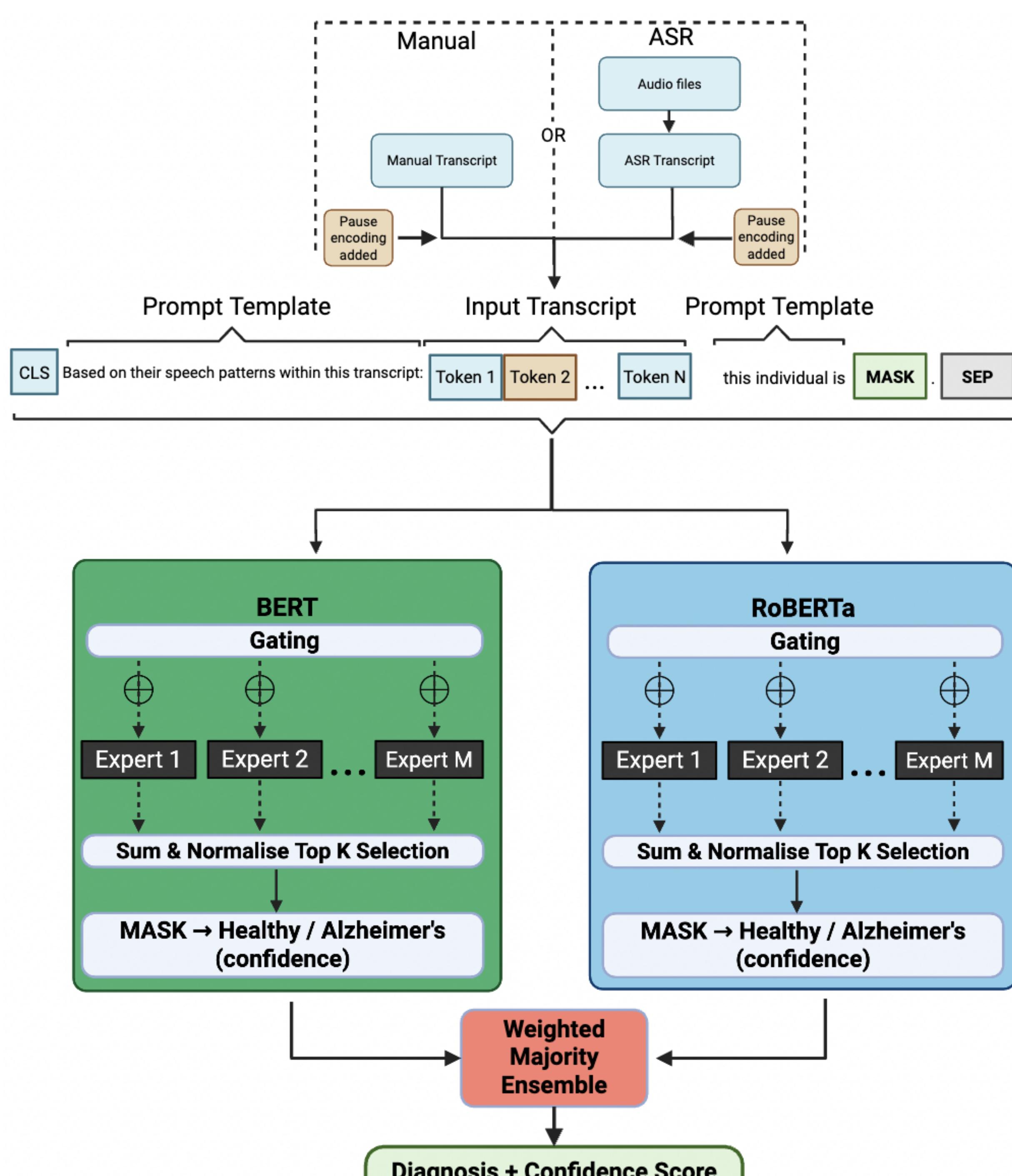


Figure: Typical progression of AD compared to normal cognitive ageing with potential target classification boundary.

2. Datasets

- **DementiaBank Pitt Corpus:** 33 hours of audio and transcripts from 397 participants (104 controls, 208 AD, 85 unknown), collected via the TalkBank project [1]. Recordings are primarily Cookie Theft picture descriptions, widely used for speech-based dementia research.
- **ADReSS Challenge 2020 dataset:** A balanced subset of DementiaBank (78 AD, 78 controls) with demographic matching [2]. Provides standardised audio and transcripts designed for benchmarking AD detection models.

3. Approach



- A hybrid approach combining prompt-based fine-tuning and Mixture-of-Experts (MoE) using BERT, RoBERTa, and Whisper for ASR
- **Pause Encoding:** Inject medium/long pause features into prompts.
- **Prompt Engineering:** Frame diagnosis as a masked LM with dynamic templates and prompt positions.
- **Ensemble Strategies:** Fuse model and prompt variants via weighted majority voting.
- **ASR analysis:** Compare results of Whisper vs. manual transcriptions.
- **MoE Attention:** Gated attention selects specialised expert projections per segment.

