams proposed different approaches to detect AD and auto-
matically predict mini-mental status evaluation (MMSE)2 in a
dataset containing speech and manual transcriptions from 78
AD patients and 78 sex and age-matched controls. Whereas
some of the participant teams focused on using either speech
or linguistic approaches, the results from several teams indicate
that approaches containing a combination of different linguis-
tic aspects and, in some cases, acoustic aspects lead to better
results [9, 10, 11, 12, 13], providing detection accuracy over
75% in the evaluation subset. Some authors employed term
frequency–inverse document frequency (TF-IDF) features such
as grammatical dependency and universal dependency features
[9, 14], with different classifiers such as XGBoost or logistic
regression. Other authors used a transformer-based pre-trained
language model (LM) based on bidirectional encoder represen-
tations from transformers (BERT) [10, 15, 16, 14, 17, 13, 18],
and other neural network approaches such as bi-directional Hi-
erarchical Attention Networks [11] or Transformer XL [13]. All
of the linguistic approaches used the manual transcriptions pro-
vided by the challenge organizers, and none of them analyzed
the use of any automatic speech recognition (ASR) system to
obtain transcriptions using audio in the detection or regression
tasks.

Approaches using acoustic modeling involved the use of
x-vectors [10, 17], i-vectors [17], bag of audio words [11],
spectral and cepstral features with different classifier back-
ends [9, 16, 11], acoustic features obtained with OpenSMILE
[8, 19, 20, 13], and VGGish [13, 18] with heterogeneous results
that, in general, did not outperform linguistic approaches.

In this study, we propose the use of several acoustic and lin-
guistic models to detect and assess AD for the Interspeech 2021
ADReSSo challenge [21]. The main difference from the 2020

2MMSE ranges between 0 and 30 and is used to assess the dementia
status of patients, being values higher than 24 considered as normal
cognition.
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challenge is that the manual transcriptions of the audio record-
ings were not included in the dataset. Thus, we employed ASR
systems with adapted LMs, and commercial ASR platforms to
obtain transcriptions from the audio and used linguistic models
using the obtained text. At the same time, we employed acous-
tic models using several acoustic representations derived from
state-of-the-art speaker and speech recognition technologies as
well as prosodic features to detect and assess AD automatically.

The code of the experiments is being shared by the authors
of this paper3.

2. The ADReSSo challenge
In this paper, we addressed two of the three tasks proposed by
the challenge organizers:

• AD detection task - automatic differentiation between partic-
ipants with and without AD using a short speech session.

• MMSE prediction task - automatic prediction of the partic-
ipant’s MMSE using the same dataset of the AD detection
task.

2.1. The Dementia Bank-ADReSSo 2021 dataset

The ADReSSo challenge dataset, described in [21], contains the
diagnosis dataset with speech from speakers with and without
AD. The recordings include a picture description, employed for
AD detection and MMSE regression tasks. In most cases, these
recordings consist of a participant’s interaction with one inves-
tigator under several recording conditions with different types
of background noise. The dataset is divided into training and
evaluation subsets. The training subset contains 87 recordings
from speakers with AD and 79 from control subjects and the
evaluation subset, a total of 71 recordings.

3. Methods
In this study, we analyzed multiple acoustic and linguistic
modeling approaches to carry out the automatic AD detection
and MMSE prediction tasks proposed in Section 2. Then, we
performed a score-level fusion of these approaches to obtain
new predictions, as indicated in the following sections. There
were two types of experiments:

• Cross-validation: performed by training and testing with the
training subset, using a 10-fold scheme where class distribu-
tions were consistent over the folds.

• Evaluation: obtained by testing the models trained on the
training subset with the evaluation subset. For each sepa-
rate approach, we propagated the evaluation subset through
an ensemble classifier that averages the scores from the 10
cross-validation models.

3.1. Acoustic modeling

We used several types of acoustic modeling to characterize the
speech from the dataset and represent the speakers’ articula-
tory, prosodic and phonatory traits. On the one hand, we used
an end-to-end classifier by fine-tuning an x-vector model [22].
On the other hand, we extracted different types of embeddings
and acoustic features from available libraries as input to logistic
regression and XGBoost classifiers.

3https://github.com/sonal-ssj/ADReSSo 2021 JHU

3.1.1. x-vectors

An x-vector model is a deep neural network that generates one
single vector (embedding) per recording, characterizing the full
signal. Although the technique is considered the current state-
of-the-art for speaker recognition, several studies suggest that
these embeddings also contain information related to emotion,
speaking rate, gender [23, 24] and can be used to characterize
the influence of neurological diseases, such as Parkinson dis-
ease on speech [25]. The x-vector architecture considered in
this study is the same as the employed in [26], and contained
three main parts: an encoder network to extract frame-level rep-
resentation from Mel-frequency cepstral coefficient (MFCC), a
global temporal pooling layer to produce the embedding (x-
vector), and a feed-forward classification network to produce
speaker class posteriors. For the encoder, we used a ResNet-
34 [27] structure consisting of a sequence of 2D convolutional
layers with residual connections between them. The pooling
network comprises a multi-head attention layer and operates
on the ResNet output. Different heads are designed to capture
different speech aspects of the input signal. We concatenated
the attention heads output and pass it through a fully connected
layer whose output is passed through an utterance-level classi-
fier to obtain model decision.

We pre-trained this model for speaker recognition us-
ing VoxCeleb1, VoxCeleb2, NIST SRE4-10, and Switchboard
datasets similarly as in [10]. Then, we replaced the last part of
the model, the fully connected layer, to detect AD using softmax
in the output or provide MMSE values using linear activation
in the output depending on the task, and retrained the whole
model. Additionally, we trained a second model in the same
way but with noise and music augmentation (x-vectors augm),
as indicated in [26] to obtain more robust representations. Both
types of models (x-vectors and x-vectors augm) were trained
considering two different frame-lengths: 25 and 250 ms. We
note that as x-vector models were pre-trained for speaker clas-
sification, our models could perform well on AD detection us-
ing attributes related to speaker classification instead of using
AD characteristics. By evaluating on unseen subjects, however,
we made sure that our model’s performance is reflective of its
ability to capture AD characteristics.

3.1.2. Embeddings and prosody features

Encoder-decoder ASR embeddings. We computed embed-
dings using the encoder of an encoder-decoder ASR system in-
cluded in the SpeechBrain library [28]. We used an acoustic
model trained on LibriSpeech [29], that consists of an encoder
with convolutional recurrent deep neural networks (CRDNN)
architecture followed by a bidirectional LSTM and a fully con-
nected layer to obtain the acoustic representation that we call as
”encoder-decoder ASR embeddings” (SB Enc/Dec).
Prosody features. Previous studies have found that temporal
features of AD patients differ from those of controls as the pa-
tients tend to have more silent pauses than controls [7]. We
used DigiPsychProsody 4 to compute prosody features. These
included total speech time, total pause time, percentage pause
time, speech pause time, mean pause duration, and pause vari-
ability. These features are computed using 3 different inten-
sities of the WebRTC5 Voice Activity Detector. We obtained
these features: (1) for the entire conversation recordings (2) per
speaker – investigator and patient.– In this last case, we used the

4https://github.com/NeuroLexDiagnostics/DigiPsych Prosody
5https://github.com/wiseman/py-webrtcvad
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segmentation files given by the organizers to separate speech for
each speaker. When we used segmentation, we concatenated the
prosody features obtained from investigator and patient.
VGGish features. VGGish is a feature embedding front-end
for audio classification models that has provided good results in
AD detection [13, 18]. We used a pre-trained model 6 trained
using the AudioSet dataset [30].
eGeMAPS Features. The extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) features are a selected
standardized set of statistical features that characterize affective
physiological changes in voice production. We extracted these
features for the entire recording as we expect them to capture
overall speaker characteristics.
Embeddings and prosody features classification. The fea-
ture vectors obtained with SpeechBrain, the prosody features
extractor, VGGish and eGeMAPS were employed to carry out
the different challenge tasks in combination with logistic regres-
sion and XGBoost classifiers. All possible combinations of rep-
resentations and classifiers were evaluated in cross-validation.

3.2. Linguistic modeling

3.2.1. Automatic speech recognition

Since the challenge data does not include human-annotated
transcripts, we used ASR models to transcribe the recordings.
As the recordings contain conversational speech and has notice-
able noise and reverberation – with the microphones often be-
ing located far from speakers – we used a pre-trained ASpIRE
recipe model7 in Kaldi [31]. ASpIRE was a far-field speech
recognition challenge held by IARPA, and the model in the
recipe is trained on the English portion of the Fisher corpus [32],
which is conversational speech, with data augmentation through
room impulse response convolution and background noise [33].
This model is denoted as ASR 1 in our experiments.

Then, to improve the transcription quality, we interpolated
the ASpIRE LM with an LM trained on automatic transcripts of
the target domain (training subset of ADReSSo 2021) obtained
with ASR 1. This interpolated model will provide more likeli-
hood to frequent words of the target domain, leading to a lower
word error rate. This system is denoted as ASR 2.

Lastly, to obtain other automatic transcripts from ASR sys-
tems trained on more varied acoustic data and possibly cover
multiple linguistic domains, we employed two commercially
available ASR systems: Amazon Web Services (AWS) and the
Otter.ai ASR models denoted as ASR 3 and ASR 4, respectively.
Since challenge data does not have manual transcriptions, we
could not compare how different ASRs perform in regard to
word error rate (WER) on the data.

3.2.2. BERT language model

We modeled the linguistic-phonological manifestations of AD
using a pre-trained LM, BERT [34], on the automatic transcrip-
tions of the speech recordings. BERT has provided state-of-
the-art performances in multiple applications such as question
answering, natural language inference, sentence, and word pre-
diction, sentiment prediction, among many others [35]. After
fine-tuning BERT, the transformer-based model can be used to
model language context, flow, and complexity in the tasks of
interest of this study [10]. In similar lines, previous works have
shown promising results in other tasks such as depression de-
tection [36] and sentiment analysis [37].

6https://github.com/tensorflow/models/tree/master/research/audioset,
https://github.com/harritaylor/torchvggish

7https://kaldi-asr.org/models/m1

The BERT architecture consists of self-attention layers and
feed-forward layers, similar to transformer encoder layers. The
inputs of the model were tokens from the automatic transcript
using WordPiece tokenizer [38]. The input token sequence was
processed through the multiple encoder layers until the penul-
timate layer to obtain embeddings for each token. Then, the
sequence of token embeddings was pooled to pass through a
last linear layer to obtain the final prediction. In our case, we
used a pre-trained BERT model and adapted it to our tasks (AD
detection and MMSE prediction) in the following manner:

• We replaced the last layer of the model with a task-specific
layer: a linear layer having two outputs with a softmax acti-
vation function for AD detection or a linear layer having one
output with a linear activation function for MMSE prediction.

• We fine-tuned the entire pre-trained model using our data to
minimize the cross-entropy loss for AD detection or mean
square error for MMSE prediction.

For each iteration of the cross-validation experiments, 8
folds from the training subset were employed for BERT fine-
tuning, 1 fold for early stopping, and the remaining fold for
testing. We fine-tuned the models for up to 5 epochs.

3.3. Model fusion

We explored model fusion by using the output scores of the
models as the inputs of a logistic regression classifier to obtain
a final prediction (detection or MMSE prediction). We first ob-
tained fused models by combining the acoustic models. Then,
we combined the best acoustic model and the best linguistic
model, As for linguistic modeling, we used just BERT with dif-
ferent ASR transcriptions. Finally, we combined the best fused
acoustic model with the best linguistic model, i. e., we first
fused several acoustic models, and the resulting scores were
fused with those from BERT.

4. Results and discussion
Acoustic models. Table 1 contains the results of the different
acoustic models for the detection and MMSE prediction using
logistic regression as a classifier.8 Detection results are reported
using accuracy (%) and MMSE prediction results, using root
mean square error (RMSE).

Results in the first block of Table 1 indicate that all
of the acoustic features provide some differentiation between
classes. SB Enc/Dec embeddings with logistic regression and
x-vectors model with 250 ms frame-length provide the best
cross-validation results for AD detection, whereas SB Enc/Dec
embeddings and eGeMAPS provide the best RMSE values for
MMSE prediction. Prosody features related to pause times and
pause vs. speech ratios characterize the loss of verbal fluency,
which is associated with AD [7] and, whereas these provide
only 61% accuracy, the results suggest that these help to auto-
matically differentiate between speakers with and without AD.
Linguistic models. The second block in Table 1 includes the
accuracy and RMSE results of four BERT models fine-tuned
with automatic transcriptions obtained with four ASR systems.
The best detection result is obtained from the one fine-tuned
with the automatic transcriptions from ASR 3, and best MMSE
prediction with ASR 4, both of which are based on commer-
cially available ASR systems. These results suggest that tran-
scription errors lead to worse prediction and detection results

8We also used other classifiers like XGBoost, however, since logistic
regression outperformed other classifiers, due to space constraints, we
have included results for only logistic regression.
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Table 1: Best AD detection accuracy (%) and MMSE predic-
tion RMSE using acoustic (top), linguistic (middle), and fusion
(bottom) modeling during cross-validation.

Model Detection
accuracy(%)

MMSE
RMSE

Acoustic
x-vectors 69.3 7.18
x-vectors (250 ms) 71.1 6.97
x-vectors augm 58.4 6.92
x-vectors augm (250 ms) 63.9 7.01
VGGish 60.8 6.92
SB Enc/Dec 71.7 6.44
Prosody (20 ms) 60.8 6.94
Prosody (30 ms) 59.0 6.89
Prosody per speaker (20 ms) 61.5 6.96
Prosody per speaker (30 ms) 61.5 7.05
eGeMAPS 63.3 6.76

Linguistic
BERT (ASR 1) 63.1 6.74
BERT (ASR 2) 69.5 5.90
BERT (ASR 3) 76.1 5.44
BERT (ASR 4) 73.3 5.39

Fusion
All acoustic models 69.9 6.74
x-vector (250 ms), SB Enc/Dec 72.3 6.55
x-vector, x-vector (250 ms), SB
Enc/Dec

73.5 6.60

x-vector, x-vector (250 ms), SB
Enc/Dec, Prosody (20 ms)

72.9 6.76

BERT (ASR 3), {x-vector, x-vector
(250 ms), SB Enc/Dec }

81.3 5.23

using linguistic approaches. Whereas in our previous work [10],
linguistic models trained with manual transcriptions always out-
performed acoustic models, in this study, some acoustic models
from Table 1 outperform those linguistic models that possibly
have high word error rates in their transcriptions. On the other
hand, there is a remarkable improvement in the results of the
linguistic model with ASR 2 transcription compared to with
ASR 1 transcription. This indicates that interpolating the LM
in ASR with the automatic transcription from the in-domain
recordings can improve the final linguistic modeling. There-
fore, new linguistic-based diagnostic tools will benefit from LM
interpolation when the speech tasks (cognitive tests) are known.
Score-level fusion. Results of score fusion are included in the
third block of Table 1. All of these values are reported using lo-
gistic regression as the fusion back-end, since it led to the best
results. The fusion of the scores of all acoustic models led to
worse results than the fusion of only two or three acoustic mod-
els. For score fusion with only acoustic models, the score fu-
sion of SB Enc/Dec with several modalities of x-vector models
showed the best result with 73.5% accuracy in cross-validation.
However, the fusion of the acoustic models does not reduce the
RMSE in the prediction task. The fusion of the linguistic model
trained with the automatic transcriptions from ASR 3 and three
acoustic models provides the best cross-validation results of the
study, 81.3% and lowest RMSE in prediction, 5.23. This co-
incides with the findings of past work [10] that suggests that
acoustic and linguistic approaches can have complementary in-
formation for detection and assessment of AD.
Evaluation results. Following the challenge rules, we submit-
ted the scores from five different models on the detection task
and other five on the MMSE task for challenge evaluation. Ta-
ble 2 includes the results of that evaluation in terms of precision,

recall, F1-score, and accuracy for detection, and RMSE in the
prediction task. The trend of the results is similar to those in the
cross-validation. Notably, the linguistic approach employing
the ASR 3 transcription and its fusion with acoustic approaches
provide the best results in terms of accuracy. However, in the
evaluation result, the linguistic approach employing the ASR
4 transcriptions provides the best MMSE prediction. In gen-
eral, the evaluation results are better than those obtained using
cross-validation. One possible reason can be the use of ensem-
ble models, built with the 10 cross-validation models for each
of the submitted approach for evaluation, prevents overfitting.

Table 2: ADReSSo challenge evaluation results for the detection
and prediction tasks. Best results are marked in bold. Ac. fu-
sion refers to the fusion of scores from acoustic models x-vector,
x-vector (250 ms) and SB Enc/Dec. Global fusion refers to the
fusion of Ac. fusion scores with BERT (ASR 3) scores. Follow-
ing the challenge rules, 5 models were submitted for evaluation
of detection, and other 5 models for prediction tasks. * indicates
that the system was not submitted for evaluation

Detection Prediction
Model Class Rec/Prec F1 Accu

(%)
RMSE

Baseline CC 0.78/0.80 0.78 78.87 5.28
[21] AD 0.80/0.78 0.78
SB CC 0.72/0.72 0.72 71.80 5.74
Enc/Dec AD 0.71/0.71 0.71
Ac. CC 0.75/0.75 0.75 74.70 *
fusion AD 0.74/0.74 0.74
BERT CC 0.92/0.77 0.84 81.70 4.67
(ASR 2) AD 0.71/0.89 0.79
BERT CC 0.94/0.79 0.86 84.51 4.26
(ASR 3) AD 0.74/0.92 0.83
BERT CC * * * 3.85
(ASR 4) AD * *
Global CC 0.94/0.79 0.86 84.51 4.62
fusion AD 0.74/0.92 0.83

5. Conclusions and future work
In this study, we have analyzed the use of acoustic and linguistic
approaches for the automatic detection of AD and MMSE pre-
diction in a low resource scenario proposed by the ADReSSo

challenge organizers. The acoustic approaches consisted of
speaker and speech recognition embeddings and prosodic fea-
tures, whereas the linguistic models were built with BERTs
trained on different ASR transcripts. Our findings suggest that
acoustic and linguistic approaches contain complementary in-
formation for automatic detection and assessment of AD. The
x-vector model and encoder-decoder automatic speech recogni-
tion embeddings provided the best results among acoustic mod-
els, and the BERT fine-tuned with automatic transcriptions from
a commercial ASR system yielded the best results for the lin-
guistic approach. Also, the use of the interpolated LM to adapt
the ASR to the target domain produced an absolute improve-
ment of 6.4% accuracy and 0.84 in the detection and MMSE
prediction tasks, respectively.

In future work, we will evaluate the use of several iterations
of LM interpolation to adapt and refine the ASR to the target
domain. We will also explore multi-modal approaches in which
the classifier uses aligned linguistic and acoustic information
in order to extract more precise cues and exploit the bi-modal
complementarity.
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Abstract
Alzheimer’s Disease (AD) results from the progressive loss

of neurons in the hippocampus, which affects the capability to
produce coherent language. It affects lexical, grammatical, and
semantic processes as well as speech fluency. This paper con-
siders the analyses of speech and language for the assessment
of AD in the context of the Alzheimer’s Dementia Recognition
through Spontaneous Speech (ADReSSo) 2021 challenge. We
propose to extract acoustic features such as X-vectors, prosody,
and emotional embeddings as well as linguistic features such as
perplexity, and word-embeddings. The data consist of speech
recordings from AD patients and healthy controls. The tran-
scriptions are obtained using a commercial automatic speech
recognition system. We outperform baseline results on the test
set, both for the classification and the Mini-Mental State Ex-
amination (MMSE) prediction. We achieved a classification ac-
curacy of 80% and an RMSE of 4.56 in the regression. Ad-
ditionally, we found strong evidence for the influence of the
interviewer on classification results. In cross-validation on the
training set, we get classification results of 85% accuracy us-
ing the combined speech of the interviewer and the participant.
Using interviewer speech only we still get an accuracy of 78%.
Thus, we provide strong evidence for interviewer influence on
classification results.
Index Terms: Alzheimer’s Disease, Speech Analysis, Natural
Language Processing, Speaker Modeling, Emotional Modeling

1. Introduction
Alzheimer’s Disease (AD) is the most prevalent neuro-
degenerative disease and the most common form of demen-
tia [1]. It is characterized by progressive dementia, neuro-
logical degeneration, and death of brain cells. AD symptoms
include memory, behavioral, and psychological impairments.
The deterioration of cognitive functions also leads to commu-
nication deficits, i.e., the capability to produce coherent lan-
guage [2]. Abnormalities in language production of AD pa-
tients are caused by the difficulty to access semantic informa-
tion intentionally, which affects speech fluency [3]. A standard
scale to evaluate the cognitive function of AD patients is the
Mini-Mental State Examination (MMSE) [4]. It is a 30-point
scale that accounts for language production, immediate mem-

?

ory, naming, and spatial attention. Scores of over 24 indicate
normal cognition.

