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Abstract
We present a novel benchmark data set and prediction tasks
for the investigation of approaches to assess cognitive function
through analysis of spontaneous speech. The data set consists
of speech samples and clinical information for speakers of Man-
darin Chinese and English with different levels of cognitive im-
pairment as well as individuals with normal cognition. These
data have been carefully matched by age and sex by propensity
score analysis to ensure balance and representativity in model
training. The prediction tasks encompass classification (diag-
nosis) of speakers as having normal cognition or mild cognitive
impairment, and prediction of cognitive test scores. This cog-
nitive health assessment framework was designed to encourage
the development of approaches to speech-based cognitive as-
sessment which generalise across languages. We illustrate it by
presenting baseline prediction models that employ language-
agnostic and comparable features for diagnosis and cognitive
test score prediction.
Index Terms: Speech biomarkers, neurodegenerative diseases,
cognitive assessment, computational paralinguistics

1. Introduction
Cognitive problems, such as memory loss, speech and language
impairment, and reasoning difficulties, occur frequently among
older adults and often precede the onset of dementia syndromes.
Due to the high prevalence of dementia and the costs this im-
plies to health systems worldwide [1], research into cognitive
impairment for the purposes of dementia prevention and early
detection has become a priority in healthcare. There is a need
for cost-effective and scalable methods for assessment of cog-
nition and detection of impairment, from its most subtle forms
to severe manifestations of dementia. Speech is an easily col-
lectable behavioural signal which reflects cognitive function,
and therefore could potentially serve as a digital biomarker of
cognitive function, presenting a unique opportunity for applica-
tion of speech technology [2].

We aim to explore speech as a marker of cognition in a
global health context by investigating its application to mod-
elling cognitive health indicators in two major languages,
namely, Chinese and English. In this paper, we focus on pre-
diction of cognitive test scores and diagnosis of mild cognitive
impairment (MCI) in older speakers of Chinese and English, us-
ing samples of connected speech. We are particularly interested
in investigating approaches that are language independent or
build on comparable features. To this end, we have created, and
are sharing with the research community, a data set comprising
recorded speech from study participants carrying out picture de-
scription tasks along with clinical and neuropsychological test
data.

This data set can be used as a benchmark for speech pro-
cessing and machine learning tasks that are relevant to the detec-
tion of cognitive decline through analysis of connected speech
data. We hope that this new resource will stimulate research
on speech biomarkers among members of the speech, signal
processing, machine learning, natural language processing and
biomedical research communities, enabling them to test exist-
ing methods or develop novel approaches on a new, standard-
ised dataset which will remain available to the community for
future research and replication of results.

2. Background
The field of speech-based approaches to detecting cognitive de-
cline has grown considerably over the last two decades, with
a major focus on detecting dementia or Alzheimer’s dementia
(AD), in comparison to a control (normal cognition, NC) group
[2]. A smaller proportion of studies has focused on MCI de-
tection. Most available studies, however, either report relatively
high levels of accuracy but on imbalanced datasets (where accu-
racy is a biased measure), or lower levels of accuracy on more
balanced datasets. Mirzaei et al. [3] report 62%, 3-way classi-
fication accuracy discriminating HC, MCI, and AD on a class-
balanced dataset. Many studies report accuracy figures without
class-balance, which can lead to findings that are difficult to in-
terpret and compare. For example, Nasrolahzadeh et al. [4]
report 97.71%, 4-way classification accuracy in a highly imbal-
anced dataset while Mirheidari et al. [5] reported 62%, 4-way
classification accuracy in a more balanced dataset.

Clinical tests, such as the mini-mental state examination
(MMSE), are often part of these studies as a mere data descrip-
tor, but rarely used in speech-based prediction. Some studies
[6, 7, 8, 9] have used MMSE results as a baseline for classi-
fication, against which to compare the speech-based classifier,
but very few available studies go beyond classification and use
speech-based approaches to predict MMSE scores, or similar
cognitive tests.