1. Introduction

Alzheimer's Dementia (AD) is a neurodegenerative disorder defined by the accumulation of amyloid plaques and neurofibrillary tangles in the brain which cause cognitive impairment.

- **Motivation**
 - ▷ Early and accurate diagnosis is increasingly important as new clinical interventions emerge and recruitment to clinical trials remains challenging.
 - ▷ Subtle linguistic and prosodic changes in speech can emerge early and serve as accessible biomarkers for detection.
- **Objective**
 - ▷ Improve AD detection accuracy on manual and ASR (Automatic Speech Recognition) transcripts derived from spontaneous speech samples.
 - ▷ Increase interpretability of the model, addressing a key barrier to the field's adoption in real-world settings.

4. Feature Analysis

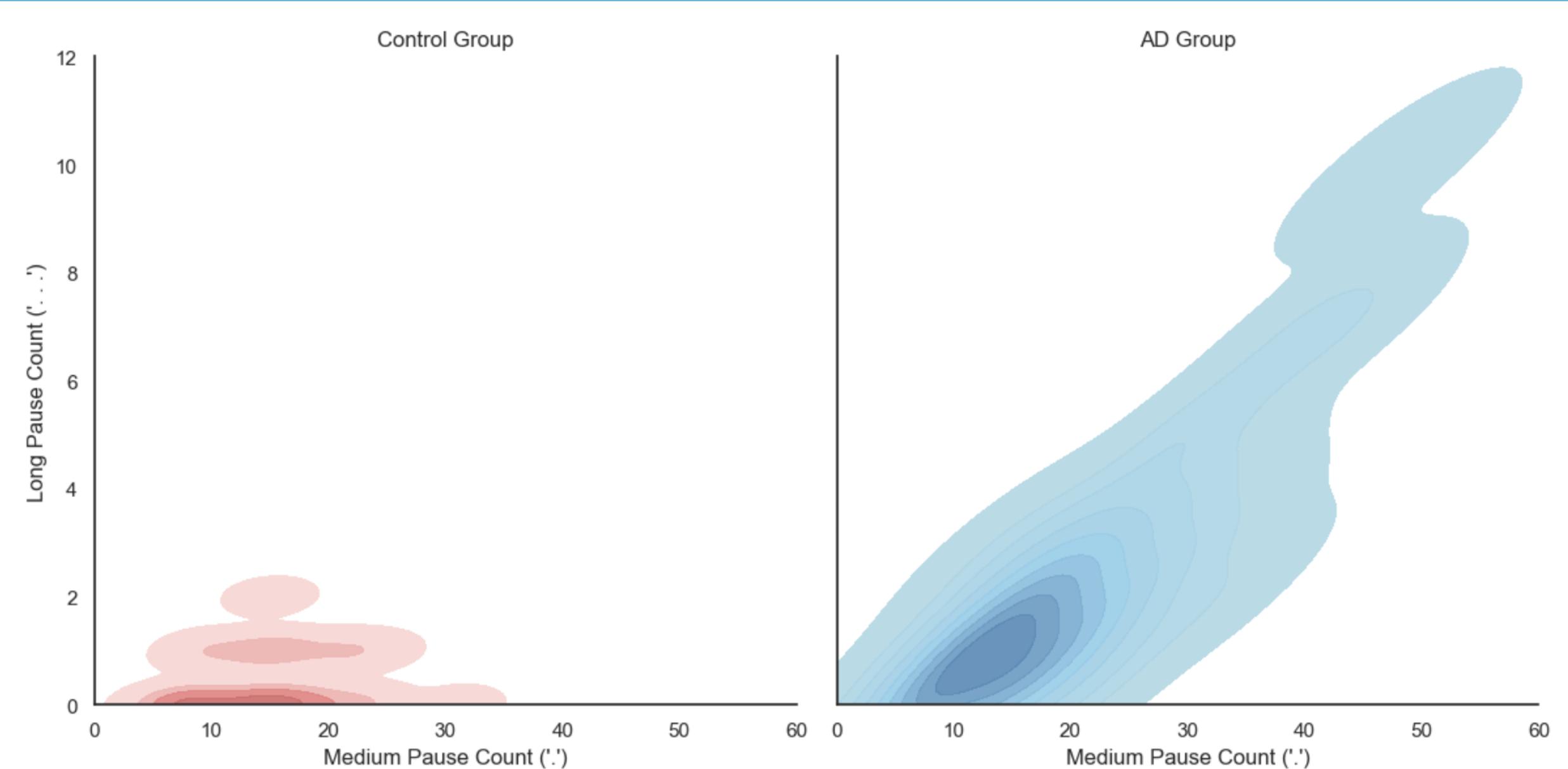


Figure: Relationship between frequency of medium and long Pauses present per transcript. Modelled by a GMMs for Control (red) and AD (blue) groups from ADDReSS Dataset [1].

- Other features (e.g., filler words, speech rate, syntax) showed subtler patterns, making deep learning approaches effective for modelling the complex classification boundary.