In last year’s Alzheimer’s Dementia Recognition through
Spontaneous Speech (ADReSS) challenge a dataset comprised
of recordings from the Dementia Bank was provided [5]. The
challenge included two tasks; classification of dementia and
prediction of the MMSE score. In [6], the authors used Term
Frequency-Inverse Document Frequency (TF-IDF) and Mel
Frequency Cepstral Coefficients (MFCCs). Their best results
on the test set were achieved using late fusion, leading to an
accuracy of 77.8% for the classification task and a Root Mean
Square Error (RMSE) of 4.44 for the prediction task. A fine-
tuning of Bidirectional Encoder Representations from Trans-
formers (BERT) embeddings was performed by [7]. Achieving
an accuracy of 83% in the classification task and an RMSE of
4.56 on the test set. The use of state-of-the-art speaker recog-
nition (X-vectors) and word-embeddings (BERT) techniques
were employed in [8]. 81% accuracy on the test set was ob-
tained by combining both embeddings. In [9], classical speech
paralinguistics features, as well as acoustic and BERT embed-
dings, achieved accuracies of up to 85% using linguistic and
76% using speech features. For the prediction task linguistic
features obtained an RMSE of 4.30, while using speech features
achieved an RMSE of 5.92.

Dementia Bank [10] provides a publicly available dataset
with recordings from AD patients and Healthy Control (HC)
subjects. It has led to a large body of prior work. An n-gram
based approach combined with recurrent cells to classify AD
patients and HC subjects was proposed in [11]. Fraser et al. use
a correlation-based feature ranking technique to select from lan-
guage, psycho-linguistic, and acoustic features such as energy,
periodicity, and vocabulary richness [12].

Research on automatic assessment of AD utilizing data out-
side of dementia bank can be found in [13] where the authors
used an Automatic Speech Recognition (ASR) system to extract
speech features and linguistic features from transcripts to dis-
criminate between AD patients and HC subjects as well as peo-
ple suffering from Mild Cognitive Impairments (MCI). Pérez et
al. [14] use articulation, prosody, X-vectors, and state-of-the-art
word embeddings to classify genetic and early-onset AD.

Our contributions are:

• Improvement over baseline results for the AD classifica-
tion and MMSE prediction tasks of the ADReSSo 2021
Challenge [15] using novel emotional embeddings.

• Evaluation of linguistic and acoustic features, as well asequal contribution
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multi-modal fusion-approaches for the classification of
AD, using ASR and speaker diarization.

• Providing evidence for the influence of the Interviewer
(INV) in the task for automatic assessment of AD

2. Data
The dataset in this work was created by the organizers of the
Interspeech ADReSSo 2021 challenge [15]. The dataset con-
sists of 166 recordings (87 AD, 79 HC) for training and 71 for
testing. All participants were native English speakers who were
asked to describe the cookie theft picture [16]. The recordings
are matched for age and gender and have been acoustically en-
hanced and normalized. In addition to the recordings, speaker
segmentation information was provided.

For this study we, obtained transcriptions using a commer-
cial state of the art ASR service1. The speech signals were de-
noised to improve the quality of the recordings using the pro-
posed model in [17].

3. Methods
In this section, we briefly describe the acoustic and linguistic
features used in this study. Extraction methods and implemen-
tation details can be found in the accompanying repository. 2

3.1. Acoustic Features

3.1.1. X-vectors

X-vectors are DNN-embeddings that were originally used in
speaker recognition and diarization tasks [18, 19]. They have
been shown to also work in several paralinguistic tasks such as
emotion recognition from speech [20], the detection of Parkin-
son’s disease [21], and AD [22]. [20] describes the influence of
emotions on speaker recognition using X-vectors. Their study
provides evidence that there is additional information encoded
besides speaker information. Their independence of the ac-
tual AD training data as well as their robustness to noise and
challenging acoustic conditions make X-vectors a good fit for
acoustic-only approaches for AD assessment. Another advan-
tage is their ability to map variable-length utterances to fixed-
length embeddings.

In our experiments, we use an X-vector system based on a
Time Delay Neural Network (TDNN) as proposed in [19]. The
TDNN is trained using the Kaldi-toolkit and the VoxCeleb2 cor-
pus [23]. Training and implementation details are described in
[19]. The recipe used to train the X-vector system is publicly
available.3 Training of the X-vector system relies on data aug-
mentation to adapt to difficult acoustic conditions, thus making
them robust to noise and other channel effects. X-vectors are
extracted for every 1.5s window with a minimal segment size
of 0.5s. The embeddings are mean normalized and their length
is reduced to 200 dimensions using Linear Discriminant Anal-
ysis (LDA).

3.1.2. Prosody

The extracted features are based on speech rates and energy
and the Fundamental Frequency (F 0) contours, where chunks
of 40 ms were taken. The energy contour is computed over the

1 Amazon web services (AWS) transcribe.
2 https://git.io/JnUJd
3 https://git.io/JnUUq

voiced and unvoiced segments. For the F 0 only the voiced seg-
ments were considered. The tilt and the mean square error were
computed from the contours. From these descriptors, six statis-
tical functionals were computed (mean, standard deviation, kur-
tosis, skewness, minimum, and maximum) per utterance. Ad-
ditionally, features based on duration measures considering the
voiced and unvoiced segments were also considered. A total of
91 descriptors were extracted.

3.1.3. Voice Activity Detection Features

Duration ratios were extracted using an energy-based Voice Ac-
tivity Detection (VAD) algorithm. The considered features were
defined by; (1) number of pauses per second, (2) number of
speech segments per second, (3) ratio between the number of
speech segments and pauses, (4) six functionals (mean, stan-
dard deviation, kurtosis, skewness, minimum, and maximum)
for the duration of the speech segments, and (5) the same six
functionals for the duration of the pauses.

3.1.4. Pre-trained model based on the PAD emotional model

The “Pleasure, Arousal, and Dominance emotional
model” [24] (PAD) leads to represent different emotions
in a multidimensional space, where they can be either
pleasant-unpleasant (valence), calm-agitated (arousal), or
dominant-submissive (dominance). Our approach aims to
capture similar aspects related to the emotions, mood, and
affective states in AD patients, since the reduced ability of the
emotional perception in AD caused by the memory loss may
induce the appearance of apathy and depression according to
some studies [25, 26]. We trained three models to address
three classification problems using the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) database [27]: (1) active
vs. passive arousal (accuracy=67%), (2) positive vs. negative
valence (accuracy=88%), and (3) strong vs. weak dominance
(accuracy=80%).
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Figure 1: General architecture of the three pre-trained models
based on the PAD emotional model. It consists of four parts: (1)
a CNN of 8 filters with a kernel size of (1,3), max pooling (1,2),
a batch normalization layer, and a leaky ReLU activation, (2) a
self-attention map layer, (3) a Bidirectional GRU (Bi-GRU) of
2 stacked layers with 128 hidden units, a batch normalization
layer, and (4) two linear layers with 256 units for the embedding
features and 2 units for the classification step.

Our proposed model (see Figure 1) consists of a multi-
channel input formed by 3 log-Mel spectrograms with differ-
ent resolutions (16 ms, 25 ms, and 45 ms) and considering se-
quences of 500 ms. It aims to model different aspects related
to articulation and prosody information by combining Convo-
lutional Neural Networks (CNN) and Gated Recurrent Units
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(GRU). The output of the embedding layer is used to extract fea-
tures (transfer knowledge) for the ADReSSo data, with the as-
sumption that some affective patterns can appear in AD [25, 26].

3.2. Linguistic Features

3.2.1. Word-Embeddings

These methods allow the words in a corpus to be represented
as lower-dimensional feature vectors to better model the con-
text. BERT and Efficiently Learning an Encoder that Classifies
Token Replacements Accurately (ELECTRA) are based on the
encoder part from the “Transformers” method [28] that maps an
input sequence into lower dimensional feature vectors.

BERT consists of a Masked Language Model (MLM),
which predicts a small number of words that have been masked
out of the input [29]. These models have the advantage of be-
ing bidirectional, which considers the use of the previous and
the following words. As opposed to BERT, ELECTRA instead
of the MLM, performs a pre-training task called Replaced To-
ken Detection (RTD) [30]. Instead of replacing some words
with the token “[Mask]” as in BERT, RTD corrupts some words
with generated incorrect words to discriminate between “real”
and “fake” input words, similar to adversarial models. We con-
sidered BERT-Base and ELECTRA-Base models trained with
BooksCorpus and the English Wikipedia. The last layer (768
units) is taken as the word-embedding representation in both
methods. The mean of the overall word-embeddings is com-
puted for the classification task, while four functionals (mean,
standard deviation, skewness, and kurtosis) are computed for
the regression task [31].

3.2.2. Perplexity

Perplexity (PPL) is the inverse probability of the test set, nor-
malized by the number of words. PPL is a measure of how well
a Language Model (LM) predicts a sample. For a sequence of
words W = w1, w2, ..., wN , perplexity is computed by

PPL(W ) = P (w1w2...wN )
−1
N (1)

Low perplexity indicates that a text can be well predicted by
a LM that was trained on a different text, meaning predictable
results are considered to be better than randomness. The cookie
theft picture can easily be described by a healthy person. This
limited task is expected to lead to a small, closed vocabulary and
thus to similar n-grams. This is the case if texts of both training
and test data are describing what is in the picture similarly and
are coherent. As shown by Wankerl et al., AD patients tend to
describe the picture in unforeseen ways and divert from the ac-
tual task. They stumble frequently and repeat themselves by us-
ing different formulations [32]. We, therefore, adopt the n-gram
LM-based evaluation of PPL using two LMs, Malzheimer and
Mcontrol described in [32]. We acquire two PPL values palzheimer

and pcontrol as well as their difference pdiff = palzheimer − pcontrol

and use those as features in our experiments.
N-gram LMs can be quickly computed and evaluated for

small amounts of training data such as the challenge data.
Tools for computing n-grams are included in speech recognition
toolkits and readily available. In our experiments, we use the
popular SRILM toolkit to compute two Bi-gram LMs,Malzheimer

and Mcontrol [33]. We account for out of vocabulary (OOV)
words by mapping them to a special token and using Witten-
Bell smoothing. The resulting modelMcontrol has 953 uni-grams
and 3875 bi-grams whereas the Malzheimer model has 906 uni-
grams and 3548 bi-grams when computed on the training data.

3.3. Optimization, Classification, and Regression

A Radial Basis Function-Support Vector Machine (RBF-SVM)
was used as a classifier for the diagnosis task. The op-
timal parameters of the RBF-SVM were found through a
grid search where C ∈ {10−4, 10−3, ..., 104} and γ ∈
{10−4, 10−3, ..., 104}. The regression task for the prediction of
the MMSE was performed by using a Linear Regression (LR)
model. Other regressors such as linear Support Vector Regres-
sion (SVR) and an RBF-SVR, were discarded since the best
performance was obtained using LR for our set of features.
The validation for all experiments followed a 5-Fold Cross-
Validation (CV) strategy using the training set provided by the
challenge. For the classification and regression an early fusion
strategy was applied by merging sets of features before perform-
ing the classification/regression and making the final decision.

4. Experiments and Results
The experiments consider two tasks in the context of the
ADReSSo challenge: (1) Classification of AD/HC and (2) the
prediction of the MMSE score. The challenge results for both
tasks are presented in Table 1. The baseline results were pro-
vided by the challenge and were evaluated considering a Leave
One Speaker Out (LOSO) - CV strategy and using the test set.
For comparison purposes, we used a CV strategy to evaluate
our models only using the train/development set since the test
labels were not provided. Similar results for classification us-
ing linguistics (acc=81.33%) and acoustics (acc=81.13%) were
found. However, the performance increases by 5% points us-
ing an early fusion strategy combining acoustics and linguistics.
For the prediction task linguistics obtain the most accurate re-
sults w.r.t. each modality separately (RMSE=5.14, ρ=0.68). Be-
sides, the combination of acoustics and linguistics improves the
prediction with an RMSE of 4.86 and a ρ of 0.72. The reported
test results were obtained by submitting our best combinations
of features to the challenge. The combination of modalities pro-
vides higher results for the classification task, while linguistic
features are more accurate in the prediction of the MMSE.

Table 2 shows the results for classification considering the
complete recordings (participant and INV together), the seg-
mented recordings for the participant only, and the segmented
recordings for the INV only. Experiments considering INV-
only speech were performed on a subset of 158 samples, as no
labeled INV segments were present in 8 of the samples. The
segmentation was performed according to the timestamps pro-
vided by the challenge. The results are computed following a
CV strategy in the train/development set. In general, the most
accurate results are obtained using the unsegmented record-
ings, where the combination of modalities yields an accuracy
of 85.54%. Similar results are achieved considering only the
participant and only the INV, which may indicate that the INV
is influencing the task in order to better interact with the patient.

The prediction results of the MMSE considering the un-
segmented and the segmented recordings are shown in Table 3.
Although the best performance is obtained by using the un-
segmented recordings, the results are close to those obtained
only using the participant’s speech. It can indicate that the INV
adapts differently to subjects with AD. However, the INV does
not seem to directly influence the prediction of the MMSE be-
cause she/he cannot intuitively assume the severity of the dis-
ease. Unfortunately, the information about how many different
INVs were involved was not provided.
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Table 1: ADReSSo challenge results for the classification and prediction task. A, V, and D are the arousal, valence, and dominance
embeddings. Prosody is represented by P, BERT by B, ELECTRA by E, perplexity by PPL, and X-vectors by Xvec.

Classification Prediction
Features F1 Acc Sens Spec Features RMSE ρ

CV in the training set
Acoustic Xvec + D 0.81 81.13 81.01 81.61 P + Xvec + V + D 6.27 0.51
Linguistic PPL + B 0.81 81.33 83.54 79.31 E 5.14 0.68
Fusion P + A + D + B 0.86 85.54 88.61 82.76 P + Xvec + V + D + B + E 4.86 0.72

Acoustic – 78.92 – – Acoustic 6.88 –Baseline Linguistic – 72.89 – – Linguistic 5.92 –
Test

Acoustic Xvec + D 0.67 67.61 75.00 60.00 P + Xvec + V + D 5.35 –
Linguistic PPL + B 0.78 78.87 97.22 60.00 PPL + B 4.56 –
Fusion P + A + D + B 0.80 80.28 88.89 71.43 P + Xvec + V + D + B + E 4.79 –

Acoustic – 64.79 – – Acoustic 6.09 –
Linguistic – 77.46 – – Linguistic 5.28 –Baseline
Late Fusion 0.79 78.87 80.00 77.78 Late Fusion 5.29 0.69

F1: F1-Score. Acc: Accuracy. Sens: Sensitivity. Spec: Specificity. RMSE: Root Mean Square Error.
ρ: Spearman’s correlation. Acc, Sens, and Spec are given in [%].

Table 2: Cross-validation classification results on the training
set. Using the combined speech of interviewer and participant,
and either participant or interviewer speech.

Features F1 Acc Sens Spec
Complete Recording

Acoustic Xvec + D 0.81 81.13 81.01 79.31
Linguistic PPL + B 0.81 81.33 83.54 79.31
Fusion P + A + D + B 0.86 85.54 88.61 82.76

Participant Only Speech
Acoustics P + A 0.75 74.70 65.82 82.76
Linguistics PPL + B + E 0.78 78.31 77.22 79.31
Fusion A + V + E 0.82 82.53 83.54 81.61

Interviewer Only Speech
Acoustics VAD+P+V 0.78 77.78 74.24 80.46
Linguistics B+E 0.71 70.59 71.21 70.12
Fusion Xvec+V+E 0.77 76.47 72.72 79.31
F1: F1-Score. Acc: Accuracy. Sens: Sensitivity. Spec: Specificity.
Acc, Sens, and Spec are given in [%].

Table 3: Cross-validation MMSE results on the training set. Us-
ing the combined speech of interviewer and participant, and ei-
ther participant or interviewer speech.

Features RMSE ρ
Complete Recording

Acoustic P + Xvec + V + D 6.27 0.51
Linguistic PPL + B 5.16 0.68
Fusion P + Xvec + V + D + B + E 4.86 0.72

Participant Only Speech
Acoustic VAD + P + Xvec + A + V 6.40 0.42
Linguistic E 5.14 0.68
Fusion VAD + Xvec + V + E 4.87 0.70

Interviewer Only Speech
Acoustic VAD + Xvec+D 6.02 0.51
Linguistic PPL 10.89 0.37
Fusion Xvec + V + D + B 5.65 0.53
RMSE: Root Mean Square Error. ρ: Spearman’s correlation.

5. Discussion and Conclusions
This study proposed and experimentally evaluated a methodol-
ogy for the automatic assessment and classification of AD. Our
method leverages ASR and a combination of classical as well as
state-of-the-art speaker- and word-embeddings in multimodal
classification and regression models. While we could show that
we can improve over the baseline on both the cross-validation
and the test set (see Table 1), we do not consider these as the

main findings of our study.
To us, the main finding of our study is evidence of the

influence of the INV on the results of the classification task.
We observed that classification results improved whenever the
speech of the INV is involved. At the same time not hurting
the performance in the MMSE prediction and by itself still get-
ting very close to baseline results using INV speech only. This
may happen since INVs intuitively adapt their behavior to bet-
ter communicate/interact with the AD patient. Some studies re-
veal that therapists, physicians, health care providers, and care-
givers use different interaction strategies to enhance communi-
cation [34, 35, 36]. However, in the case of the data provided,
we do not know whether the INV knows about the participant’s
condition beforehand. A variable of INV behavior is the num-
ber of interactions (INV labeled segments) and their duration
per sample. We performed a Kruskal-Wallis (p � 0.05) test
to compare the INV duration and the number of INV labeled
segments between HCs and AD patients. This leads to the re-
jection of the null-hypothesis in both cases, i.e., the behavior of
the INV is distinctively different when talking to either an HC
or an AD patient.

It is important to be mindful w.r.t. the results and to fur-
ther investigate our observation. The best result in the CV for
INV-only speech could be achieved using acoustic features only.
This implies that there might be something in the acoustic con-
ditions that adds a bias to the dataset. This could mean that we
in part classify acoustic conditions rather than AD.

We suggest further research into two directions. Checking
the dataset for inherent bias in acoustic conditions, while at the
same time exploring other features, fusion techniques, and data
modeling methods. To check the validity of the proposed meth-
ods, other datasets need to be used.
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Abstract

In this paper, we combined linguistic complexity and
(dis)fluency features with pretrained language models for the
task of Alzheimer’s disease detection of the 2021 ADReSSo
(Alzheimer’s Dementia Recognition through Spontaneous
Speech) challenge. An accuracy of 83.1% was achieved on
the test set, which amounts to an improvement of 4.23% over
the baseline model. Our best-performing model that integrated
component models using a stacking ensemble technique per-
formed equally well on cross-validation and test data, indicating
that it is robust against overfitting.
Index Terms: Alzheimer’s disease, disfluency, pretrained lan-
guage models, automated Alzheimer’s disease detection, lin-
guistic complexity

1. Introduction
Alzheimer’s disease (AD) is a gradual and progressive neurode-
generative disease caused by neuronal cell death [1]. The num-
ber of people diagnosed with AD is rapidly increasing1. The
high prevalence of the disease and the high costs associated with
traditional approaches to detection make research on automatic
detection of AD critical [2]. A growing body of research has
demonstrated that quantifiable indicators of cognitive decline
associated with AD are detectable in spontaneous speech (see
[3] for a recent review). These indicators encompass acoustic
features, such as vocalisation features (i.e. speech-silence pat-
terns) [4], paralinguistic features, such as fluency features [5]
and speech pause distributions [6], as well as syntactic and lex-
ical features extracted from speech transcripts [7].