It should be noted that MMSE has been criticised for low
discrimination, especially in preclinical dementia [10]. There
has been a shift of focus toward prediction of cognitive scores
in recent years. For instance, [11] extracted a set of lexical-
semantic features known to be affected in dementia from pic-
ture description tasks. They used these features to build a pre-
dictive model able to explain 51% of the variance of cognitive
scores (3MS) at the time of speech collection, and 56% of cog-
nitive scores in a 12-month follow-up. Another study used par-
ticipants’ recall of a childhood memory to predict their cogni-
tive scores, and explained up to 16.52% variance with a covari-
ance statistic test [12]. Artificial intelligence approaches have
also been published, such as [13], which used BERT to predict



MMSE scores from denoised speech recordings from picture
description tasks and report a root mean squared error (RMSE)
of 3.76. Another study using speech samples from picture de-
scriptions, but from a class, gender and age balanced dataset
reported that acoustic features alone predict MMSE scores with
a mean absolute error (MAE) of 5.66 and an R2 of 0.125, with
a linear regression analysis, which improved by adding age, sex
and years of education to the model, yielding a MAE = 4.97 and
R2 = 0.261 [14].

Speech data are most often obtained from tasks embedded
in neuropsychological batteries (e.g. verbal fluency, story re-
call, picture description). This is the case in our study, where for
both English and Chinese, speech samples come from partici-
pants’ picture description tasks conducted as part of cognitive
assessment.

A multilingual study on the AZTIAHO database reported a
range of accuracy between 60% and 93.79%, using only ad hoc
acoustic features. AZTIAHO contains speech samples in En-
glish, French, Spanish, Catalan, Basque, Chinese, Arabian, and
Portuguese, but it is a small dataset (40 participants) remarkably
imbalanced in terms of age (25% of their control group is be-
tween 20 and 60 years old, whilst 100% of their dementia group
is over 60 years old). It also presents a class imbalance, since
there are 20 participants in each group, but the control group is
homogeneous whereas the AD group with three different sever-
ity stages, with 4, 10 and 6 participants respectively [15].

Haider et al. [16] also used acoustic features only, and
reported 78.7% accuracy generated from standardised feature
sets that had been developed for computational paralinguistics.
Their dataset is much larger (164 participants) and it is balanced
for class, age and gender. In an imbalanced version of the same
dataset, and using text-based features only, [17] obtained 85.4%
accuracy. Neither of these studies addresses multilingualism.

Fraser et al. [18] used English and Swedish speech sam-
ples, also generated through picture description tasks, and word
embeddings to train and test models to classify MCI and NC
subjects in both languages. They obtained classification accu-
racy of 63% for English and 72% for Swedish. More recently,SL: Hi Sofia, here

you had English
and French, but
the Fraser paper
you referred to
was English and
Swedish. Per-
haps you had a
different paper in
mind?

a signal processing grand challenge addressed the issue of gen-
eralising speech-based predictive models across two languages:
Greek and English [19]. Differently from our experimental set-
ting, theirs involved training of models in one language and test-
ing on another. The top performing systems’ had classification
accuracy between 69% to 87% (AD vs NC), and MMSE score
prediction errors RMSE between 4.79 and 3.72.

3. Data
The data set consists of Chinese and English speech samples
collected while the speakers participated in picture description
tasks conducted as part of cognitive assessment.

English-speaking participants were recruited from a com-
munity in the United States through print and online advertise-
ments targeted to adults aged 60-90 with memory concerns.
Eligible participants were at least 60 years old, spoke and
understood English, had adequate hearing and vision to par-
ticipate in a telehealth session, were stable on or not taking
nootropic medications, and had a negative self-reported history
of major psychiatric disorder or other medical disorder/illness
that could cause cognitive decline (e.g., traumatic brain in-
jury). Participants were classified as either neurotypical (NC)
or MCI. To be classified as MCI, a neuropsychologist deter-
mined that participants met the following National Institute on
Aging-Alzheimer’s Association (NIA-AA) criteria [20]: (a)

self-reported a decline in cognition, (b) documented impairment
in memory (produced a score greater than or equal to -1.5 SD
on an objective measure), c) preserved functional independence
(obtained a global score of less than or equal to 0.5 on the Clin-
ical Dementia Rating Scale [21] - interview with a loved one),
and (d) not demented. An Institutional Review Board approved
data collection.

