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. Introduction

Alzheimer's Dementia (AD) is a neurodegenerative disorder defined by the accumula-
tion of amyloid plaques and neurofibrillary tangles in the brain which cause cognitive

L
---
]
-~
-
-
- ~
_______
= -
-
-
-
-
-
-
-
-
-
-
-
-
-

Normal Aging

Impairment.
- » Motivation
E mpaiment /\Target > Early and accurate diagnosis is increasingly |mport.ant as ne.w clinical |
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i ' > Improve AD detection accuracy on manual and ASR (Automatic Speech
Years / Decades Recognition) transcripts derived from spontaneous speech samples.

> |ncrease interpretability of the model, addressing a key barrier to the field's

Figure: Typical progression of AD compared to normal cognitive ageing with potential o _
adoption in real-world settings.

target classification boundary.

2. Datasets

» DementiaBank Pitt Corpus: 33 hours of audio and transcripts from 2
397 participants (104 controls, 208 AD, 85 unknown), collected via the
TalkBank project [1]. Recordings are primarily Cookie Theft picture
descriptions, widely used for speech-based dementia research.

» ADReSS Challenge 2020 dataset: A balanced subset of
DementiaBank (78 AD, 78 controls) with demographic matching [2].
Provides standardised audio and transcripts designed for benchmarking
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Figure: Comparing mean model accuracies +95% confidence intervals obtained and reported

in [3] and [4].

( Diagnosis + Confidence Score ) » |Improved accuracy

» A hybrid approach combining prompt-based fine-tuning and » Interpretability: The regularised MoE model shows clear expert

Mixture-of-Experts (MoE) using BERT, RoBERTa, and Whisper for ASR specialisation, making its decisions more interpretable.

> Pause Encoding: Inject medium/long pause features into prompts. > Expert 1: syntactic structure
> Prompt Engineering: Frame diagnosis as a masked LM with > Expert 2: tokens relevant to AD: long pauses, grammatical connectors

dynamic templates and prompt positions. > Expert 3: spatia.lly. linked words |
> Ensemble Strategies: Fuse model and prompt variants via weighted > Expert 4: descriptive nouns and verbs: more common in control

majority voting. :
: . . 6. Conclusions
> ASR analysis: Compare results of Whisper vs. manual transcriptions.

» Improved AD classification accuracy with a Whisper + LLM architecture.

> MoE Attention: Gated attention selects specialised expert
projections per segment.

» Mok adds interpretability via specialised expert pathways.
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