This area of research has benefited from recent advances in
natural language processing and machine learning, as well as an
increasing number of interdisciplinary research collaborations.
A prime example of this is the ADReSS(o) (Alzheimer’s De-
mentia Recognition through Spontaneous Speech) Challenge,
aimed at generating systematic evidence for the use of such in-
dicators in automated AD detection systems and towards their
clinical implementation. This challenge has made significant
contributions to research on AD detection by enabling the re-
search community to test their existing methods, develop novel
approaches and to benchmark their AD detection systems on a
shared dataset. The ADReSSo Challenge at INTERSPEECH
2021 [8] is geared towards automatic recognition of AD from
spontaneous speech and involved three subtasks. Here in this
paper, we focus on the AD classification subtask, for which re-
search teams were asked to build a model to predict the label

1https://www.alz.org/alzheimers-dementia/facts-figures

(AD or non-AD) for a short speech session. Participating teams
could use the speech signal directly and extract acoustic features
or automatically convert the speech to text (ASR) and extract
linguistic features from this ASR-generated transcript.

1.1. Related work

In this section, we provide a concise review of research on auto-
matic AD detection through speech, with particular attention to
previous studies conducted as part of the 2020 ADReSS Chal-
lenge. The AD classification approaches in this challenge relied
on a wide range of acoustic, paralinguistic, and linguistic fea-
tures or their combination. Classification accuracy scores of
the proposed models ranged between 68% and 89.6%. While
some approaches either focused on acoustic or linguistic fea-
tures, the best performing contributions in the 2020 challenge
embraced a multi-modal approach combining several types of
features (e.g. [9][10][11]). Furthermore, building on earlier
work reporting on the effectiveness of the use of word embed-
dings in AD detection ([12][13]), several approaches success-
fully employed pretrained language models (e.g. [9][10][11]).
Another important issue addressed in several studies concerned
how to deal with variance in the predictive performance of pre-
trained models resulting from fine-tuning for downstream tasks
with a small data set. In response to this issue, the authors of
the best performing model [9] introduced an ensemble method
to increase the robustness of their approach. In response to this
issue, the best performing paper of the 2020 challenge [9] intro-
duced an ensemble approach to increase the robustness of their
models. Finally, it is important to note that some of the high-
performing models in last year’s challenge – including the best
model described in [9] – used rich manual transcription that in-
cluded pause and disfluency annotation. Such transcripts were
not provided in the 2021 challenge, making it more demanding
compared to last year’s challenge.

1.2. Modeling approach

The modeling approach presented in this paper builds on key
insights reported in the studies reviewed above and extends
on these (1) by integrating linguistic indicators of linguis-
tic complexity and sophistication, features of (dis)fluency and
transformer-based pretrained language models and (2) by utiliz-
ing ensembling methods to combine the information from these
feature groups and to reduce the variance in model predictions.
Specifically, we perform experiments with classification based
on three ensembling techniques: Ensembling by bagging via
majority vote, ensembling by bagging using feature fusion, and
ensembling by stacking.
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2. Data and analysis
2.1. Data

The Alzheimer’s Disease Detection dataset provided by the or-
ganizers of the ADReSSo Challenge 2021 consists of speech
recordings of picture descriptions from the Boston Diagnostic
Aphasia Exam produced by 87 individuals with an AD diag-
nosis and 79 cognitively normal subjects (control group). The
recordings were acoustically enhanced (noise reduction through
spectral subtraction) and normalised. The data were also bal-
anced with respect to age and gender. The organizers also
provided segmentations of the recordings into vocalisation se-
quences with speaker identifiers. No transcripts were provided.

2.2. Speech Recognition

We used AppTek’s Automatic Speech Recognition technology
via a cloud API service2 for automatically transcribing the audio
files. The transcripts were converted from XML into raw text
formats with full stops being added at the end of each utterance
based on the provided segmentations. These files served as the
input for the automated text analysis (see Section 2.4).

2.3. (Dis)fluency

To model the speakers’ articulatory (in particular (dis)fluency-
related) characteristics, we derived several features from the
ASR system that fall into four classes. (1) Silent pauses - The
ASR output contained the start- and end-times as well as con-
fidence scored for each recognized word. Durations of pauses
were calculated from forced alignment and binned by duration
into short pauses (< 2sec) and long pauses (> 2sec). In ad-
dition, we calculated the total pause duration per sentence (in
seconds). (2) Speed of articulation - We enriched the output of
the ASR with syllable counts from the Carnegie Mellon Uni-
versity Pronouncing Dictionary3. Based on this information
we assessed the mean syllable duration as well as syllables per
minute for each utterance in the speech data. (3) Filled pauses
- Next to the number and total duration of silent pauses, we de-
rived frequency counts per sentence for two filled pause type,
uh and um, that had been shown to discriminate between AD
patients and controls in previous studies [9]. (4) Pronunciation
- As the known symptoms of AD patients include mispronunci-
ation [14], we calculated average word level confidence scores
as a proxy of pronunciation quality, which have been employed
for the speech pattern detection in the context of detection of
Alzheimer’s Disease [15]. All measures were calculated at ut-
terance level. An overview of these measures with descriptive
statistics for both groups is presented in Table 1.

2.4. Automated Text Analysis (ATA)

The speech transcripts were automatically analyzed using
CoCoGen (short for: Complexity Contour Generator), a com-
putational tool that implements a sliding window technique to
calculate within-text distributions of scores for a given language
feature (for current applications of the tool in the context of text
classification, see [16, 17, 18]). In this paper, we employed a
total of 293 features derived from interdisciplinary, integrated
approaches to language [19] that fall into four categories: (1)
measures of syntactic complexity, (2) measures of lexical rich-
ness, (3) register-based n-gram frequency measures, and (4)

2https://www.apptek.com/
3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Table 1: Descriptive statistics of (dis)fluency measures
AD patients Control

(Dis)Fluency measure M SD M SD
Speed of articulation
Mean syllable duration 0.28 0.05 0.26 0.03
Syllables per minute 205 45.7 224 35.7
Silent pauses
Pause time per sentence (in sec) 0.92 0.89 0.63 0.49
N long pauses (> 2sec) 1.28 2.22 0.473 0.71
N short pauses (< 2sec) 13.2 9.28 15.4 11.7
Filled pauses
N uh 0.29 0.88 0.24 0.54
N um 0.07 0.37 0.31 0.74
Pronunciation
Mean ASR confidence 0.83 0.09 0.86 0.08

information-theoretic measures. In contrast to the standard ap-
proach implemented in other software for automated text analy-
sis that relies on aggregate scores representing the average value
of a feature in a text, the sliding-window approach employed in
CoCoGen tracks the distribution of the feature scores within a
text. A sliding window can be conceived of as a window of
size ws, which is defined by the number of sentences it con-
tains. The window is moved across a text sentence-by-sentence,
computing one value per window for a given indicator. In the
present study, the ws was set to 1. The series of measurements
generated by CoCoGen captures the progression of language
performance within a text for a given indicator and is referred
here to as a ‘complexity contour’ (see Figure 1 for illustration).
CoCoGen uses the Stanford CoreNLP suite [20] for performing
tokenization, sentence splitting, part-of-speech tagging, lemma-
tization and syntactic parsing (Probabilistic Context Free Gram-
mar Parser [21]).

Figure 1: Schematic representation of ‘complexity contours’ for
two out of 293 complexity measures (CM) investigated: CTTR
(Corrected Type Token Ratio) and Dependent Clauses per TU-
nit). Centering/scaling was applied here only for purposes of
illustration.

2.5. Pretrained Language Models

Since their inception, transformer-based pretrained language
models such as BERT [22] and ERNIE [23] have achieved state-
of-the-art performance in various classification tasks.The re-
sults of previous research demonstrate that the language char-
acteristics of AD too can be captured by pretrained language
models fine-tuned to the task of AD classification (see above).
In this paper, pretrained BERT and ERNIE models were fine-
tuned for the AD classification task and combined with classi-
fiers trained on complexity and (dis)fluency features (see Sec-
tion 3). Each of the 161 speakers in the training data is con-
sidered as a data point. The input of the model consists of all
the text sequences of each speaker obtained by the ASR system,
and the output is the class of the corresponding speaker, 0 for
Control and 1 for AD.

3806



3. Experimental Setup
In this section we describe the component models used in our
approach and how they were combined. To assess the perfor-
mance of each model, 5-fold cross validation was used.

3.1. CNN Complexity + (Dis)Fluency Models

In order to make optimal use of the complexity and (dis)fluency
features, which are sequential in nature, we built convolutional
neural network (CNN) models. Originally proposed in com-
puter vision, CNNs have been successfully adapted to various
NLP tasks [24] and sentence classification tasks [25][26][27].
The CNN model has the advantage over models that rely on ag-
gregated features, e.g. mean feature values, in that it is capable
of capturing patterns in a feature sequence. We followed the
approach proposed by [26], but replaced the word embedding
with the concatenation of complexity and (dis)fluency features.
Due to the small size of the dataset, we set the size of filters to
be 2 × d, 3 × d, 4 × d where d is the input feature dimension.
Eight filters were used for each of the three filter types.

3.2. Fine-tuned BERT and ERNIE Models

The Huggingface Transformers library [28] was adopted for
fine-tuning pretrained language models. Bert-for-Sequence-
Classification was used and initialized with ‘bert-base-uncased’
and ‘nghuyong/ernie-2.0-en’ as our pretrained BERT and
ERNIE model, respectively. In both cases, the base model was
used rather than the large one, as preliminary experiments re-
vealed no reliable differences in terms of classification accuracy
between the two models on our dataset. Both models consists
of 12 Transformer layers with hidden size 768 and 12 atten-
tion heads. The following hyperparameters were used for fine-
tuning: the learning rate was set to 2 × 10−5 with 50 warmup
steps and l2 regularization set to 0.1. The maximum sequence
length for both models was set to 256. For both models, default
tokenizers were used.

3.3. Use of Ensembling Methods

Previous research on predicting AD using pretrained language
models has demonstrated that their predictions based on fine-
tuning for downstream tasks with a small dataset tend to be
brittle and subject to high variance. To reduce this variance,
we used an adapted version of the ensembling approach pro-
posed in [9]: Each of the models described above was trained
50 times (N = 50). During the prediction phase, each model
instance independently generated a prediction. The final classi-
fication decision was then determined by hard-voting, i.e. each
model contributed its class prediction as a vote and the class that
receives the majority of the votes was returned by the ensemble
model. Besides using ensemble methods so as to reduce the
variance in the prediction of a model, we also employed them
to integrate information from different models. To this end, we
performed experiments with two types of ensemble based meth-
ods, which are referred to here as ensembling by bagging and
ensembling by stacking. Bagging involves fitting several inde-
pendent models and pooling their predictions in order to obtain
a model with a lower variance, while stacking involves combin-
ing the models by training a meta-model to output a prediction
based on the different models predictions (see below). In each
of the combined models, we used the same hyperparameter set-
tings as stated above.

Figure 2: Structure diagram of Model A. During training, we
train each of the k models N times. During inference, jth in-
stance of model i gives prediction ŷij independently. The final
output of the ensembled model Ŷ is the label, which the major-
ity of the k ×N model instances agree upon.

3.3.1. Model A: Ensembling by bagging via majority vote

Ensembling by bagging via majority vote has been shown to
be a simple yet effective method to increase the performance
of classification models [29][30]. The first classification model
(Model A) employed majority voting among 50 CNNs that used
complexity and (dis)fluency features and 50 ERNIE models (see
Figure 2). That is, as specified above, in this approach, each
model was first trained/fine tuned 50 times, meaning that the
final classification was based on 100 model instances. The clas-
sification in the Model A approach was then determined by
counting the votes for each class (AD and controls (CN)) and
choosing the more frequent class as the predicted one.

Figure 3: Structure diagram of Model B.

3.3.2. Model B: Ensembling by bagging using feature fusion

The second model (Model B) combined a CNN and a ERNIE
model, which has previously been shown to perform better than
either model alone [31]. Following the approach of [31], we
built a model in which complexity and (dis)fluency information
was first concatenated at the feature-level and subsequently fed
into a CNN (see Figure 3). The hidden vector coming from
CNN is then concatenated with the pooled output vector for
the [CLS]4 token of Ernie model. The concatenated vector will
serve as the input of a feed forward classifier on top of CNN
and Ernie. To train this model, we first fine-tune ERNIE model.
Then we freeze the parameters of the ERNIE model and jointly
train the CNN model and feedforward classifier.

3.3.3. Model C: Ensembling by stacking

The final model, Model C, used in our experiments employed a
stacking approach to ensemble all models [32], which has been

4[CLS], stands for classification, is a special token added in front of
every input samples of BERT/ERNIE model to represent sample-level
classification [22].
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Table 2: Mean accuracy (with standard deviations), precision, recall and F1 scores over a 5 fold cross-validation
Precision Recall F1

Model Acc CN AD CN AD CN AD
CNN Comp M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)
CNN[Comp+DisFl] 0.80 (0.06) 0.79 (0.06) 0.81 (0.08) 0.78 (0.07) 0.83 (0.06) 0.78 (0.05) 0.82 (0.07)
Bert-Base 0.79 (0.06) 0.77 (0.09) 0.84 (0.08) 0.81 (0.11) 0.78 (0.12) 0.78 (0.06) 0.80 (0.07)
Ernie-Base 0.80 (0.04) 0.80 (0.08) 0.81 (0.04) 0.77 (0.07) 0.83 (0.09) 0.78 (0.04) 0.82 (0.05)
Model A: CNN[Comp+DisFl]+[Ernie]
(sep mod, bagging) 0.76 (0.07) 0.61 (0.13) 0.88 (0.05) 0.79 (0.08) 0.74 (0.08) 0.68 (0.10) 0.80 (0.06)

Model B: CNN[Comp+DisFl]+[Ernie]
(fusion, bagging) 0.83 (0.06) 0.75 (0.11) 0.89 (0.04) 0.83 (0.09) 0.82 (0.06) 0.78 (0.09) 0.85 (0.04)

Model C: LR[Comp]+LR[DisFl]+[Ernie]+[Bert]
(stacking) 0.83 (0.07) 0.82 (0.10) 0.85 (0.09) 0.83 (0.10) 0.84 (0.09) 0.82 (0.08) 0.84 (0.07)

Table 3: Performance of the three ensemble models on test set
Precision Recall F1

Model Acc CN AD CN AD CN AD
Model A: CNN[Comp+DisFl]+Ernie(sep mod, bagging) 0.79 0.77 0.81 0.83 0.74 0.80 0.78
Model B: CNN[Comp+DisFl]+Ernie (fusion, bagging) 0.75 0.73 0.77 0.81 0.69 0.76 0.72
Model C: LR[Comp]+LR[DisFl]+Ernie+Bert (stacking) 0.83 0.82 0.85 0.86 0.80 0.84 0.82

shown to effectively increase the accuracy of the ensembled in-
dividual models. Specifically, we employed model stacking to
combine two logistic regression models (LR) using complexity
and (dis)fluency features respectively, and the two pretrained
language models, i.e. BERT and ERNIE. The training proce-
dure consists of two stages (see Figure 4). First, in stage one,
each of the four models is trained/fine-tuned independently us-
ing 5-fold cross-validation (CV). For each sample in the test
fold, we obtain one prediction vector from each of the four mod-
els (Models 1 to 4). These predictions vectors are then concate-
nated and constitute the input data in a subsequent stage (stage
2). The final predictions of Model C are derived from another
logistic regression model trained on the concatenated prediction
vectors from stage 1. To perform inference on the test set, we
take the predictions from all model instances trained in stage 1
and average them by model, which will served as input of stage
2 after concatenation. All hyperparameters for the training/fine-
tuning of each of the ensembled models were selected as above.

Figure 4: Schematic representation of ensembling by stacking.

4. Evaluation
In this section, we present our results on the AD detection task.
The evaluation metrics for detection (accuracy, precision, re-
call, and F1 score) on the cross-validation (CV) set are pre-
sented in Table 2. The results on the evaluation set are shown in
Table 3. As indicated by boldface numbers, the best perform-
ing model in both cross-validation (mean accuracy = 83.16%)
and testing (accuracy = 83.10%) was Model C, i.e. the model
that combined complexity and (dis)fluency features with both
pretrained language models using stacking. Model B, which
combined a CNN trained on utterance-level complexity and
(dis)fluency features with the best performing fine-tuned pre-

trained language model (ERNIE) using late fusion and ensem-
bling by bagging, fell close behind reaching 82.7% accuracy in
CV. Model A, which combined the same features using majority
voting with separate classifiers, performed below the accuracy
levels of its component models, reaching 75.69% accuracy in
CV. On the test set, the accuracy score of 83.1% of the best per-
forming model, Model C, constitutes an improvement by 4.23%
over the baseline model, which was based on fusion of linguis-
tic and acoustic features [8]. Surprisingly, the relative perfor-
mances of Model A and Model B were reversed on the test set,
with Model A matching the performance of the baseline exactly
(accuracy = 78.87%) and Model B falling just short of that (ac-
curacy = 74.65%). The considerable discrepancies between the
CV and test set classification accuracy for these models suggest
that they suffer from overfitting. In contrast, Model C, which
employed the stacking technique, performed equally well on
CV and test data, indicating that it is robust against overfitting.

5. Discussion and Conclusion

The work presented here combined linguistic complexity and
(dis)fluency features with pretrained language models for the
task of Alzheimer’s disease detection. An accuracy of 83.1%
was achieved on the test set, which amounts to an improve-
ment of 4.23% over the baseline model, which was based on
fusion of linguistic and acoustic features. Our best perform-
ing model combined component models using a stacking en-
semble technique. A key finding of this study is that incor-
porating information on linguistic complexity and (dis)fluency
improved the performance of fine-tuned pretrained language
models in AD classification by 3%, suggesting that different
component models encode complementary information regard-
ing the characteristic language patterns of AD. Another impor-
tant aspect of our results is that the ensemble model trained
on ‘complexity contours’, i.e. utterance-level measurements of
human-interpretable complexity and fluency features, was able
to match the performance of both fine-tuned pretrained BERT-
like language models: Using 5-fold cross-validation with en-
sembling of 50 models in each fold, we obtained robust perfor-
mance scores (≈ 80%) for both types of models. This find-
ing has important implications in light of increasing calls for
moving away from black-box models towards white-box (inter-
pretable) models for critical industries such as healthcare, fi-
nances and news industry [33, 34].
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guistically mature: Modeling english and german children’s writ-
ing development across school grades,” in Proceedings of the Fif-
teenth Workshop on Innovative Use of NLP for Building Educa-
tional Applications, 2020, pp. 65–74.