After providing informed consent, participants completed
an assessment session via Zoom that lasted approximately 90
minutes. During the tele-session, participants completed the
discourse protocol and cognitive-linguistic battery with an as-
sessor. The discourse protocol tasks relevant to this project
are: 1) the ”Cookie Theft” picture description task [22] elicited
with the prompt, ”Please tell me everything you see going on
in this picture”; 2) the ”Cat Rescue” picture [23] elicited with
the prompt, ”Tell me a story with a beginning, a middle, and
an end”; and 3) the Norman Rockwell print ”Coming and Go-
ing” [24] elicited with the same prompt as the Cat Rescue task.
The cognitive-linguistic battery included the MoCA [25]. The
assessor used a standardized script and materials to deliver the
discourse protocol and audio-recorded the administration using
high-quality audio recording guidelines. The study data col-
lection was managed using Research Electronic Data Capture
[26, 27] tools.

In the Taiwanese corpus, inclusion criteria were partici-
pants between 60 and 90 years old, with at least six years of
education, and no history of neurological or psychiatric disor-
ders. The neurologist evaluated participants with MCI accord-
ing to the NIA-AA criteria. The evaluation was based on their
CDR scores, which had a global score of 0.5, and brain mag-
netic resonance imaging (MRI) conducted within two years be-
fore recruitment, which showed atrophy in regions related to
Alzheimer’s disease.

Picture description tasks were employed to elicit connected
speech and recorded the responses using a digital recorder. Par-
ticipants described a set of three pictures depicting Taiwanese
culture, with the instruction to report everything they observed
in each one. The evaluators refrained from providing feedback
but encouraged participants to elaborate if their responses were
insufficient. The speech data was transcribed manually, subse-
quently. The transcribers were unaware of the clinical diagnosis
and only transcribed the words spoken by the participants. The
remaining words were segmented into utterances and annotated
as pauses, filled pauses (such as “uh,” “um,” “er,” and “ah”), rep-
etitions, and revisions. Punctuation is limited to periods, excla-
mation marks and question marks at the end of a sentence, and
slash, centered dot, commas within a sentence. Correct mis-
pronounced or orally used words to their written form. Filled
pauses were not considered words, and multiple attempts to say
the same word were only recorded once (e.g., “They brew-brew
a pot of tea” was recorded as “They brew a pot of tea”). Words
were grouped by part of speech and tagged using the Chinese
Knowledge and Information Processing Lab1.

Ethical approval was obtained from the Institutional Review
Board of Cardinal Tien Hospital in Taipei, Taiwan (CTH-110-
3-8-041), and all participants signed a written informed consent
document. SL: Anonymise

this for submis-
sionThe full data set (English and Chinese) was age and gender

balanced to avoid bias in modelling. We ensured that the speech
recordings met suitable audio quality standards for processing.
Propensity score matching [28] was employed to generate an
unbiased training set. The data set was matched to scores de-

1https://github.com/ckiplab



fined in terms of the probability of an instance being treated
as AD given covariates age and sex estimated through logis-
tic regression, and matching instances were selected. All stan-
dardised mean differences for the covariates, standardised mean
differences for squares, and two-way interactions between co-
variates were well below 0.1, indicating that the resulting set
was adequately balanced.

The training set contained both Chinese and English sam-
ples with three picture descriptions per participant. The test
set comprised recordings from different participants, with the
same mix of languages and picture descriptions. Basic descrip-
tive statistics of training and test set are shown in Tables 1 and
2. Overall, there are 507 speech samples (picture description
recordings) with total duration of 528 minutes, ratio of training
to test samples is just over 3:1. The data set has been made
available to the wider research community via DementiaBank
(https://dementia.talkbank.org/).