5. Key Results

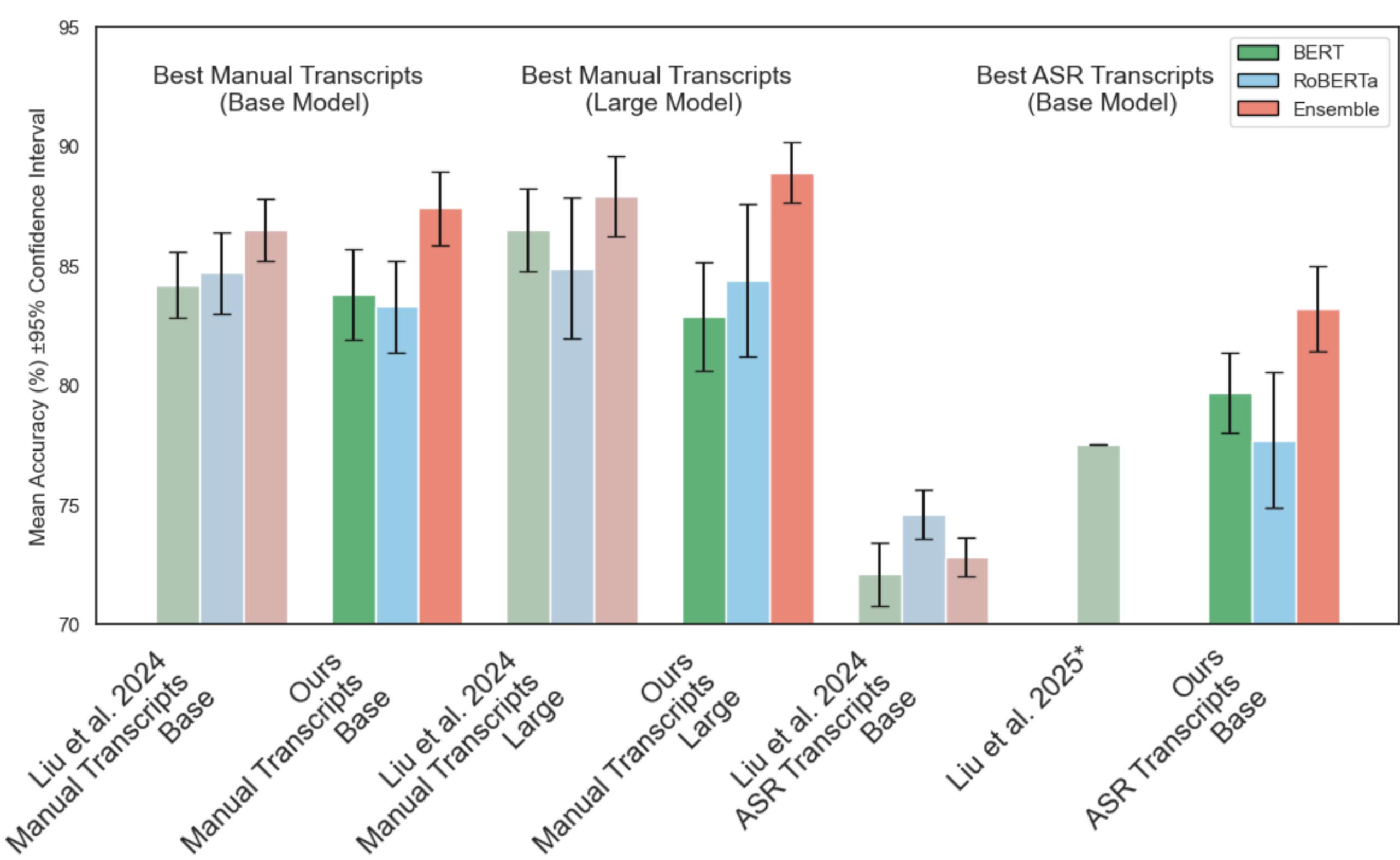


Figure: Comparing mean model accuracies $\pm 95\%$ confidence intervals obtained and reported in [3] and [4].

- Improved accuracy
- Interpretability: The regularised MoE model shows clear expert specialisation, making its decisions more interpretable.
 - ▷ Expert 1: syntactic structure
 - ▷ Expert 2: tokens relevant to AD: long pauses, grammatical connectors
 - ▷ Expert 3: spatially linked words
 - ▷ Expert 4: descriptive nouns and verbs: more common in control

6. Conclusions

- Improved AD classification accuracy with a Whisper + LLM architecture.
- MoE adds interpretability via specialised expert pathways.

7. References

- [1] J. T. Becker, et al. "The natural history of Alzheimer's disease: description of study cohort and accuracy of diagnosis." *Archives of neurology* 51.6 (1994): 585-594.
- [2] S. Luz, et al. "Alzheimer's dementia recognition through spontaneous speech." *Frontiers in computer science* 3 (2021): 780169.
- [3] T. Liu, et al. "Leveraging Prompt Learning and Pause Encoding for Alzheimer's Disease Detection." *2024 IEEE 14th ISCSLP*.
- [4] T. Liu, et al. "Beyond Manual Transcripts: The Potential of Automated Speech Recognition Errors in Improving Alzheimer's Disease Detection." *arXiv preprint arXiv:2505.19448* (2025).