[17] Y. Qiao, D. Wiechmann, and E. Kerz, “A language-based ap-
proach to fake news detection through interpretable features and
brnn,” in Proceedings of the 3rd International Workshop on Ru-
mours and Deception in Social Media (RDSM), 2020, pp. 14–31.
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Abstract

We present two multimodal fusion-based deep learning models
that consume ASR transcribed speech and acoustic data simul-
taneously to classify whether a speaker in a structured diagnos-
tic task has Alzheimer’s Disease and to what degree, evaluating
the ADReSSo challenge 2021 data. Our best model, a BiLSTM
with highway layers using words, word probabilities, disfluency
features, pause information, and a variety of acoustic features,
achieves an accuracy of 84% and RSME error prediction of 4.26
on MMSE cognitive scores. While predicting cognitive decline
is more challenging, our models show improvement using the
multimodal approach and word probabilities, disfluency, and
pause information over word-only models. We show consid-
erable gains for AD classification using multimodal fusion and
gating, which can effectively deal with noisy inputs from acous-
tic features and ASR hypotheses.
Index Terms: Cognitive Decline Detection, Alzheimer’s de-
mentia, disfluency, lexical predictibility

1. Introduction
Alzheimer’s disease (AD) is a chronic neurodegenerative dis-
ease that affects memory, language, cognitive skills, and the
ability to perform simple everyday tasks.

Throughout the course of AD, patients have been observed
suffering a loss of lexical-semantic skills, including suffering
anomia, reduced word comprehension, object naming prob-
lems, semantic paraphasia, and a reduction in vocabulary and
verbal fluency [1, 2]. Speech in patients with AD is mostly char-
acterised by a low speech rate and frequent hesitations at the
phonetic and phonological level; however, the syntactic ability
is better preserved than lexical-semantic ability in AD patients
at the early stages of the disease[3].

The presence of cognitive dysfunction must be confirmed
by neuropsychological tests such as the mini-mental state as-
sessment (MMSE) performed in medical clinics before an AD
diagnosis can be made. The existence of typical neurological
and neuropsychological characteristics and a clinical examina-
tion of the patient’s history are used to make a diagnosis.

Detecting early diagnostic biomarkers that are non-invasive
and cost-effective is of great value for clinical assessments. Sev-
eral previous studies have investigated AD diagnosis via acous-
tic, lexical, syntactic, and semantic aspects of speech and lan-
guage. More interactional aspects of language, like disfluencies,
and purely non-verbal features, such as intra- and inter-speaker
silence, can be key features of AD conversations. If useful for
diagnosis, these features can have many advantages: they are

easy to extract and are relatively language, subject, and task ag-
nostic.

In terms of speech features, the number of pauses, pause
proportion, phonation time, phonation–to–time ratio, speech
rate, articulation rate, and noise–to–harmonic ratio were all
found to be related to the severity of Alzheimer’s disease [4].
Weiner et al. [5] used a Linear Discriminant Analysis (LDA)
classifier with a set of acoustic features including the mean of
silent segments, silence durations, and silence-to-speech ratio to
differentiate subjects with AD from the control group, achiev-
ing an 85.7% AD binary classification. Ambrosini et al. [6]
used selected acoustic features (pitch, voice breaks, shimmer,
speech rate, syllable duration) to detect mild cognitive impair-
ment from a spontaneous speech task.

Lexical features from spontaneous speech have been shown
to be informative in terms of features that assist AD detection.
For example, Jarrold et al. [7] merged acoustic features with
the frequency occurrence of 14 distinct parts of speech features.
Abel et al. [8] modeled patient speech errors (naming and repe-
tition disorders) to aid AD diagnosis.

Modeling multimodal input for AD detection has also been
studied. Gosztolya et al. [9] looked at how two SVM models
with different sets of acoustic and linguistic features could be
combined. Their research demonstrated how audio and lexical
features could provide additional knowledge about an individ-
ual with AD.

Among other similar tasks within cognitive state prediction
like depression, research has been done on integrating tempo-
ral information from two or more modalities using multimodal
fusion [10]. The different predictive capacities of each modal-
ity and their different levels of noise are a major challenge for
these models. A gating mechanism is effective in controlling
the level of contribution of each modality to the final prediction
in a variety of multimodal tasks, including in AD classification
and regression [11].

This paper constitutes an entry into the Alzheimer’s De-
mentia Recognition through Spontaneous Speech (ADReSSo)
challenge 2021 [12], which involves an AD classification and
MMSE score regression tasks, in addition to a cognitive decline
(disease progression) inference task using only the audio data
from formal diagnosis interviews with patients as input. In the
first two tasks, participants are required to rate the severity of
Alzheimer’s disease in various subjects, with the target severity
determined by their MMSE scores. In the third task, partici-
pants should identify those patients who exhibit cognitive de-
cline within two years.

In this paper, we were particularly interested in the benefit
of fusing ASR results (rather than transcripts) with acoustic data
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and whether self-repair disfluencies and unfilled pauses in indi-
viduals’ speech and language model probabilities (a measure of
lexical predictability) from automatic speech recognition (ASR)
results would help predict the severity of the patient’s cognitive
impairment.

Inspired by [11], to detect AD, we used audio and text fea-
tures to model the sessions in a Bidirectional Long-Short Term
Memory (BiLSTM) neural network. We used the Bidirectional
Encoder Representations from Transformers (BERT) model to
classify AD from speech recognition results in a separate ex-
periment. Our findings suggest that AD can be identified us-
ing pure sequential modelling of the speech recognition results
from the interview sessions with limited details of the structure
of the description tasks. Disfluency markers, unfilled pauses,
and language model probabilities were also found to have pre-
dictive power for detecting Alzheimer’s disease.

2. Data and features
Two distinct datasets were used for the ADReSSo Challenge:

1. a set of speech recordings of picture descriptions pro-
duced by both patients with an AD diagnosis and sub-
jects without AD (controls), who were asked to describe
the Boston Diagnostic Aphasia Exam’s Cookie Theft
picture [12].

2. a set of speech recordings of Alzheimer’s patients per-
forming a category (semantic) fluency task [13] at their
baseline visit for prediction of cognitive decline over two
years.

Dataset 1 for AD classification and severity detection in-
cludes 237 audio recordings, and the state of the subjects is as-
sessed based on the MMSE score. MMSE is a commonly used
cognitive function test for older people. It involves orientation,
memory, language, and visual-spatial skills tests. Scores of 25-
30 out of 30 are considered as normal, 21-24 as mild, 10-20 as
moderate, and <10 as a severe impairment.

Dataset 2 for the disease prognostics task (prediction of
cognitive decline) was created from a longitudinal cohort study
involving AD patients. The period for assessing disease pro-
gression spanned the baseline and the year-2 data collection
visits of the patients to the clinic. The task involves classifying
patients into ‘decline’ or ’no-decline’ categories, given speech
collected at baseline as part of a verbal fluency test.

Various features were extracted automatically from both
datasets for the 3 ADReSSo tasks as described below.

2.1. Acoustic features

A set of 79 audio features were extracted using the COVAREP
acoustic analysis framework software, a package used for au-
tomatic extraction of features from speech [14]. We sampled
the audio features at 100Hz and used the higher-order statis-
tics (mean, maximum, minimum, median, standard deviation,
skew, and kurtosis) of COVAREP features. The features include
prosodic features (fundamental frequency and voicing), voice
quality features (normalized amplitude quotient, quasi-open
quotient, the difference in amplitude of the first two harmonics
of the differentiated glottal source spectrum, maxima disper-
sion quotient, parabolic spectral parameter, spectral tilt/slope of
wavelet responses, and shape parameter of the Liljencrants-Fant
model of the glottal pulse dynamics) and spectral features (Mel
cepstral coefficients 0-24, Harmonic Model and Phase Distor-
tion mean 0-24 and deviations 0-12). Segments without audio

data were set to zero. A standard zero-mean and variance nor-
malization was applied to features. We omitted all features with
no statistically significant univariate correlation with the results
of the training set.

2.2. Linguistic Features

For automatically transcribing the audio files, we used the free
trial version of IBM’s Watson Speech-To-Text service.1 The
service offers ASR on the audio data which has considerable
noise and may be affected by non-standard North American di-
alect of the patients - the average Word Error Rate (WER) on
10 transcripts we randomly selected from the training data is
32.8%. The Watson service, crucially for our task, does not fil-
ter out hesitation markers or disfluencies [15]. It also outputs
word timings that we use as features in our system.

For our models which did not use BERT, a pre-trained
GloVe model [16] was used to extract the lexical feature rep-
resentations from the picture description transcript and convert
the utterance sequences into word vectors. We selected the hy-
perparameter values, which optimised the output of the model
on the training set. The optimal dimension of the embedding
was found to be 100.

2.3. Disfluencies

Disfluencies are usually seen as indicative of communication
problems caused by production or self-monitoring issues [17].
Individuals with AD are likely to deal with troubles in language
and cognitive skills. Patients with AD speak more slowly and
with longer breaks and invest extra time seeking the right word,
which in effect contributes to disfluency [18, 19].

We automatically annotate self-repairs and edit terms us-
ing [20]’s multi-task learning model in a left-to-right, word-by-
word manner to predict disfluency tags. Here each word is ei-
ther tagged as one of {repair onset, edit term, fluent word} by
the disfluency detector- we concatenate the disfluency tags with
the word vectors to create the input for the text-based LSTM
classifier described below.

2.4. Unfilled Pauses

Durations of pauses were calculated from the word timings pro-
vided by the ASR hypotheses, using the latency between the
end of the previous word to the beginning of the patient’s cur-
rent word as the pause length, with the value for the first word
being 0. We further categorized pauses into either short pause
(SP) and long pause (LP). An SP is a silence that occurs inside
a single speaker turn, which in the range [0.5, 1.5) seconds; an
LP is a longer pause within a single speaker turn defined as
a speech pause of 1.5 seconds or greater. Pauses in the inter-
viewer’s speech were excluded.

2.5. Language Model Probabilities

People with speech disorders or cognitive impairment express
themselves in different ways when compared to control groups
[21]. Language model probabilities, which can be interpreted
to estimate the predictability of a sequence of words, can be
used to assess a participant’s language structure, including vo-
cabulary and syntactic constructions. The present work uses a
Multi-task Learning (MTL) LSTM language model [20] based
on the Switchboard corpus [22], a sizable multispeaker corpus
of conversational speech and text. The language model uses

1https://www.ibm.com/uk-en/cloud/watson-speech-to-text
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standard Switchboard training data for disfluency detection (all
conversation numbers starting sw2*,sw3 * in the Penn Treebank
III release: 100k utterances, 650k words) and is trained in com-
bination with other tasks, including disfluency detection as de-
scribed in [20]. This corpus can be viewed as an approximation
of control, non-AD disorder spoken dialogue. The model is then
tested on the ASR transcript of each session, and the probability
of each word is calculated. Finally, we concatenate the proba-
bility of the current word given the history p(wt|w0...wt−1)
with the word vectors to create the lexical input for our model.

3. Proposed Approach
We experiment with different deep-learning architectures for
predicting AD in both classification and regression and for cog-
nitive decline prediction:

1 unimodal LSTM models utilising using either acoustic
or lexical features.

2 multimodal LSTM model using lexical and acoustic in-
formation, including disfluency and pause tagging.

3 unimodal BERT based classifier using lexical features.

4 multimodal BERT model with gating using lexical and
acoustic information.

3.1. Sequence modeling

Our approach is to model the speech of individuals as a se-
quence to predict whether they have AD or not, and if so, to
what degree, using either LSTMs or BERT models.

LSTM The potential of neural networks lies in the power to
derive representations of features by non-linear input data trans-
formations, providing greater capacity than traditional mod-
els. As we were interested in modelling the temporal nature
of speech recordings and transcripts, we used a bi-directional
LSTM. For each of the audio and text modalities, we trained
a separate unimodal LSTM model, using different sets of fea-
tures, then used late fusion to combine their probabilities.

BERT Pre-trained BERT models are fine-turned for the AD
classification task. Each of the training instances is considered
a data point. The input to the model consists of a sequence
of words from the transcript for every speaker. Following [23]
we used Bert-for-Sequence-Classification2 for fine-tuning. The
standard default tokenizer was used, and two special tokens,
[CLS] and [SEP], were added to the beginning and the end of
each input. Specifically for regression, the last layer is the shape
(hidden size, 1), and we use MSE loss instead of cross-entropy.

3.2. Multimodal Model with Gating

Since learned representation for the text can be undermined by
corresponding audio representation and ASR results can be un-
reliable, we need to minimise the effects of noise and overlaps
during multimodal fusion. For audio and textual input for the
BiLSTM models, we use two branches of the LSTM, one for
each of the modalities, with their outputs combined into final
feed-forward highway layers [24], with gating units that learn
by weighing text and audio inputs at each time step to regulate
information flow through the network.

The concatenated output is passed through N highway lay-
ers (where the best value N was determined from optimizing
on held-out data). We pad the size of the training examples in
the text set (which was the smaller set) to meet the audio set by
mapping together instances that occurred in the same session,

Table 1: Result of the AD classification and regression experi-
ments with our models against baseline models on test set

Models Features Accuracy RMSE
Baseline ([12])
LDA Linguistic 0.76 -
DT Linguistic 0.75 6.24
SVM Acoustic+Linguistic 0.79 -
SVR Acoustic+Linguistic - 5.29
GP Linguistic - 5.95
Our Models
LSTM Words 0.76 -
LSTM Words+Words Probabilities 0.77 4.75
LSTM Words+Disf+Pause 0.81 4.43
BERT Words 0.80 4.49
BERT w/ Gating Words+Acoustic - 4.38
LSTM w/ Gating Words+Acoustic+Disf+Pse+WP 0.84 4.26

as the audio and text inputs for each branch of the LSTM had
different timesteps and strides.

For the BERT-based multimodal models with gating, the
output from the BERT-based textual classifier is combined with
the acoustic data into the final feed-forward highway layers.

4. Experiments
4.1. Implementation and Metrics

We set up our model to learn the most helpful information from
modalities for predicting AD. All experiments are carried out
without being conditioned on the identity of the speaker.

For the LSTM models, the sizes of layers and the learn-
ing rates are calculated by grid search on validation test. For
the input data, we explored different timesteps and strides. Af-
ter exploring different hyper-parameters, the model using audio
data has a timestep of 20 and stride 1 with four bi-directional
LSTM layers with 256 hidden nodes. The model using text in-
put has an input with a timestep of 10 and stride of 2 and has
2 LSTM layers with 16 hidden nodes. We use a block of 3
stacked highway layers. The LSTM models were trained using
ADAM [25] with a learning rate of 0.0001. We used Binary
Cross-Entropy to model binary outcomes for the loss function
and Mean Square Error (MSE) to model regression outcomes.

For the BERT models, following [23] we use the “bert-
large-uncased” model, with the hyperparameters: learning rate
= 2e-5, batch size = 4, epochs = 8, max input length of 256.

For binary classification of AD and non-AD, we report bi-
nary accuracy scores. For the MMSE prediction task, we report
the Root Mean Square Error (RMSE) for the prediction error
score. For the cognitive decline task, we report the mean of F1
classification scores.

The code used in the experiments is publicly available in an
online repository.2

4.2. Baseline Models

We compare the performance of our models to the ADReSSo
Challenge baselines [12] with an ensemble of audio and lin-
guistic features provided with the dataset. The best baselines
we include here include decision trees (DT), linear discriminant
analysis (LDA), support vector machines (SVM), support vec-
tor regression (SVR), and Gaussian process regression (GP).

2https://github.com/mortezaro/ad-recognition-from-speech
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Table 2: Result of the AD classification and regression experi-
ments with our models in cross validation

Models Features Accuracy RMSE
LSTM Acoustic 0.68 6.03
LSTM Words 0.74 5.31
LSTM Words+Words Probabilities 0.78 4.78
LSTM Words+Disfluency+Pause 0.78 5.02
BERT Words 0.80 4.94
BERT Words+Acoustic 0.78 4.72
LSTM w/ Gating Words+Acoustic 0.79 4.88
LSTM w/ Gating Words+Acoustic+Disf+Pse+WP 0.81 4.75

5. Results
AD classification and regression tasks In Table 1, we present
our proposed models’ performance against that of the baselines
models on AD classification and regression tasks on the pro-
vided test set and in Table 2 in a cross-validation setting. For
AD detection, our proposed LSTM model with gating and addi-
tional features (disfluency, unfilled pause, and language model
probabilities) achieves an accuracy of 0.84 and RMSE of 4.26,
outperforming all the baselines. Overall, the results support our
hypothesis that a model with a gating structure can more ef-
fectively reduce individual modalities’ errors and noise, includ-
ing that from errorful ASR results. Furthermore, our proposed
LSTM model with gating and additional features (disfluency,
unfilled pauses, and language model probabilities) outperforms
the BERT fine-tuned models in unimodal and multimodal sit-
uations (ACC 0.84 vs. 0.80; RMSE 4.26 vs. 4.49 and 4.38).
It should also be noted that the BERT model is very large in
comparison to the LSTM models. BERT has approximately
21 times the number of parameters as our second largest model
(105 million vs. 4.9 million). Therefore, compared to the BERT
model, our LSTM models need fewer resources for develop-
ment.

Effect of disfluency and unfilled pause features We found
that disfluencies and unfilled pauses help as features in AD de-
tection. Adding disfluency and pause features to the lexical fea-
tures lead to improvement on the test set (ACC 0.81 vs. 0.76)
and in CV (ACC 0.78 vs. 0.74; RMSE 5.02 vs. 5.31). Our
LSTM model with disfluencies and unfilled pauses outperforms
the BERT model in both class-action and regression tasks on
the test set (ACC 0.81 vs. 0.80; RMSE 4.43 vs. 4.49).

Effect of language model probabilities Language model
probabilities (as an indicator of grammatical integrity) are use-
ful as features in the diagnosis of AD. Adding language model
probabilities to the lexical features improves the test set (ACC
0.77 vs. 0.76) and in CV (ACC 0.78 vs. 0.74; RMSE 4.78 vs.
5.31).

Effect of multimodality On both the test set and in CV, the
multimodal LSTM with gating model outperforms the single
modality AD detection models in classification and regression
tasks. In CV, integrating textual and audio modalities with gat-
ing improves performance over single modality models (ACC
0.79 vs. 0.74; RMSE 4.88 vs. 5.31). Even though each LSTM
branch has different steps and timestep inputs in multimodal
models, adding audio features improves performance. The
multimodal model with BERT outperforms the single modal-
ity BERT in the regression task on both the test set and in CV
(RMSE 4.72 and 4.38 vs. 4.94 and 4.49). However, integrat-
ing BERT and audio model with gating decreases performance
over BERT for classification in CV (ACC 0.78 vs. 0.80). Text
features are more informative than audio features as using text
modality only predicts AD better than using unimodal audio

modality sequentially in CV (ACC 0.74 vs. 0.68; RMSE 5.31
vs. 6.03).

Table 3: Result of Task3: cognitive decline progression results
(mean of F1Score) for leave-one-subject-out CV and Test set

Models Features CV Test
Baseline ([12])
LDA Linguistic 0.55 0.54
DT Linguistic 0.76 0.67
SVM Linguistic 0.45 0.40
Our Models
LSTM Words 0.59 0.55
LSTM Words+Disfluency+Pause 0.55 0.50
BERT Words 0.63 0.54
LSTM w/ Gating Words+Acoustic+Disf+Pse+WP 0.66 0.62

Cognitive decline (disease progression) inference task In
Table 3, we present our results for disease progression task. As
can be seen, our models do not reach the best baseline of the
Decision-Tree based classifier. However, as with AD classifi-
cation, the multimodal LSTM with Gating model outperforms
all other competitors and is close to the DT classifier in per-
formance on the test data (ACC 0.62 vs. 0.67). Overall, this
task seems to have a considerably greater variation in perfor-
mance across baseline classifiers and feature sets than the other
two tasks. The lower performance of the LSTM model using
words with disfluency and pause information model compared
to using words alone (ACC 0.55 vs. 0.59) suggests these extra
features are not as useful compared to the lexical information
alone. This suggests the ASR quality is more critical, and the
comparison of the IBM Watson system used here against the
results obtained by the Google Cloud-based Speech Recogniser
used by [12] would be a future step to take.