Table 1: Training set description

MCI
Age 73.36 (SD 6.14, range 61-87)
Men 39.2% (n = 87)
Women 60.8% (n = 135)
MMSE 25.84 (SD 3.73, range 13-30)
Duration 58.92 (SD 36.61, range 12.7-240.9)

NC
Age 71.85 (SD 6.65, range 61-87)
Men 38.2% (n = 63)
Women 61.8% (n = 102)
MMSE 29.07 (SD 1.08, range 25-30)
Duration 63.07 (SD 33.85, range 10.2-209.6)

Table 2: Test set description

MCI
Age 77.90 (SD 9.15, range 59-91)
Male 52.4% (n = 33)
Female 47.6% (n = 30)
MMSE 25.86 (SD 3.27, range 18-30)
Duration 72.33 (SD 46.94, range 20.46-257.65)

MCI
Age 67.68 (SD 4.71, range 62-82)
Male 36.8% (n = 21)
Female 63.2% (n = 36)
MMSE 29.05 (SD 1.06, range 26-30)
Duration 63.47 (SD 48.55, range 10.7-253.471)

4. Cognitive assessment tasks
The benchmark presented in this paper encompasses the follow-
ing tasks: (a) a classification task, where we aim to create mod-
els to distinguish NC speech from MCI speech, and (b) a cog-
nitive test score prediction (regression) task, where we create
models to infer the subject’s MMSE scores based on connected
(spontaneous) speech data.

The MCI classification task will be evaluated through speci-
ficity (σ), sensitivity (ρ) and F1 scores for the MCI category.
These metrics will be computed as follows: σ = TN

TN+FP
,

F1 = 2πρ
π+ρ

, where π = TP
TP+FP

, ρ = TP
TP+FN

, N is the num-
ber of patients, TP is the number of true positives, TN is the

number of true negatives, FP is the number of false positives
and FN the number of false negatives. The balanced accuracy
metric (unweighted average recall, UAR) will be used for the
overall ranking of this task’s results. It is defined as follows:
UAR = σ+ρ

2
.

The MMSE regression task will be assessed using the

RMSE, defined as RMSE =

√∑N
i=1(ŷi−yi)

2

N
, where ŷ is the

predicted MMSE score, y is the patient’s actual MMSE score,
and ȳ is the mean score.

5. Modelling approach
As our goal is to explore models that generalise across lan-
guages, we aimed to create a single predictive model for each
task which encompassed features extracted from both lan-
guages. Thus, the general architectures of our classification and
regression systems is shown in Figure 1, where comparable fea-
tures extracted from both languages are combined into a single
predictive model.

5.1. Acoustic Feature extraction

The acoustic feature extraction procedure aimed to identify
speech features that could generalise well across the two lan-
guages. We tested two different approaches: a traditional fea-
ture engineering approach, with a feature set that has been found
useful in emotion recognition and other computational paralin-
guistics tasks (eGeMAPs), and a self-supervised feature learn-
ing approach (wav2vec). These are described below:

eGeMAPs: this feature set comprises the F0 semitone,
loudness, spectral flux, MFCC, jitter, shimmer, F1, F2, F3, al-
pha ratio, Hammarberg index, and slope V0 features, along with
numerous statistical functions applied to these features. This re-
sults in a total of 88 features for every audio recording [29].

wav2vec: we used the pre-trained model wav2vec2 and ex-
tracted features directly from raw audio [30]. To balance the du-
ration of all audio recordings, we zero-pad the audio recordings
for feature extraction. Next, we applied a dropout layer, fol-
lowed by a feature aggregation layer and another dropout layer.
For dimensionality reduction, we used MaxPool1d layer (with
a size of 42000, and a stride of 10,000). The result was used
as input features for the multilayer perceptron (MLP) models.
This results in 512 features per audio recording.