6. Conclusions
We have presented two multimodal fusion-based deep learning
models which consume ASR transcribed speech and acoustic
data simultaneously to classify whether a speaker in a struc-
tured diagnostic task has Alzheimer’s Disease and to what de-
gree. Our best model, a BiLSTM with highway layers using
words, word probabilities, disfluency features, pause informa-
tion, and a variety of acoustic features, achieves an accuracy of
84%. While predicting cognitive decline is more challenging,
our models show improvements using the multimodal approach
and word probabilities, disfluency, and pause information over
word-only models. In addition, we show there are considerable
gains for AD classification using multimodal fusion and gating,
which can effectively deal with noisy inputs from acoustic fea-
tures and ASR hypotheses.
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Abstract
This paper addresses the Interspeech Alzheimer’s Dementia
Recognition through Spontaneous Speech only (ADReSSo)
challenge 2021. The objective of our study is to propose the
approach to a three task automated screening that will aid in
distinguishing between healthy individuals and subjects with
dementia. The first task is to differentiate between speech
recordings from individuals with dementia. The second task
requires participants to estimate the Mini-Mental State Exam-
ination (MMSE) score based on an individual’s speech. The
third task requires participants to leverage speech recordings to
identify whether individuals have suffered from cognitive de-
cline. Here, we propose a system based on functionals of deep
textual embeddings with special preprocessing steps integrating
the effect of silence segments. We report that the developed
system outperforms the challenge baseline for all three tasks.
For Task 1, we achieve an accuracy of 84.51% compared to the
baseline of 77.46%, for Task 2, we achieve a root-mean-square-
error (RMSE) of 4.35 compared to the baseline of 5.28, and for
Task 3, we achieve an average-f1score of 73.80% compared to
the baseline of 66.67%. These results are a testament of the
effectiveness of our proposed system.
Index Terms: alzheimer’s dementia, computational paralin-
guistics, social signal processing

1. Introduction
Alzheimer’s disease is a chronic neurodegenerative disorder
that detrimentally impacts cognitive and physical well-being
of a person. According to the World Health Organization
(WHO) [1], dementia currently affects more than 50 million
people worldwide, with millions of new patients being diag-
nosed every year.

The ever-growing use of artificial intelligence (AI) in
healthcare-related applications has facilitated development of
innovative and advanced medical diagnostic approaches to var-
ious types of disorders [2, 3, 4, 5]. The main advantage of such
techniques is that they can be successfully employed for ob-
jective diagnosis of disorders. The limited human interference
assists in reducing human errors and bias. Considerable effort
has been directed towards the development of diagnostic meth-
ods which can be used to identify individuals with Alzheimer’s
dementia [6].

The Interspeech Alzheimer’s Dementia Recognition
through Spontaneous Speech only (ADReSSo) chal-
lenge 2021 [7] aims to provide a common platform to
researchers to not only propose methods for automated screen-
ing of Alzheimer’s dementia but also encourages researchers
to compete and evaluate their work against their peers. The
challenge this year may be considered as an extension of
last year’s ADReSS 2020 challenge [8] with an important

difference. Whereas last year, the dataset contained manually
transcribed and CLAN [9] annotated transcripts, this year’s
challenge expects participants to work with automatically
generated speech transcripts.

In last year’s ADReSS challenge, our developed system
performed very well, achieving an accuracy of 85.42% com-
pared to the challenge baseline of 77.00% and an RMSE score
of 4.30 compared to the baseline of 5.20 for the test partition.
In essence, first we observed that features derived from textual
modality offer much better performance than those from the au-
dio modality. Secondly, we had demonstrated the prowess of a
simple but very effective method for representing speech tran-
scripts of subjects as feature vectors. To that end, we had first
computed deep textual embeddings (DTE) from transformer
based models and applied functionals of descriptive statistics
to pool their values into a feature vector.

This paper describes our proposed system 1 for tackling
the ADReSSo challenge 2021. Here, we demonstrate the ef-
ficacy of a system based on functionals of deep textual embed-
dings with special preprocessing steps integrating the effect of
silence segments. We also show the potential benefits of class-
imbalance aware multi-model fusion.

2. Dataset
The ADReSSo challenge consists of two distinct datasets. The
first dataset is called ‘Diagnosis’ and is used for Task 1 and
Task 2 of the challenge. In Task 1, the objective is to differenti-
ate between speech recordings from individuals with dementia
amongst a set of recordings from healthy individuals. In Task
2, the objective is to estimate the Mini-Mental State Examina-
tion (MMSE) score based on an individual’s speech. The sec-
ond dataset ‘Progression’ is used for Task 3 of the challenge.
Here, the objective is to identify, based on characteristics of
their speech, whether subjects have suffered from a cognitive
decline over years. For further details regarding the dataset, we
refer the reader to the ADReSSo challenge baseline paper [7].

3. Methodology
A block diagram representation of our proposed system for the
ADReSSo challenge is provided in Figure 1 where it can be
seen that the system starts with automated speech recognition
(ASR) for speech-to-text conversion. Next, we experiment with
various preprocessing methods (detailed in Section 3.2). This
is followed by a process of generating feature representations
for transcripts using DTE as well as handcrafted features. We
used handcrafted features to compare the performance of deep
textual embeddings against domain-knowledge features. The

1Our previous work [10] provides the necessary context to our cur-
rent work
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Figure 1: Block diagram for our proposed automated screening system

final step is to train classification and regression methods on the
training partition and make predictions for the test partition.

3.1. Generating Speech Transcripts

An important aspect of the ADReSSo challenge 2021 is for
participants to work without manually annotated transcripts.
The dataset contains time-stamps that could be used to identify
speech segments from the subject and the interlocutor. How-
ever, through preliminary experiments we discovered that these
time-stamps are not always aligned with speech recordings. Al-
though it was possible to use speaker diarization to identify seg-
ments of speech that belong only to a particular subject, we de-
cided to use ASR to generate transcripts for the entire speech
recording without diarization. We assume that (a) speech from
the subject will dominate the recording and the contribution
from the interlocutor will be relatively small, and (b) the speech
and language from the interlocutor will also reflect the cognitive
state of the subject. For example, the interlocutor will use sim-
plified language to communicate with an individual that suffers
from language impairments due to dementia.

For ASR, we experimented with wav2vec2 model from
Huggingface toolkit [11], Silero [12] toolkit, and Microsoft
Stream 2. Initial results showed that the latter provided the most
promising results in terms of word error rate. We plan to com-
pare the performance of various automated ASR approaches for
the task at hand in due course.

3.2. Preprocessing

We have experimented with five types of text preprocessing
methods to investigate whether a particular method leads to an
improvement in classification or regression tasks of the chal-
lenge.

• Preprocessing-A: Here, we resolved word contractions,
removed punctuation and extra whitespaces from tran-
scripts, and converted all text in lower-case. Thus, the
entire transcript was set up as a single sentence.

• Preprocessing-B: We removed extra whitespaces and
represented text in lower-case only.

• Preprocessing-C: Here, we decided to add special key-
words into the speech transcript depending on the dura-
tion of a silence segment between two successive utter-
ances. We were inspired to explore this method given
the success reported by [13] using a similar technique.
However, unlike Yuan et al., we test this method on pre-
trained embeddings only. Therefore in Preprocessing-C,

2https://www.microsoft.com/en-us/microsoft-365/microsoft-stream

we started with the setup of Preprocessing-A and if the
silence duration was determined to be between 2 and 4
seconds, we added the text ‘uhm’. If the silence dura-
tion was between 4 and 6 seconds, we added the word
‘uhm uhm‘. Finally, if the silence duration exceeded 6
seconds, we added the text ‘long silence’.

• Preprocessing-D: In this method, we followed the proce-
dure of adding special keywords as in Preprocessing-C
after removing extra whitespaces and also converted text
in lower-case.

• Preprocessing-E: Here, the preprocessing was performed
as in Preprocessing-D except that the replacement text
for silence segments was a period symbol (‘. ’) instead of
‘uhm’. For example, if the silence duration was between
2 and 4 seconds, we added a ‘. ’ as text. If the silence
duration was between 4 and 6 seconds, we added ‘. . ’ ,
and in case of the silence duration exceeding 6 seconds,
we added the text ‘long silence’.

3.3. Feature Computation

Once speech transcripts were generated and preprocessed, the
next step was to compute textual features. As mentioned previ-
ously, we computed both, handcrafted features and deep textual
embeddings. For handcrafted features, we computed a set of
textual features inspired by the work of Fraser et al. [14]. These
features can be categorized as (a) syntactic, (b) readability, and
(c) lexical diversity. As the name suggests, syntactic features
provide information about the syntax of written communica-
tion. In our work, we used SpaCy toolkit 3 to compute nor-
malized histogram counts of parts-of-speech and dependency
tags for the transcript of each subject. The second type of hand-
crafted features used in this work measured the readability of
subjects’ transcripts. We suggest that there are differences in the
readability of speech transcripts between healthy subjects and
those with dementia. Hence, we used the Readability toolkit 4

to compute eight features that quantify the readability of speech
transcripts. Finally, given that Alzheimer’s dementia disorder
affects memory, we posit that subjects with dementia will use
a repetitive and less diverse vocabulary compared to healthy
subjects. To quantify the diversity of their vocabulary, we com-
puted ten features based on text-to-token-ratio using the Lexical
Diversity toolkit 5.

3https://spacy.io
4https://pypi.org/project/readability
5https://pypi.org/project/lexical-diversity
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Table 1: Summary of Results of Task 1 for the Training partition

Preproc.-ID Feature Name Acc. avg-f1score Sens. Spec.

E facebook bart base AvgPool 84.34 84.34 79.31 89.87
B distilroberta base MaxPool 83.73 83.72 82.76 84.81
B facebook bart base Median 82.53 82.52 80.46 84.81
B bert base multilingual uncased AvgPool 81.93 81.93 78.16 86.08
D bert base multilingual uncased AvgPool 81.93 81.92 80.46 83.54
B bert large uncased MaxPool 81.93 81.89 82.76 81.01
A facebook bart base Median 81.93 81.86 83.91 79.75

Table 2: Summary of Results of Task 2 for the Training partition

Preproc.-ID Feature Name RMSE MAE Pearson’s r

B bert base multilingual uncased MaxPool 4.64 3.65 0.75
D facebook bart base AvgPool 4.86 3.75 0.72
A distilbert base uncased RangePool 4.87 3.84 0.72
B distilbert base uncased RangePool 4.90 3.92 0.71
D bert base multilingual uncased RangePool 4.91 3.86 0.71

Table 3: Summary of Results of Task 3 for the Training partition

Preproc.-ID Feature Name Acc. avg-f1score Sens. Spec.

C facebook bart base AvgPool 83.56 73.49 53.33 91.38
C bert large uncased MaxPool 83.56 70.08 40.00 94.83
D facebook bart base AvgPool 83.56 70.08 40.00 94.83
C bert base multilingual uncased RangePool 84.93 69.41 33.33 98.28
C facebook bart base Median 80.82 69.07 46.67 89.66

In addition to the above, we investigated the efficacy of
deep textual embeddings, such as Bidirectional Encoder Repre-
sentations from Transformers (BERT) [15] and its derivatives.
These models use multi-headed self-attention [16] based en-
coder and decoder layers which enable them to learn sophis-
ticated latent representations from text [15, 17, 18]. Jawahar et
al. [18] have shown that transformer-based models can capture
structural and linguistic properties of the English language as
classical tree-like structures.

We surmise that such models can represent linguis-
tic characteristics of speech and as such be useful for
differentiating between speech transcripts of healthy sub-
jects and those with dementia. To this end, we experi-
ment with embeddings generated using nine pre-trained
transformer-based models which include: bert base uncased,
bert large uncased, distilbert base uncased [19],
roberta base, roberta large [20],
distilroberta base,bert base multilingual uncased,
allenai biomed roberta base [21], and
facebook bart base [22]. We used the Huggingface
library [11] in order to compute these embeddings.

It should be mentioned here that these embeddings are com-
puted for each input token (for example, a word), and not the
entire transcript as a single entity. Therefore, to generate a sin-
gle feature vector for the entire transcript, we used functionals
of descriptive statistics for pooling. For example, average pool-
ing (AvgPool), maximum value pooling (MaxPool), percentile-
based range pooling (RangePool), and median value pooling
(MedianPool) are used in this work. The resultant feature vec-
tor is passed down to the machine learning pipeline as shown in

Figure 1.

3.4. Classification and Regression

As mentioned earlier, the ADReSSo challenge 2021 consists of
two classification tasks (Task 1 and Task 3) and one regression
task (Task 2). We used a logistic regression classifier (LRC)
and support vector machine classifier (SVC) with a linear ker-
nel for Tasks 1 and 3, whereas for Task 2, we used partial least
squares regressor (PLSR). We have previously used success us-
ing these tools [4, 10, 23]. The regularization parameter ‘C’
for LRC and SVC was optimized using leave-one-subject-out
cross-validation (LOSO-CV) over a logarithmically spaced grid
between 10−7 and 103 whilst using the avg-f1score as the met-
ric of classification performance. It should be mentioned that
although the official performance metric for Task 1 is accuracy,
we decided to use avg-f1score to optimize the regularization
parameter. This was done due to the class imbalance in the
training partition for the dataset provided for Task 1. Mean-
while, the ‘number of components’ hyper-parameter for PLSR
was optimized using LOSO-CV over a grid between 2 and 40 to
minimize the RMSE score. We used the scikit-learn toolkit [24]
for training models for classification and regression.

4. Experiments and Results
4.1. Predictions for the training partition

In Table 1, we report the results of the top-5 models for the
training partition of Task 1. Here, one can note that the best per-
forming model uses Preprocessing-E with DTE features com-
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puted from the BART basemodel. It achieves an accuracy
of 84.34% with a specificity of 89.87% but a relatively poor
sensitivity of 79.31%. Meanwhile, the second-placed model
achieved an accuracy of 83.73% on the training partition but
does not use any special processing to integrate silence infor-
mation into speech transcripts. It is interesting to note that this
model offers an improved sensitivity at the cost of decreased
specificity when compared with the best-performing model.

In Table 2, we summarize the results for training partition
of Task 2. The objective here is to predict the MMSE score
assigned to subjects from the Diagnosis dataset. We report that
the best performing model achieves an RMSE of 4.64 compared
to the baseline of 6.42, which is a significant reduction. It is also
interesting to note that there does not appear to be any advantage
of integrating silence information into the speech transcript for
Task 2, however, this requires further investigation.

Finally, the results for Task 3 have been summarized in Ta-
ble 3 where our best performing model achieves an avg-f1score
of 73.49% compared to the challenge baseline of 66.67%. Most
importantly, all of the top-5 models use special preprocessing
steps.

4.2. Predictions for the test partition

For Task 1, we first used confidence-based fusion to combine
predictions from the top-3 performing models. This step
achieved an accuracy of 81.69% for the test partition. Next,
we used label-fusion of top-5 models and this increased the
classification accuracy to 83.10%. Finally, we attempted
label-fusion of five models selected on the basis of their
specificity and sensitivity scores for the training partition.
Two of these models are facebook bart base AvgPool
and bert base multilingual uncased AvgPool which had
provided high specificity for the training partition, whereas the
remaining three, i.e. distilroberta base MaxPool,
bert large uncased MaxPool, and
facebook bart base Median had provided high sen-
sitivity. We assume that the fusion of models with high
specificity only (as is the case with top-5 models) will bias
predictions towards a particular class and therefore lead to
poorer results overall. The resultant predictions for this fusion
method achieve the best results for Task 1 where we achieved
a classification accuracy of 84.51% compared to the challenge
baseline of 77.46%, which is a significant improvement.

In Table 5, we summarize the results for the test partition of
the dataset for Task 2. In our first attempt, we used predictions
for the test partition as generated by the best-performing model
for the training partition. This yielded an RMSE of 4.93 for
the test partition. Our second and third attempts used averaging
and median-based fusion with predictions from the top-3 mod-
els for the training partition. With these methods, we achieved
an RMSE score of 4.71 and 4.54, respectively. Finally, we at-
tempted averaging and median-based fusion for fourth and fifth
attempts and achieved RMSE scores of 4.45 and 4.35, respec-
tively. It is interesting to note that all of our attempts at predict-
ing MMSE score achieved better performance than the chal-
lenge baseline of 5.28.

Finally, in Table 6, we summarize the results for Task 3,
where the objective was to identify whether the subject has suf-
fered from a cognitive decline over two years. Here, our best re-
sult for the test partition is an avg-f1score of 73.80%. This was
achieved via predictions generated by the model which yielded
the best performance for the training partition. We also exper-
imented with label-fusion of predictions for the top-3 models

for the training partition, however, this led to a decrease in avg-
f1score. It should be mentioned here that we did not experiment
with class-imbalance aware fusion, as used for Task 1, although
in hindsight it may have been a better option.

Table 4: Summary of Results of Task 1 for the Test partition

Predictions (source) Acc. avg-f1score

baseline 77.46 –
Conf. Fusion of Top-3 models 81.69 81.64
Label Fusion of Top-5 models 83.10 82.94
Label Fusion selected models 84.51 84.45

Table 5: Summary of Results of Task 2 for the Test partition

Predictions (source) RMSE

baseline 5.28
Single best model 4.93
Average-value fusion from Top-3 models 4.71
Median-value fusion from Top-3 models 4.54
Average-value fusion from Top-5 models 4.45
Median-value fusion from Top-5 models 4.35

Table 6: Summary of Results of Task 3 for the Test partition

Predictions (source) Acc. avg-f1score

baseline – 66.67
Single best model 78.13 73.80
Label Fusion of Top-3 68.75 54.29

5. Conclusions
Alzheimer’s dementia is a disease that greatly reduces the qual-
ity of life of those who suffer from it. Early detection of this dis-
order may assist to enhance the quality of their day-to-day lives.
The purpose of the ADReSSo challenge was to develop an au-
tomated screening tool for dementia recognition. In this paper,
we proposed a system based on functionals of deep textual em-
beddings and benchmarked its performance against the official
baselines set by the ADReSSo challenge organizers. We also
demonstrated that one can enrich speech transcripts with silence
segments in speech recordings to yield improved performance.
Overall, our proposed solution for the ADReSSo challenge of-
fers a significant improvement for all three tasks as follows. For
Task 1, we achieved an accuracy of 84.51% compared to the
baseline of 77.46%, for Task 2, we achieved an RMSE of 4.35
compared to the baseline of 5.28, and for Task 3, we achieved
an avg-f1score of 73.80% compared to the baseline of 66.67%.
These results are a testament to the efficacy of our proposed
system.
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Abstract
Mental disorders, e.g. depression and dementia, are categorized
as priority conditions according to the World Health Organi-
zation (WHO). When diagnosing, psychologists employ struc-
tured questionnaires/interviews, and different cognitive tests.
Although accurate, there is an increasing necessity of devel-
oping digital mental health support technologies to alleviate
the burden faced by professionals. In this paper, we propose
a multi-modal approach for modeling the communication pro-
cess employed by patients being part of a clinical interview or
a cognitive test. The language-based modality, inspired by the
Lexical Availability (LA) theory from psycho-linguistics, iden-
tifies the most accessible vocabulary of the interviewed subject
and use it as features in a classification process. The acoustic-
based modality is processed by a Convolutional Neural Net-
work (CNN) trained on signals of speech that predominantly
contained voice source characteristics. In the end, a late fusion
technique, based on majority voting, assigns the final classifi-
cation. Results show the complementarity of both modalities,
reaching an overall Macro-F1 of 84% and 90% for Depression
and Alzheimer’s dementia respectively.
Index Terms: Depression Detection, Alzheimer’s Disease,
Mental Lexicon, Raw Speech, Multi-modal Approach.

1. Introduction
Mental disorders represent a major public health concern, with
considerable associated socio-economic costs, and are recog-
nized as a major cause of disability affecting a great number of
people. According to the World Health Organization (WHO),
depression and dementia are among the main types of mental
disorders and are categorized as priority conditions [1, 2]. Al-
though the severity of suffering a mental illness is well known
by psychologists, there is an acknowledged necessity for digital
solutions for addressing the burden of mental health diagnosis
and treatment. It is recognized that won’t be possible to treat
people by professionals alone, and even if possible, some peo-
ple might require to use alternative modalities to receive men-
tal health support [3]. Such situation has become more evident
with the current COVID-19 pandemic. Interested readers are
referred to [4, 5, 6] to know efforts towards this direction.

Accordingly, the research community has been interested
in making first steps towards computer-supported detection of
mental disorders during face-to-face interviews/tests [7, 8, 9].
The underlying hypothesis of most of previous work relies on
the notion of the language as a powerful indicator about our per-
sonality, social, or emotional status, and mental health [10, 11].

In dementia, for instance, previous research indicates that as-
sessing the language production represents a useful strategy
in detecting early markers of dementia [12]. Thus, designed
tests for evaluating the language production in elderly patients
such as word association tasks, description of objects in pic-
tures, elicitation exercises, etc., aim at measuring the expository
speech, oral expression, as well as comprehension. Similarly,
for depression, previous research suggest that using excessive
self-focused language, and negative emotions represent impor-
tant markers for screening depressed users [10, 13, 14] and, re-
cent studies have documented how depressed users suffer some
kind of impairment in their speech motor control [15], such as
prosodic abnormalities, articulatory and phonetic errors.

Although multi-modal approaches have been explored be-
fore [7, 16, 17], the key novelty of our work is to leverage
the psycholinguistics theory for approximating the mental lex-
icon1 of analyzed subjects for processing the language-based
modality. The acoustic-based modality aims at modeling the
patients’ speech in an end-to-end fashion from raw waveform-
based CNNs. In conjunction, both modalities allow modeling
the language production process employed by subjects with a
mental disease during a clinical interview/test. We performed
experiments in two well-known clinical datasets, using indi-
vidual modalities, and in a multi-modal fashion, where a voter
makes the final decision through a majority voting mechanism.

2. Methodology
The proposed language-based modality aims at modeling the
vocabulary production of subjects suffering from a mental dis-
order through the Lexical Availability (LA) theory [19]. The
LA test is associated with the category fluency tests and the free
word association tasks, which taps directly into the semantic
information of the mental lexicon [20]. Hence, our main hy-
pothesis establishes that it could be possible to approximate the
available lexicon for a group of people suffering from a mental
disease. Contrary to the traditional LA elicitation test, we aim to
demonstrate that it is possible to approximate the available lexi-
con by analyzing subjects’ responses in a semi-structured com-
munication process (e.g, a clinical interview/test). To the best
of our knowledge, this is the first time the LA theory is adapted
to: i) obtain the available lexicon from utterances produced dur-
ing a clinical test and use the extracted features in a traditional

1The mental lexicon of a community reveals the type, size, and rich-
ness of their vocabulary as well as provides evidence of the community
member’s understanding of a particular culture, or the structure of their
context and the existing regularities present [18].



Figure 1: General overview of the proposed language-based modality.

classification pipeline; ii) fuse its predictions in a multi-modal
fashion with a raw waveform-based acoustic approach.

Figure 1 shows the main components of our LA method.
First, we identify the available lexicon from each popula-
tion (i.e., subjects with a mental disorder and control sub-
jects) and then use it to generate a non-sparse text represen-
tation to train a classification model to distinguish between
mentally ill (D) and control (C) subjects. More formally, let
D = {(d1, y1), . . . , (dh, yh)} be a training set of h-pairs of
documents2 di and class labels yi ∈ Y = {y⊕, y	}. The
first step consists of obtaining the available lexicon (V) for
each category, i.e., Vy⊕ and Vy	 for the documents belong-
ing to D and C categories respectively. The resultant available
lexicon for each category yi is a list of n-pairs of the form
Vyi = {(t1,Dst(t1)), . . . , (tn,D

st(tn))}, where each term tj
is accompanied by its lexical availability score Dst(tj). Details
on how to compute the availability score are depicted in §2.1.

Then, for generating the representation of subject ρ, we de-
fine two sets of features: the availability degree (f avail), and the
correlation degree attributes (f cor). Thus, we first compute the
available lexicon of subject ρ, referred as Vρ, and we calculate
its availability features (f avail) by means of a fusion strategy
among the top k terms from Vy⊕ ∪Vy	 , and Vρ (see §2.2). For
obtaining the correlation features (see §2.3) we compare the
data distributions between ρ and the two classes (y⊕ and y	),
resulting in a representation vector with the following form:

−→ρ = 〈f avail
t1 , . . . , f avail

tj , . . . , f avail
tk |f

cor
Vy⊕

, f cor
Vy	
〉 (1)

Once we have this representation, we can follow the tradi-
tional machine learning pipeline for training a classifier.

2.1. Lexical availability computation

Traditionally, the LA test produces a single word list, i.e., the
available lexicon (with its corresponding availability scores),
for each analyzed community. To compute the availability

2We’ll refer as documents to the transcribed text obtained from the
subjects’ utterances.

scores of this available lexicon, we have to analyze the re-
sponses of each individual in that population (see Fig. 1,
columns 1-3); to that end, we use the formulation proposed by
[21], defined as follows:

Dst
w,k,m(tj) =

n∑
i=1

w(
i−1
k−1 )

m

× fji
I

(2)

where tj represents the lexical term for which we want to know
its availability score; i is the position indicator where tj is men-
tioned in the considered individual responses; n is the max-
imum position reached by term tj in all the considered re-
sponses; I serves as a normalization factor and is defined as
I = max freq, which depicts the highest frequency found in
the vocabulary of the population being analyzed; fji is the num-
ber of participants who produced term tj at position i in their
respective responses; k indicates the position value where the
score will be equal to w; w is the desired weight (normally a
value close to 0) for position k, and m is a parameter that mod-
ulates the weight decay across terms in the final mental lexicon.

Eq. 2 represents a standardized LA metric that allows direct
comparisons among studies independently from the size of the
produced vocabulary lists of different communities [21]. Ac-
cordingly, the Dst equation will assign higher scores (close
to 1) to the most available words produced by the analyzed
subjects. Conversely, it assigns progressively lower scores to
less accessible words until reaching value w in position k, at a
weight decay intensity defined by the parameter m. Intuitively,
the smaller the value of m, the faster the weight decay across
words in consecutive positions. For all our experiments, we de-
fined w = 0.0001 and m = 0.8.

2.2. Availability features

We defined the availability features (f avail) as the single (most
representative) LA score for each term tj ∈ (Vy⊕∪Vy	). Thus,
to obtain the f avail

tj score of term tj we apply the CombMNZ
[22] data-fusion strategy. Data-fusion strategies aim at integrat-
ing many possible answers (scores) for an object into a single



best representative score. Therefore, to compute the represen-
tative score of tj we first obtain the available lexicon Vρ of the
instance ρ applying Eq. 2. Then, for obtaining the f avail

tj we fuse
the scores of word tj from the list Vρ with the available lexicons
Vy⊕ and Vy	 . For this process, we do as follows:

f avail
tj = CombMNZ(tj , k, {Vρ,Vy⊕ ,Vy	}) (3)

where tj is the word for which we want a fused score, k in-
dicates the maximum position where tj will be searched in the
input lists, and the V’s are the set of lists to be considered for the
fusion process. Notice that k has the same interpretation of that
in Eq. 2; intuitively, it indicates the number of words (features)
to be considered for building the representation vector.

Thus, assuming N = len({Vρ,Vy⊕ ,Vy	}), Dc as the
score of tj in list c, and |Dc > 0| as the number of non-zero
scores given to tj by any list c, the final score for each unique
term tj is computed as follows:

CombMNZ(tj , k, {Vρ,Vy⊕ ,Vy	}) =
N∑
c

Dc × |Dc > 0|

(4)
Broadly speaking, the f avail

tj of term tj represent a weight
value indicating to what category it adjust the best.

2.3. Correlation degree features

The correlation degree features aim at measuring the relation-
ship between the two sets of paired words, particularly we com-
pute cor(Vy	 , Vρ), and cor(Vy⊕ , Vρ). The correlation (cor)
value will be an indicator of the association between the avail-
able lexicon form subject ρ and the corresponding Vy	 and Vy⊕
categories. For the experiments performed in this paper, every
f cor
tj feature is formed by two values, the Spearman’s correlation

coefficient and its corresponding p-value.

2.4. Acoustic based method

The acoustic based method directly models raw waveforms to
predict the class-conditional probabilities using a CNN-based
architecture. As described in [23], the architecture consists of
four 1-D convolutional layers, followed a hidden layer and an
output-layer. In order to guide the learning procedure, depend-
ing on the task, different approaches were previously proposed:
We distinguish between sub-segmental and segmental filtering
(see [23] Table 1); raw waveforms can be filtered to extract
voice-source related characteristics to guide the learning proce-
dure. Specifically, for the depression detection task, the primary
method (denoted as 1stAcoustic) uses zero frequency filtering
to get a signal that characterizes the glottal excitation. The sec-
ondary method (denoted as 2ndAcoustic) consists of modeling
speech at a frame level using linear prediction and subtracting
it from the original speech to get the linear prediction residual,
which contains voice source related characteristics, while both
use an input length of 250ms. However, for Alzheimer’s detec-
tion, both systems use 4 second length inputs of zero frequency
filtered signals, where the primary method (denoted as 1stA-
coustic) applies a sub-segmental filtering stage, the secondary
method (denoted as 2ndAcoustic) a segmental filtering stage.

2.5. Late fusion

Once both the language-based and acoustic-based modalities
are trained independently, the late fusion approach consists of a
voter that takes as inputs the predictions made by the language-
based and acoustic-based approaches. The final decision is

DAIC-WOZ ADReSS

Mod. Approach Class. F1-score Class. F1-score
O D C O D C

Te
xt

ua
l

BoW MLP 0.65 0.48 0.83 SVC 0.84 0.83 0.86
LIWC MLP 0.53 0.34 0.72 LR 0.70 0.70 0.70
BERT SVC 0.70 0.53 0.86 MLP 0.73 0.74 0.72

LA-A100 PER 0.58 0.40 0.77 SVC 0.77 0.74 0.79
LA-A500 MLP 0.71 0.58 0.84 LR 0.84 0.83 0.86
LA-A1000 MLP 0.71 0.56 0.87 LR 0.84 0.83 0.86
LA-AC100 PER 0.57 0.41 0.73 MLP 0.77 0.75 0.80
LA-AC500 MLP 0.68 0.53 0.83 LR 0.86 0.85 0.87
LA-AC1000 MLP 0.66 0.45 0.86 LR 0.87 0.86 0.88

A
co

us
tic

1stAcoustic - 0.58 0.41 0.76 - 0.76 0.69 0.90
2ndAcoustic - 0.52 0.32 0.71 - 0.76 0.71 0.88

Table 1: Performance under a 10-CFV strategy on train sets.

made by means of a majority voting mechanism, where if tied,
the output will be always labeled as C (i.e., control).

3. Experimental Setup
For the experiments, we use the Distress Analysis Inter-
view Corpus - wizard of Oz (DAIC-WOZ) dataset [24] and
the Alzheimer’s Dementia Recognition through Spontaneous
Speech (ADReSS) dataset [9]. The DAIC-WOZ dataset con-
tain semi-structured clinical interviews, performed by an (hu-
man controlled) animated virtual interviewer, designed to sup-
port the diagnosis of psychological distress conditions such as
anxiety, depression, and post-traumatic disorder. This dataset
was used during the AVEC 2016 challenge [7], and contains
audio-visual interviews of 189 participants: 107 for training, 35
for development, and 47 for test. The ADReSS data, introduced
for the Interspeech 2020 ADReSS challenge [9], consists of
speech recordings and transcripts of spoken picture descriptions
elicited from participants through the Cookie Theft picture from
the Boston Diagnostic Aphasia Exam [25]. It contains speech
and transcripts information from 156 participants: 108 for train-
ing, and 48 for test. In the DAIC-WOZ dataset approximately
≈30% of the subjects are labeled as depressed (D), while the
ADReSS data is perfectly balanced. It is worth mentioning that
the labeling of each datset was done by expert mental healthcare
providers, interested reader is referred to [24, 9].

We evaluate the performance of three well-known text-
based methods. First, a traditional Bag-of-Words (BoW) using
the top 1000 most frequent words under a Term Frequency In-
verse Document Frequency tf-idf weighting scheme. Secondly,
we use the Linguistic Inquiry and Word Count (LIWC) [26]
categories for representing the documents. LIWC psychologi-
cal categories capture the semantic content of the language pro-
duced [27], e.g., allow to detect positive vs. negative emotions,
words referencing family/friends/society, pronouns which can
capture inclusive language vs. exclusive language, and words
referencing how the person is feeling.

As third baseline, we evaluate the impact of recent
transformer-based models [28] as a language representation
strategy. For our experiments we test an English pre-trained
BERT model. As known, the [CLS] token acts an “aggregate
representation” of the input tokens, and is considered as a sen-
tence representation for many classification tasks [29]. Accord-
ingly, for generating the representation of each document, we
split the document into smaller chunks (max length of 512 to-
kens), obtain the [CLS] encoding of each chunk, and we apply



DAIC-WOZ ADReSS

Mod. Approach Class. F1-score Class. F1-score
O D C O D C

Te
xt

ua
l

BoW MLP 0.53 0.32 0.75 LR 0.85 0.84 0.86
LIWC MLP 0.49 0.29 0.69 SVC 0.62 0.57 0.67
BERT MLP 0.51 0.30 0.72 SVC 0.81 0.80 0.82

LA-A100 DT 0.63 0.54 0.73 SVC 0.73 0.70 0.76
LA-A500 MLP 0.54 0.36 0.71 MLP 0.85 0.86 0.85
LA-A1000 DT 0.58 0.40 0.76 LR 0.85 0.85 0.86
LA-AC100 SVC 0.70 0.64 0.76 MLP 0.75 0.71 0.79
LA-AC500 MLP 0.51 0.25 0.79 LR 0.87 0.88 0.86
LA-AC1000 PER 0.60 0.48 0.71 LR 0.81 0.82 0.80

A
co

us
tic

1stAcoustic - 0.69 0.65 0.73 - 0.79 0.82 0.75
2ndAcoustic - 0.55 0.53 0.57 - 0.68 0.72 0.65

Table 2: Obtained performance over the dev and test partitions
for DAIC-WOZ and ADReSS datasets respectively.

a mean pooling to obtain the final representation.
Except for the BERT setup, we applied the following nor-

malization steps; all the common contractions, e.g., we’ll, can’t,
etc., are converted to its formal writing, i.e., we will, can not,
etc. All disfluencies are preserved, non-speech phenomena are
labeled as <non-speech>, punctuation marks are removed,
and number occurrences are labeled as <number>, and, all the
text is lower cased.

4. Results and discussion
As previous research [7, 9, 23, 30, 31], performance is reported
in terms of the F score (F1) for both control (C) and depres-
sion/dementia (D) classes, and the Macro-F for the overall prob-
lem (O). We acknowledge the limitations regarding the small
size of the corpora, however, this is a common shortcoming of
all studies that use clinical datasets. Thus, to achieve stable and
robust results, we applied two validation strategies: i) the aver-
age performance over a stratified 10 cross-fold-validation using
train partition (10-CFV), and, ii) the performance over the dev
partition for the DAIC-WOZ3 dataset and on the test partition
for the ADReSS dataset.

For the proposed Lexical Availability method, we per-
formed a series of experiments using: i) only the availability
degree features (LA-A), and ii) the combination of availabil-
ity and correlation (LA-AC) as in Eq. 1. Table 1 summarizes
our results for the experiments using a 10-CFV strategy; Ta-
ble 2 shows the performance of the experiments performed on
the dev and test partitions, and Table 3 shows the results of the
fused predictions. Given our space restrictions, we only report
results from the best learning algorithm (Class. column).4 For
the experiments using the LA-A/LA-AC methods, the number
in the sub-index indicates the value of the k parameter.

Clearly, from Tables 1 and 2 we conclude that our LA
method outperforms all the proposed textual-based baselines,
including very recent transformer-based models (i.e., BERT).
Also, observe that adding the correlation features helps improv-
ing the classification, best performance is obtained under the
LA-AC configuration for both tasks (see Table 2) with k = 100

3DAIC-WOZ test partition is not publicly available.
4Classifiers parameters: Logistic Regresor (LR - solver=lbfgs),

Multilayer Perceptron (MLP - activation=relu, alpha=1e-5,
solver=lbfgs, max iter=300), Support Vector Machines (SVC -
kernel=linear), Decision Trees (DT - criterion=entropy, and
Perceptron (PER - max iter=50, tol=1e-3). All classifiers were set with
random state=42.

Dataset Fused approaches F1-score
O D C

D
A

IC
-W

O
Z [LA-AC100, LA-A100, 1stAcoustic,

2ndAcoustic]†
0.84 0.80 0.89

[LA-AC100, LA-A100, BoW, 1stAcoustic,
2ndAcoustic]†

0.82 0.77 0.86

[LA-AC100, LA-A100, BERT, 1stAcoustic,
2ndAcoustic]

0.79 0.74 0.84

Al Hanai,T., et al. (2018) [16] 0.77 - -

A
D

R
eS

S

[LA-AC500, LA-A500, 1stAcoustic,
2ndAcoustic]

0.90 0.90 0.89

[LA-AC500, LA-A500, BoW, 1stAcoustic,
2ndAcoustic]

0.85 0.87 0.84

[LA-AC100, LA-A100, BERT, 1stAcoustic,
2ndAcoustic]

0.90 0.90 0.89

Mahajan, P. & Baths, V., (2021) [17] - 0.70 0.75

Table 3: Obtained performance of the late fusion approach. The
reported performance in [7] for depression was F1=0.58, while
for ADReSS, in [9] the best reached score was F1=0.75.

for DAIC-WOZ, and k = 500 for ADReSS. This variation in
the value of k is related to the size of the respective datasets.
For instance, the DAIC-WOZ corpus, contrary to the ADReSS
dataset, contains more samples of the communicative process
(i.e., several utterances from interviewed subject) with a smaller
variability of lexical units (i.e., small vocabulary), hence paying
attention to a reduced set terms is enough for the LA method.

For the multi-modal experiments (Table 3) we took the best
configurations based on the performance on the dev/test sets
(Table 2). We compare our results against two recent multi-
modal approaches. For depression, we considered the work of
[16], which evaluates the performance of a multi-modal LTSM
recurrent network. For dementia, [17] combines the outputs of
CNN-LSTM model and a Speech-GRU cell for making the pre-
dictions. As can be observed, our late fusion strategy, outper-
forms very recent approaches by an important margin.5

5. Conclusions
We addressed the problem of detecting mental disorders from
clinical tests. Inspired by the LA theory, our method approxi-
mates the mental lexicon through the identification of the avail-
able lexicon for mentally ill and control subjects, and use it in a
classification process to detect depression/dementia. Addition-
ally, based on previous studies that demonstrated the suitability
of raw waveform CNNs, we designed a multi-modal approach,
where a voter makes the final decision using a majority vote
mechanism. A thorough evaluation in two well known clinical
datasets (DAIC-WOZ and ADReSS), shows that the LA method
fused with the raw waveform-based CNN is able to outperform,
by a large margin, very recent deep NN techniques.
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Abstract
In this work, we propose a modular multi-modal architecture to
automatically detect Alzheimer’s disease using the dataset pro-
vided in the ADReSSo challenge. Both acoustic and text-based
features are used in this architecture. Since the dataset provides
only audio samples of controls and patients, we use Google
cloud-based speech-to-text API to automatically transcribe the
audio files to extract text-based features. Several kinds of au-
dio features are extracted using standard packages. The pro-
posed approach consists of 4 networks: C-attention-acoustic
network (for acoustic features only), C-Attention-FT network
(for linguistic features only), C-Attention-Embedding network
(for language embeddings and acoustic embeddings), and a uni-
fied network (uses all of those features). The architecture com-
bines attention networks and a convolutional neural network (C-
Attention network) in order to process these features. Experi-
mental results show that the C-Attention-Unified network with
Linguistic features and X-Vector embeddings achieves the best
accuracy of 80.28% and F1 score of 0.825 on the test dataset.
Index Terms: Alzheimer’s disease, Multi-Modal Approach,
CNN-Attention network, Acoustic feature, Linguistic feature

1. Introduction
Alzheimer’s Disease (AD) is a neurodegenerative disease that
is the most common form of dementia and continual cognitive
impairments [1]. The number of cases is increasing rapidly ev-
ery year so that AD has become a non-negligible social public
health problem. Therefore, early diagnosis of AD is an essential
task and has attracted much attention in recent years.