SL: We should
also try adding
comparable lan-
guage features
to these mod-
els. Perhaps this
will improve
the classifica-
tion baselines.
The regression
baseline seems
quite strong with
wav2vec alone
though.

5.2. Multi-layer of Perceptron

MLP models, with the Adam solver, were employed for both
classification and regression. We set α = 10−4, hidden layers
of sizes 55, 160,160 and 55, and a maximum of 10,000 itera-
tions. In both cases, we used 20-fold cross-validation for model
assessment.

SL: We need to
add (as per Inter-
speech instruc-
tions: “A descrip-
tion of the com-
puting infrastruc-
ture used and the
average runtime
for each model
or algorithm (e.g.
training, inference
etc), and the num-
ber of parameters
in each model.

6. Results
For the classification (diagnostic) task , our model achieved
a test-data UAR of 59.18% while fusing the wav2vec and
eGeMAPs features. The full set of results is reported in Table 3.
The baseline result for this task is 59.18% UAR obtained on test
data with sensitivity of 0.5873, Specificity of 0.5965, precision
of 0.6167, Negative Predictive Value of 0.5667, False Positive
Rate of 0.4035, False Discovery Rate of 0.3833, False Nega-
tive Rate of 0.4127, Accuracy of 0.5917, F1 Score of 0.6016

2https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec large.pt
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Figure 1: General architecture for multilingual cognitive assessment based on recorded speech.

Figure 2: fusion test results

and Matthews Correlation Coefficient of 0.1836. The confusion
matrix is shown in Figure 2.SL: The problem

with these results
is that if we were
to choose a model
purely based on
CV we would
have chosen the
wav2vec, which
clearly overfits,
giving a test set
UAR of just over
46%. We need to
address this.

Table 3: Summary of results for the classification tasks (in %
UAR) and the MMSE regression task (in RMSE). The features
were validated in 20 fold Cross-Validation (CV) using MLP.

Feature eGeMAPs wa2vec Fusion

Task 1 CV 49.56 61.6 50.94
Test 44.95 46.05 59.18

Task 2 CV 13.18 3.70 13.14
Test 17.00 4.48 13.28

For the regression task, wa2vec features on their own
proved to be the most effective features, with RMSE scores of
3.70 (r=0.280) and 4.48 (r=-0.136), for validation and test sets
respectively.
FASIH: add language features. Run bootstrap to get confi-
dence intervals.

7. Discussion
The present data set is considerably less heterogeneous in terms
of diagnoses and cognitive test scores than most public data
sets used to data in research on predictive models for cogni-
tive function assessment, including the few existing cross- and
multi-lingual speech data sets used in this area [19, 18]. This
makes the learning tasks defined in this paper harder, as they
need to discriminate over a narrower range of values. However,
the performance of our baseline models is comparable to those
models.

A distinctive characteristic of our approach is the use
of languages-agnostic and comparable languages-specific fea-
tures.SL: This is not

quite true yet, as
we haven’t added
the comparable
linguistic features
yet.

ALL: here we will discuss our results, the limitations of
the data and approaches, etc.
Fasih: can you add some comments about the feature sets,
and in particular about the notably superior performance of
wav2vec over the alternatives in MMSE prediction?

8. Conclusion
This paper presented a novel benchmark data set for the devel-
opment and testing of models for cognitive assessment through
automatic analysis of connected speech. In particular, it defined
learning tasks for diagnosis of MCI and prediction of MMSE.
A general processing architecture for cross-lingual cognitive as-
sessment was proposed which encompassed language-agnostic
acoustic features and comparable linguistic features in a sin-
gle predictive model for English and Chinese speech. Baseline
models illustrated these predictive tasks and approach to fea-
ture extraction. The data and metadata have been made avail-
able to the research community. With the increasing interest by
the medical community in speech biomarkers as a convenient
and cost-effective approach to early detection and monitoring
of cognitive problems, we expect this new resource will stimu-
late further research in the little explored field of cross-lingual
modelling of cognitive function. SL: Please feel

free add to and
revise this section.
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