The ADReSSo challenge at INTERSPEECH 2021 defines
a shared task through which different approaches to target the
automatic detection of AD [2] can be proposed. The ADReSSo
challenge provides only audio data of patients extracted from
the Pitt Corpus [3].

Our approach uses both the audio features directly extracted
from the audio files and linguistic and other language-based
features extracted from the transcribed version of the same au-
dio file. Literature suggests that speech impairment is a com-
mon and significant sign of AD even at the early stage of de-
mentia [4, 5]. Therefore, some speech characteristics, such as
speech vagueness and abnormal pauses, can function as an im-
portant bio-marker. These features in patients’ speech can pro-
vide useful information about the cognitive status and other as-
pects related to the level of brain health [6]. Further, studies

* work done while at Stevens Institute of Technology

have shown that several lexical or syntactic features and in-
creases in conversational fillers or non-specific nouns are also
indicators of AD [7, 8]. Consequently, Natural Language Pro-
cessing (NLP) methods can be applied to extract linguistic fea-
tures from text data [9] and used in the detection of AD [10, 11].
Existing AD classification methods can be divided into three
categories depending on the types of features used: leveraging
raw audio data or acoustic features using linguistic features de-
rived from text or a combination of acoustic features and lin-
guistic features to detect AD. We have taken the third approach
here. The main contributions of this work are as follows: 1) a
CNN-attention Network (C-Attention Network) for automated
detection of Alzheimer’s disease. 2) a method to integrate fea-
tures extracted from both text and audio.

2. Related Work
Automated detection of Alzheimer’s disease has a long his-
tory of research. In early automated AD detection work, re-
searchers attempt to quantify the impairments by using compu-
tational methods [12]. They first construct or extract different
features from the different data sources and then apply tradi-
tional machine learning methods to detect Alzheimer’s disease.
These features can be divided into two categories: linguistic
features and acoustic features. Linguistic features including
part-of-speech (POS) tag frequencies, measures of lexical di-
versity were extracted and a linear discriminant analysis or other
classifiers were used to identify AD patients [12, 13]. Acous-
tic features such as mel-frequency cepstral coefficients (MFCC)
and low-level descriptors (LDD) were used in [14]. Then, the
combination of both acoustic and linguistic features based ma-
chine learning approaches were proposed to automatically de-
tect AD [15, 16]. These studies have shown that the methods
of combining different types of features have better detection
accuracy compared to using features separately.

In recent related research work, the INTERSPEECH 2020
ADReSS challenge provides a baseline paper, which sum-
marized many useful acoustic features [17], including em-
boase [18], ComParE [19], eGeMAOS [20] and MRGG [21]
and followed it with machine learning methods such as Lin-
ear Discriminant Analysis (LDA), Decision Tree (DT), Support
Vector Machine (SVM) and Random Forests (RF) to detect AD.
In ADReSS 2020 challenge, the work [22] utilized two acous-
tic features, IS10-Paralinguistics feature set from ComParE and
Bag-of-Acoustic-Words (BoAW), to achieve a good classifica-
tion accuracy [22]. Cummins et.al proposed an end-to-end con-
volutional neural network to directly classify AD [23]. Pan
et.al considered the problem of audio data quality and they ap-
plied ASR techniques to identify high-quality speech segments
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for more robust feature extraction to improve detection perfor-
mance [24]. Some researchers obtain latent features from lan-
guage embeddings and used the attention mechanism to achieve
better performance on text data [6, 9, 25]. A multi-modal ap-
proach that fused acoustic and linguistic features was proposed
in [26]. In that work, the author used dual-LSTM architecture,
one for audio feature and another for text feature. A gating
mechanism was used to fuse the two for the final classifier.

3. Proposed Approach
In this section, we introduce the acoustic and linguistic feature
sets we use and propose a modular multi-modal architecture to
classify AD from non-AD controls.

3.1. Acoustic and Linguistic Feature Sets

3.1.1. Acoustic Features

We used open source audio processing toolkits, OpenS-
MILE [18] and Kaldi [27], to obtain four different acoustic
features from the raw audio file, which are Emobase [18],
IS10 [19], VGGish [28] and X-Vector [29]. Specifically,
Emobase and IS10 are frame-level acoustic features. VGGish
and X-Vector are acoustic embeddings. Frame-level features
are directly extracted from audio files and these features cap-
ture the frequency characteristics and other statistical informa-
tion. Different from frame-level features, embedding features
are not directly derived from the audio data. The embedding
features are from the embedding model, where the embedding
model will generate a vector to represent the characteristics in
audio data. The embedding model is a deep neural network and
pre-trained on large audio datasets. We used these pre-trained
embedding models to extract features. Here are the specific de-
scriptions for different feature extraction processes:
Emobase: The Emobase feature set has abundant audio
features which include mel-frequency cepstral coefficients
(MFCC) information, fundamental frequency (F0), F0 enve-
lope, line spectral pairs (LSP), and intensity features.
IS10: The IS10 feature set includes many frame-level features:
16 types of LLDs, PCM loudness, eight log Mel frequency band
(0-7), eight line spectral pairs (LSP) frequency (0-7), F0 enve-
lope, voicing probability, jitter local, jitter DPP, and shimmer
local and more MFCC features.
VGGish: This is an acoustic embedding model which is pre-
trained on YouTube’s Audio dataset [28]. The architecture of
VGGish is a CNN-based structure and similar to VGG. The
VGGish embedding model extracts and transforms the audio
features into semantic and meaningful high-level feature vec-
tors with 128 dimensions.
X-Vector: X-vector is a deep neural network-based audio em-
bedder, widely used in the field of speech recognition [29, 30].
We employ x-vector to represent audio features from raw audio
files. The neural network that produces the x-vector consists
of three components: the frame-level layers to extract repre-
sentation from MFCC, a statistics pooling layer which receives
output from the last frame-level layer and a segment-level layer
that follows the statistics pooling layer to generate the x-vector.
Specifically, we obtain the x-vector features according to the
following steps: 1) First, all raw audio files are normalized and
re-sampled to 16,000Hz and 16-bits by using SOX audio pro-
cessing software; 2) Second, we compute the x-vector for each
audio segment by using Kaldi that uses the SER16 pre-trained
x-vector model. The SER16 pre-trained model is trained on
Switchboard, Mixer 6, and NIST SERs datasets [29, 30]; 3)

Third, we convert x-vector to a binary file to make it easier for
our proposed model to read.

3.1.2. Features from Transcribed Text

We used Speech-to-Text API 1 provided by Google cloud to
automatically transcribe speech recordings. Then based on the
transcripts, we extracted linguistic features and sentence em-
beddings.
Linguistic Features: We used two tools to generate linguistic
features: 1) Like [2], we converted transcripts into CHAT for-
mat, then ran EVAL and FREQ commands in CLAN [31] to
generate a composite profile of 34 measures and Moving Aver-
age Type Token Ratio [32]; 2) we generated 22 Part-of-Speech
tags using NLTK [15]. After removing all-zero and duplicate
features, 50 linguistic features in total were extracted.
Sentence embeddings: We used Universal Sentence Embed-
ding (USE) [33] to represent each sentence in the context.

3.2. Proposed Architectures: C-Attention Networks

We propose a modular multi-modal architecture consisting of
three standalone networks. The architectures are shown in
Fig 1. The left-hand side leg processes acoustic features, such as
Emobase and IS10 features, and is called C-Attention-Acoustic
Network. The middle leg processes linguistic features, and
is called C-Attention-FT Network. The right-hand side leg
processes embedding features, such as USE, VGGish and X-
Vector, and is called C-Attention-Embedding Network.

Figure 1: The proposed architecture of C-Attention-Acoustic
Network, C-Attention-FT Network and C-Attention-Embedding
Network. The C-Attention-Acoustic Network uses acoustic fea-
tures, the C-Attention-FT network uses the linguistic features,
and the C-Attention-Embedding network uses embeddings of
the patient/control’s recordings.

1https://cloud.google.com/speech-to-text
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Figure 2: The Architecture of Unified C-Attention Network for
Acoustic Features, Linguistic Features, and Embeddings

3.2.1. C-Attention Acoustic Model

This architecture (C-Attention Acoustic Network) is depicted
on the left-hand side of Figure 1. The C-Attention Acoustic
Model comprises of a multi-head-attention (MHA) module to-
gether with a dilated convolution layer [34, 35]; followed by
a 1-D CNN layer and a softmax layer. We used the same
MHA module and the encoder structure of the transformer that
was proposed in [36]. Let R = {r1, r2, ..., rn} be the set of
speech recordings, then ri is the ith record in the dataset. We
extract acoustic feature sets presented in Sec 3.1.1 and gener-
ate the acoustic feature vectors, Let F = {F1, F2, ..., Fn} be
the set of acoustic feature vectors, and Fi be the ith vector in
the acoustic matrix. The MHA transforms the feature matrix
F = {F1, F2, ..., Fn} to another matrix of n-dimensional vec-
tors A = {A1, A2, ..., An}. After each MHA module, we use
a dilated convolution layer to further distill the MHA matrix
A = {A1, A2, ..., An} to half its original size. This is done
to reduce the dimensions of the acoustic features which are too
large for the attention mechanism to capture interactions well.
This procedure forwards from jth layer into (j + 1)th layer as

Xj+1 = MaxPool (ELU (Conv1d (Xj))) (1)

Where the Conv1d(·) performs a 1-D convolutional filters and
ELU(·) [37] is the activation function. The MHA and dilated
CNN module is followed by a 1-layer CNN and a softmax layer
to get the final classification.

3.2.2. C-Attention FT Model

This architecture (C-Attention FT Network) is depicted in the
middle of Figure 1. It is proposed to capture the interaction
among linguistic features. This architecture is similar to the
proposed C-Attention (Sec 3.2.1) except for the removal of di-
lated CNN layer.

3.2.3. C-Attention Embedding Model

This architecture (C-Attention Embedding Network) is depicted
on the right-hand side of Figure 1. We propose this architecture
as a means of capturing latent feature information implicit in

embeddings. This architecture is similar to the proposed C-
Attention (Sec 3.2.1) except for the addition of a positional
encoding module. The positional encoding module is used to
maintain the relative positions of the embedding features and
is the same as that used in the transformer [36] architecture.
More specifically, the Audio to Text layer is only applied to text
embeddings and the dilated convolution layer is only used on
X-Vector embeddings.

3.2.4. C-Attention Unified Model

This architecture (C-Attention Unified Network) is depicted in
Figure 2. In this architecture, we use all three types of fea-
tures: acoustic features, linguistic features, and embedding fea-
tures. We used another attention layer to fuse the outputs from
C-Attention Acoustic Network, the C-Attention-FT network,
and the C-Attention-Embedding network followed by a softmax
layer. In order to fuse these other models together, we omit the
final softmax layers in each of the four modules.

4. Experiments
In this work, we employed four models on acoustic features,
linguistic features, and embeddings to detect AD, and evaluated
our proposed models on the ADReSSo challenge dataset.

4.1. Dataset

In this work, we employed four models on acoustic features,
linguistic features, and embeddings to detect AD, ane dataset is
a balanced sub-dataset of the DementiaBank [38] with respect
to age and gender. It consists of spontaneous speech recordings
of spoken picture descriptions elicited from participants through
the Cookie Theft picture description in the Boston Diagnostic
Aphasia Exam [39]. The training set consists of 166 speech
recordings, including 87 speech recordings from AD patients
and 79 speech recordings from healthy controls. The testing set
consists of 71 speech recordings without annotations.

4.2. Experiment Setup

We implemented our proposed models using Pytorch and
trained them using the 10-fold cross-validation (CV) approach.
Three types of features were extracted: acoustic features, lin-
guistic features, and embeddings (including text embeddings
and acoustic embeddings). For all models implemented in this
paper, each model has 6 multi-head attention layers. Apart from
that, in the C-Attention-Acoustic network and C-Attention-
Embedding Network, each multi-head attention module is fol-
lowed by a dilated convolution layer (kernel width=3) and a
max-pooling layer with stride 2 which downsizes the feature
set into its half slice. We found that due to the variation of fea-
ture size, the best configuration of modules is slightly different
among various feature sets. For Emobase and IS10 features, 6
multi-head attention modules and 6 dilated CNN modules gave
the best performance. However, 6 multi-head attention modules
plus two dilated CNN modules is the best setting for X-Vector
embeddings. Dilated CNN modules were not used on VGGish
embeddings.

4.3. Feature Generation

We have described how to generate each type of feature in
Sec 3.1.1. Here we add a few additional explanations on acous-
tic features and acoustic embeddings used in our experiments.
Acoustic Features: We generated Emobase and IS10 on each
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speech recording, no segmentation was applied.
Acoustic Embeddings: 1) VGGish Embeddings: We ap-
plied 16k-downsampling on single-channel audio signals, and
computed the log mel spectrogram. Then each log mel spec-
trogram was segmented with a non-overlapping 960ms win-
dow. Finally, we generated 128-length VGGish embedding on
each segmented sample; 2) X-Vector embeddings: Similarly,
we segmented each speech recording with a non-overlapping
960ms window, then generated 512-length X-Vector embedding
on each segmented sample.

4.4. Experiment Results

The performance results are shown in Table 1. We note that on
the training dataset, the C-Attention-Unified model with Lin-
guistic and X-Vector features achieved the best performance in
respect to the accuracy, precision, and F1 score, the best Recall
was achieved by the C-Attention-Unified model with Linguis-
tic, IS10, and X-Vector. Due to time limitation, in C-Attention-
Unified network, we were not able to use all feature sets, such
as USE. Given C-Attention-Embedding (USE) did not perform
better than other approaches but it took longer to train, we trun-
cated this feature set in our unified model.

Table 1: AD classification accuracy on 10-fold cross-validation
(CV)

Approach Accuracy Precision Recall F1
C-Attention-Acoustic(Emobase) 0.614 0.632 0.632 0.632

C-Attention-Acoustic(IS10) 0.62 0.615 0.736 0.67
C-Attention-FT(Linguistic) 0.735 0.753 0.736 0.735

C-Attention-Embedding(USE) 0.657 0.679 0.655 0.667
C-Attention-Embedding(VGGish) 0.735 0.759 0.724 0.741
C-Attention-Embedding(X-Vector) 0.753 0.774 0.747 0.76

C-Attention-Unified(Linguistic + USE) 0.711 0.714 0.747 0.73
C-Attention-Unified(Linguistic + VGGish) 0.747 0.771 0.736 0.753
C-Attention-Unified(Linguistic + X-Vector) 0.772 0.787 0.74 0.763

C-Attention-Unified(Linguistic + IS10 + X-Vector) 0.725 0.724 0.778 0.75

Our experiment results would indicate that: 1) using both
audio embeddings and linguistic features seems to be the best
way to approach the problem of detecting AD, rather than
choosing only one; 2) On the text side, handcrafted linguistic
features perform better than USE representations on AD detec-
tion; 3) However, on the audio side, audio embeddings, such
as X-Vector and VGGish show better performance on AD de-
tection than frame-level acoustic features, such as Emobase and
IS10.

Further analysis of the values in this table would indicate
that using only the latent NLP-based features does not perform
as well as using only audio embeddings (X-Vector). However, it
is worthy to mention that the transcripts used in this work were
automatically converted from speech recordings. The automatic
conversion might have introduced errors and noises. Within au-
dio embeddings, X-Vector performs better than VGGish.

As part of the ADReSSo challenge, we were provided the
test dataset and asked to submit the labels from five attempts of
our algorithm on this dataset. Since we had multiple models,
we used the following method to decide on which model’s re-
sult to report. We randomly split the training dataset into 80%
for training, 10% for validation, and 10% for testing. We tried
multiple random seeds, then used the models which performed
best, on an average, on the training dataset. The best perform-
ing model was the C-Attention-Unified model with Linguistic
features and X-vectors. Hence we used this model to submit
the five attempts on the test dataset as required by the challenge
rules. The organizers then calculated the accuracy, precision,
recall and F scores based on the ground truth labels (which

Table 2: Attempts on test dataset

Attempts Accuracy Precision Recall F1
Attempt 1 0.8028 0.7500 0.8889 0.9167 0.6857 0.8250 0.7742
Attempt 2 0.7746 0.7500 0.8065 0.8333 0.7143 0.7895 0.7576
Attempt 3 0.7887 0.7692 0.8125 0.8333 0.7429 0.8000 0.7761
Attempt 4 0.7746 0.7273 0.8519 0.8889 0.6571 0.8000 0.7419
Attempt 5 0.7606 0.7111 0.846 0.8889 0.6286 0.7901 0.7213

were not revealed to the participants) of the test dataset. Ta-
ble 2 shows the results returned to us by the organizers, for our
model.

5. Future Work
In this challenge, due to time limitation, we were not able to
apply segmentation on acoustic features, nor apply 100ms win-
dow size segmentation on either VGGish or X-Vector embed-
dings. We believe that our models could learn better on the
acoustic features if time series segmentation is applied. Fur-
ther, we will continue to address the other subtasks set out in
the challenge, viz.: evaluate the models’ performance by calcu-
lating the MMSE score and generalize the proposed models to
predict the cognitive decline.

6. Conclusions
In this paper, we proposed a modular multimodal approach to
detect Alzheimer’s disease and this approach includes four ar-
chitectures using CNN and multi-head attention on the train-
ing set of the ADReSSo Challenge. Three types of feature
sets were used in this work: acoustic features, linguistic fea-
tures, and embeddings. One architecture uses only the acoustic
features, one architecture uses only the linguistic features, one
uses only the embeddings and the unified architecture uses all of
those features. Extensive experimental evaluations on the train-
ing dataset show that our proposed model can detect AD with an
accuracy of 77.2%, F1 of 0.763 using the C-Attention-Unified
model with Linguistic and X-Vector features. Using the same
model and feature sets, the best accuracy of our models was
80.28% and F1 of 0.825 on the test dataset.
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Abstract
In this paper, we exploit semantic and non-semantic information
from patient’s speech data using Wav2vec and Bidirectional En-
coder Representations from Transformers (BERT) for dementia
detection. We first propose a basic WavBERT model by ex-
tracting semantic information from speech data using Wav2vec,
and analyzing the semantic information using BERT for demen-
tia detection. While the basic model discards the non-semantic
information, we propose extended WavBERT models that con-
vert the output of Wav2vec to the input to BERT for preserving
the non-semantic information in dementia detection. Specif-
ically, we determine the locations and lengths of inter-word
pauses using the number of blank tokens from Wav2vec where
the threshold for setting the pauses is automatically generated
via BERT. We further design a pre-trained embedding conver-
sion network that converts the output embedding of Wav2vec
to the input embedding of BERT, enabling the fine-tuning of
WavBERT with non-semantic information. Our evaluation re-
sults using the ADReSSo dataset showed that the WavBERT
models achieved the highest accuracy of 83.1% in the classifi-
cation task, the lowest Root-Mean-Square Error (RMSE) score
of 4.44 in the regression task, and a mean F1 of 70.91% in the
progression task. We confirmed the effectiveness of WavBERT
models exploiting both semantic and non-semantic speech.
Index Terms: Speech analysis, automatic speech recognition,
non-semantic information, dementia detection

1. Introduction
Researchers have exploited spontaneous speech for early detec-
tion of Alzheimer’s disease, as the collection of speech data is
more practical and less costly compared to conventional cog-
nitive assessment methods such as neuropsychological evalua-
tion [1] and Magnetic Resonance Imaging (MRI) [2]. In the
2020 Alzheimer’s Dementia Recognition through Spontaneous
Speech (ADReSS) challenge, researchers studied the sponta-
neous speech dataset [3] and demonstrated that transcript-based
models are more effective in dementia detection than audio-
based models [4, 5, 6, 7]. We envisioned that the low perfor-
mance of the audio-based models is due to the large variance
and hard-to-interpret nature of audio signals [8, 9]. In compar-
ison, transcript-based models were built using the manual tran-
scripts from human transcription, which takes advantage of the
human transcriber’s knowledge, including rules of the descrip-
tion task and information units within the picture. However,
human transcription is a costly and impractical process, which
prevents the speech-based evaluation from being a fully auto-
matic approach. The 2021 ADReSS speech only (ADReSSo)

challenge thus aims at the development of fully automatic mod-
els that detect dementia using only speech data [10].

Automatic Speech Recognition (ASR) aims to generate
ASR transcripts automatically from speech audio data. ASR
transcripts can be used as the inputs to transcript-based mod-
els when manual transcripts are not available. However, we
have two concerns. First, ASR might generate a transcript
with uncertain errors, especially for the speech from patients
with cognitive impairment. Such uncertain errors might nega-
tively affect the performance of transcript-based models. Sec-
ond, the integration of ASR could analyze both semantic and
non-semantic information for a more accurate dementia detec-
tion, while transcript-based models focus on the analysis of se-
mantic information of the transcripts only. Previous research
demonstrated the usefulness of non-semantic information in de-
mentia detection, such as filled and silent pauses [11, 12, 13],
paralinguistic features [10, 14], and Mel Frequency Cepstral
Coefficient (MFCC) [15, 8, 9]. As such, we seek an effective
integration of ASR and transcript-based models for enhanced
dementia detection. For the transcript-based models, Bidi-
rectional Encoder Representations from Transformers (BERT)
dominates the Natural language processing (NLP) research due
to its power of self-supervised training and transfer learning
strategy [16]. It consists of two steps: i) pre-training a model
with unlabeled data and self-supervised training strategy, and ii)
fine-tuning the model with downstream data and tasks. In the
ADReSS 2020 challenge, it was proven that transcript-based
model BERT outperforms traditional machine-or-deep learning
models using handcrafted features in dementia detection [17].

We recently explored transfer learning over audio dataset
directly for dementia detection but achieved limited perfor-
mance [8, 9]. Our conclusion is that the selected pre-trained
audio models did not extract good representation from the au-
dio data of the dementia task from the dementia detection per-
spective. However, transfer learning has been effective in ASR;
researchers proposed Wav2vec model [18] and the correspond-
ing ASR achieved state-of-the-art Word Error Rate (WER) on
the LibriSpeech dataset [19]. We thus applied the Wav2vec
ASR model to generate ASR transcripts from the 2020 ADReSS
dataset, compared the ASR transcripts with the manual tran-
scripts, and found the high similarity of the two transcripts.

In this paper, we first propose a basic WavBERT model
to generate ASR transcripts via Wav2vec, use the ASR tran-
scripts and dementia-related labels to fine-tune BERT, and de-
rive the dementia detection results of the testing dataset using
the fine-tuned BERT. While the basic WavBERT model dis-
cards the non-semantic information, we propose two extended
WavBERT models that utilize the intermediate results of the
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ASR, containing the non-semantic information. Specifically,
the first method is to derive the locations and lengths of inter-
word pauses by counting the blank tokens and separate tokens
from the intermediate results of the Wav2vec ASR. Further-
more, we do not manually set the thresholds for pauses. Instead,
we propose automatic methods that use BERT or training sam-
ples to determine the thresholds. The second method is to con-
vert the Wav2vec output embedding to the BERT input embed-
ding using a pre-trained embedding conversion network. The
module is pre-trained with a large-sized audio dataset and its
corresponding ASR transcripts and assists the fine-tuned BERT
to detect dementia using both semantic and non-semantic infor-
mation from the speech data. Our contributions are three-fold:

First, we propose a basic WavBERT model that concate-
nates Wav2vec ASR with BERT, enabling an automatic process
of dementia detection.

Second, we extend the WavBERT model to determine the
locations and lengths of pauses using the ASR intermediate re-
sults. The thresholds for setting pauses are automatically gen-
erated. The extended WavBERT model achieves the highest ac-
curacy of 83.1% in the classification task and the lowest Root-
Mean-Square Error (RMSE) score of 4.44 in the regression task.

Third, we extend the WavBERT model by converting the
Wav2vec output embedding to the BERT input embedding for
preserving non-semantic information. The extended WavBERT
achieves the highest accuracy of 70.91% in the progression task.

2. ADReSSo dataset
The ADReSSo challenge consists of three tasks, an AD classifi-
cation task, a Mini-Mental State Examination (MMSE) regres-
sion task, and a cognitive decline progression task [10]. The
first two tasks share the same data, including 237 audio files,
which were collected using a Cookie Theft picture description
task from the Boston Diagnostic Aphasia Exam [20]. The data
is balanced with class, age, and gender. The data for the cog-
nitive decline progression task was collected from a category
fluency task, including 105 audio files. The first-round data was
provided as the baseline, and the second-round data was col-
lected in two years and used for inferring cognitive decline. The
data of this task is unbalanced; the non-decline samples are sig-
nificantly more than the decline samples. In the challenge, 70%
of both datasets were used for training and 30% for testing [10].

3. Basic WavBERT
We propose a basic WavBERT model consisting of Wav2vec
ASR and BERT, labeled to path 1 in the Figure 1. The basic
model converts speech data to ASR transcripts and inputs the
ASR transcripts to BERT for dementia detection.

Wav2vec aims to learn the representations from speech data
using self-supervised training [18]. As shown on the left of
the Figure 1, Wav2vec first inputs speech data into a Convo-
lutional Neural Network (CNN) to obtain the latent represen-
tations, which are then inputted into a transformer encoder.
The transformer encoder generates context representations in
the output embedding and employs a pre-training task follow-
ing the self-supervised training strategy [18]. After pre-training,
Wav2vec uses a fine-tuning process with a character inference
component, optimized with a Connectionist Temporal Classifi-
cation (CTC) loss. The character inference component consists
of a 1D convolutional layer and a softmax layer. The convolu-
tional layer convolutes according to the time dimension using
both kernel size and stride set to 1. The output of the character

inference component can be 26 English letters, single quote ’,
blank token <s>, and separator token |. Finally, Wav2vec
merges consecutively repeated characters, removes blank to-
kens, and uses separator tokens to separate words. The tran-
script has no punctuation, contains the semantic information of
the speech data, and can be inputted to transcript-based models.

BERT derives the general representation of the language
model by employing a pre-training process with large-scale
datasets (i.e., BooksCorpus and Wikipedia) [16]. BERT gen-
erally includes the four steps depicted on the right of the Figure
1. Given a transcript, BERT first pre-processes the transcript
with the WordPiece tokenizer [21], splits words into sub-word-
level tokens, and then adds special tokens [CLS] and [SEP]. All
tokens are converted to an input embedding, which is further in-
putted to a transformer encoder [22] to obtain the output embed-
ding. Two pre-training tasks were adopted: Masked Language
Model (MLM) and Next Sentence Prediction (NSP). In MLM,
given that some of the input tokens are masked, the classifica-
tion objective is to use the embedding of the unmasked tokens to
infer the masked tokens. In NSP, given that a single [SEP] token
is inserted between two selected sentences, a binary classifica-
tion objective is to infer whether the first sentence is followed
by the second in the transcript.

Inference layers. For the dementia detection task, we use
the BERT output embedding of all the tokens except for the
[CLS] token as the input of the inference layers. Specifically,
we use a 1D convolutional layer with both kernel size and stride
set to 1. The number of neurons is equal to the hidden size of the
BERT. We use a Global Average Pooling (GAP) layer to cal-
culate an averaged vector according to the time dimension, and
use a Fully Connected (FC) layer with softmax or LeakyReLU
for the classification or regression tasks, respectively.

4. Extended WavBERT
We extend WavBERT models with ASR pause preservation and
embedding conversion, shown in paths 2 and 3 of the Figure 1.

4.1. ASR pause preservation

Force alignment methods are often used to align transcripts and
audio data and determine both inter-word and inter-sentence
pauses [13]. However, as the ASR produces uncertain errors,
force alignment between the ASR transcript and audio data
might not be effective. In our model, we exploit the CTC prop-
erty of Wav2vec for determining the pauses. Wav2vec produces
blank tokens and separate tokens as intermediate results. As
such, we modify the Wav2vec post-processing as follows. First,
we merge the consecutively repeated letters and single quotes.
Second, we remove the blank token between English letters and
the single quote. In this way, the blank tokens within any word
were removed. Last, we combine the remaining blank tokens
with the separate tokens, count the number of the blank and
separate tokens between words, and use that number of tokens
to determine the lengths of pauses between words.

BERT requires the input as transcripts and punctuation
marks. Therefore, we convert pauses to the punctuation marks,
i.e., periods and commas. Specifically, we design automatic
methods to determine the thresholds ✏p and ✏c, which are used
to set sentence-level pauses and in-sentence pauses.

Sentence-level pause. BERT has extensive prior knowl-
edge of sentence-level pauses from large-scale pre-training
datasets. Thus, we use BERT to determine the threshold ✏p
for sentence-level pauses. Specifically, we aim to maximize
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Figure 1: The basic WavBERT model (Path 1) and extended WavBERT models (Paths 2&3)

the sample-level cross-entropy difference between the AD and
non-AD samples from the training dataset. We consider na AD
samples Xa and nna non-AD samples Xna. These samples are
generated using Wav2vec and do not include any punctuation
marks. Using the BERT tokenizer, we obtain k tokens of a tran-
script as xi = {xi,1, · · · , xi,k}. Given a threshold ✏p, we deter-
mine the locations of pauses that have lengths � ✏p, then insert
punctuation marks of periods at these locations, and finally ob-
tain t tokens of the transcript as x✏p

i = {x✏p
i,1, x

✏p
i,2, . . . , x

✏p
i,t} 2

Rt⇤v (t � k). Each token x
✏p
i,j 2 Rv is a v-size vector where v

is the vocabulary size of BERT. Then we input x✏p
i to BERT to

obtain the corresponding self-supervised token inference after
softmax activation z

✏p
i 2 Rt⇤v . Then, we remove the tokens

of the same indexes of added punctuation marks from z
✏p
i and

obtained z̄
✏p
i 2 Rk⇤v . We aim to find ✏p to maximize the target:

argmax
✏p

|
na

Med
xi2Xa

(`
✏p
i )�

nna

Med
xi2Xna

(`
✏p
i )| (1)

where Med() is the median function, `✏pi is the cross-entropy
loss of the sample xi:

`
✏p
i :=

1
k

kX

j=1

vX
�log(z̄

✏p
i,j) ⇤ xi,j (2)

In-sentence pause. BERT has no prior knowledge of in-
sentence pauses. Thus, we design a statistical method to deter-
mine the threshold for locating the in-sentence pauses. Specifi-
cally, we measure the lengths of selected pauses in both AD and
non-AD samples where we set the maximum length of pauses
as ✏p. Then, we count the number of pauses with length � as
⇡�,a and ⇡�,na for 1  � < ✏p for AD and non-AD samples,
respectively. Finally, we aim to find ✏c to maximize the target:

argmax
✏c

| 1
na

✏cX

�=1

⇡�,a � 1
nna

✏cX

�=1

⇡�,na|+

| 1
na

✏pX

�=✏c+1

⇡�,a � 1
nna

✏pX

�=✏c+1

⇡�,na|
(3)

After we determine pauses using ✏p and ✏c, we insert pe-
riods for sentence-level pauses and commas for in-sentence
pauses in the ASR transcripts and input the transcripts to BERT.

4.2. ASR embedding conversion

An embedding conversion network converts Wav2vec output
embedding to BERT input embedding. The network design

faces two challenges: i) the Wav2vec output embedding is at
the character-level, while the BERT input embedding is at the
sub-word-level; and ii) in order to utilize the pre-training pa-
rameters of BERT, we should make the converted embedding
close to the BERT input embedding.

For the first challenge, we design a mapping method. We
generate an ASR transcript from an audio sample, use the BERT
tokenizer to derive sub-word tokens from the ASR transcript,
and generate the BERT input embedding for each token. Then,
we use the characters of the token to find the corresponding
Wav2vec output embedding. Although the characters generated
from Wav2vec can be repeated, we can effectively identify any
repeated characters using the property of CTC. For example, the
Wav2vec output embedding of “t <s> w w o o” corresponds to
the BERT input embedding of token “two.” Finally, we average
the Wav2vec output embedding according to the time dimen-
sion to obtain the averaged embedding as ew and map ew to the
BERT input embedding eb of the corresponding token. Special
tokens such as [CLS] and [SEP] were excluded in this process.

For the second challenge, we design an embedding conver-
sion network with an aim to convert the Wav2vec output em-
bedding ew to the BERT input embedding eb. The network
consists of two 1D convolutional layers with a layer-norm in
between. The 1D convolutional layers use both kernel size and
stride set to 1. The number of neurons is equal to the hidden
size of BERT. We further design a pre-training process. First,
we run the Wav2vec ASR on LibriSpeech [19] to obtain the
ASR transcripts and the Wav2vec output embedding, and then
we use the BERT tokenizer to obtain the BERT input embed-
ding from the ASR transcripts. We input the Wav2vec output
embedding into the embedding conversion network and opti-
mize its outputs with BERT input embedding using l1 loss. In
the training step, after we obtain the converted embedding, we
add the embedding of tokens of punctuation marks (from the
pause preservation) and special tokens, and finally, input the in-
tegrated embedding to BERT.

5. Evaluation
We implemented five models: Mb uses the ASR transcripts
as input to BERT, Mp1 extends Mb by adding sentence-level
pauses to ASR transcripts, Mp2 extends Mb by adding both
sentence-level and in-sentence pauses to ASR transcripts, Me

extends Mb with embedding conversion, and Me+p2 extends
Mb with embedding conversion and sentence-level/in-sentence
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Table 1: Results of classification, regression, and progression tasks over ADReSSo testing dataset. The design of the baseline linguistic

model and the definitions of precision, recall, F1, mean F1, accuracy, and RMSE can be found at the baseline paper [10].

Task 1. Classification (%) 2. Regression 3. Progression (%)
Class Precision Recall F1 Mean F1 Accuracy RMSE Class Precision Recall F1 Mean F1 Accuracy

Baseline [10] non-AD 80.00 77.80 78.87 78.87 78.87 5.28 non-decline 83.30 68.20 75.00 66.67 68.75AD 77.80 80.00 78.87 decline 50.00 70.00 58.30

Mb
non-AD 71.79 77.78 74.67 73.16 73.24 4.60 non-decline 64.00 72.73 68.09 39.92 53.13AD 75.00 68.57 71.64 decline 14.29 10.00 11.76

Mp1
non-AD 80.00 88.89 84.21 83.02 83.10 4.45 non-decline 62.96 77.27 69.39 34.69 53.13AD 87.10 77.14 81.82 decline 0 0 0

Mp2
non-AD 77.50 86.11 81.58 80.19 80.28 4.44 non-decline 64.29 81.82 72.00 36.00 56.25AD 83.87 74.29 78.79 decline 0 0 0

Me
non-AD 78.95 83.33 81.08 80.25 80.28 4.46 non-decline 79.17 86.36 82.61 69.08 75.00AD 81.82 77.14 79.41 decline 62.50 50.00 55.56

Me+p2
non-AD 77.78 77.78 77.78 77.46 77.46 4.47 non-decline 81.82 81.82 81.82 70.91 75.00AD 77.14 77.14 77.14 decline 60.00 60.00 60.00

pauses. We report the results of the five models in Table 1.

5.1. Implementation and training strategy

We trained the five models with the ADReSSo training dataset
and reported the performance of five models over the provided
testing dataset. Considering the random states of the models
and the limited size of the dataset, we trained each model for 10
rounds and submitted the average results of the 10 rounds. For
the classification and progression tasks, we averaged the prob-
abilities from the softmax activation. For the regression task,
we averaged the output of MMSE scores. For the classification
task, the corresponding models output the non-AD class only
if its probability is � 0.5. For the progression task, we imple-
mented classification models for the progression task by treat-
ing decline samples as AD samples and non-decline as non-AD.
Considering the unbalanced classes of the training dataset, the
corresponding models output non-decline class only if its prob-
ability is � 0.79, based on the class ratio of the training dataset.

We implemented the five models with PyTorch1, employing
the “bert-base-uncased” and “wav2vec-vox-960h-pl” settings.
We filtered out one ASR transcript that has < 20 words in the
progression training dataset, which could be caused by either
the failure of ASR or inaudible samples. In training, we unfroze
all BERT layers and inference layers while freezing the embed-
ding conversion network. We used batch size 8 and learning
rate 10�6 with the Adam optimizer [23]. We used the cross-
entropy loss for the first and third tasks, and we used the mean
squared error for the second task. We trained our models with a
maximum of 2000 epochs and stopped the training if the loss is
smaller than 10�6. Besides, we used a similar setting as above
for the pre-training of the embedding conversion network with
LibriSpeech [19], but changed the learning rate to 5⇥10�5 and
the maximum number of epoch to 100. One-round training us-
ing the ADReSSo training dataset took less than 6 hours with
one V100 GPU, and one-round pre-training of the embedding
conversion network took less than a day with six V100 GPUs.

5.2. Experimental results on testing dataset

The Wav2vec models outperformed the baseline model in all
three tasks. Our observations are as follows:

Classification. As shown in Table 1, the basic WavBERT
Mb achieved an accuracy of 73.24%. With non-semantic infor-
mation added into the analysis, Mp1 and Me achieved 83.10%
and 80.28%, respectively. These accuracy improvements con-
firmed that the effectiveness of our models, which utilized pause
preservation and embedding conversion for non-semantic infor-

1Codes are available at https://github.com/billzyx/WavBERT

mation. However, the results of Mp2 and Me+p2 exploiting in-
sentence pauses were worse compared to the Mp1 and Me. We
consider that the in-sentence pauses produced a negative impact
because the in-sentence pauses were learned from the limited
training datasets, which may lead to overfitting. In compari-
son, the sentence-level pauses were automatically derived using
BERT, which provided a positive impact.

Regression. The basic WavBERT Mb produced an RMSE
score of 4.60, lower than 5.28 of the baseline model. All ex-
tended WavBERT outperformed the basic WavBERT. Specifi-
cally, Mp1 with sentence-level pauses produced an RMSE score
of 4.45, Mp2 with sentence-level/in-sentence pauses further
lowered the RMSE score to 4.44, and Me with embedding con-
version produced an RMSE score of 4.47. The performance
improvements confirmed that both pause preservation and em-
bedding conversion produced a positive impact. Lastly, Me+p2

produced a slightly larger RMSE score, which may have re-
sulted from the limited training dataset and overfitting problem.

Progression. Mb, Mp1 and Mp2 resulted in poor perfor-
mance. By checking the ASR transcripts, we found that the
transcripts have a word-misspelling problem for two reasons.
First, Wav2vec is a character-level model, and thus the tran-
scripts may have added or missed characters of words. Sec-
ond, the progression dataset was collected from a category flu-
ency task, significantly different from the training dataset of
Wav2vec ASR, thus downgrading the ASR performance. How-
ever, Me and Me+p2 with embedding conversion, achieved
mean F1 scores 69.08%, 70.91%, outperforming 66.67% of the
baseline. We considered that the embedding conversion net-
work effectively mitigated the word-misspelling problem by in-
putting embedding, not misspelled transcripts, to BERT.

6. Conclusions
We propose WavBERT models by integrating Wav2vec ASR
with BERT for an automatic process of dementia detection.
While the basic Wav2BERT used ASR transcripts and focused
on semantic information, the extended Wav2BERT exploits
non-semantic information with a pause preservation module
and an embedding conversion network. Our experimental re-
sults confirmed that the extended WavBERT models outper-
formed the baseline linguistic model. Our future goal includes
exploring the transformer encoder of BERT for pre-training the
embedding conversion network.
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