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Abstract—Child-Directed-Speech (CDS) is associated 
with raised fundamental frequency (f0).  In a previous 
paper we claimed that f0 could be extracted from 500 
hours of audio recordings using soft computing 
techniques and that mothers, but not fathers, increase f0 
in CDS.  Using an audio corpus more than ten times 
larger, this paper reports that fathers do raise f0 but not 
as much as mothers. The principle finding is a proof of 
concept: 1) very large speech corpora, unavailable until 
recently, can be processed using soft computing 
techniques; 2) the use of very large corpora may force 
revisions of conclusions based on smaller datasets. 
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I. INTRODUCTION 
 

 The 1950s, 1960s, and 1970s, saw the start of 
serious research into child language development (cf. 
[1]-[4]).  Data collection, whether through field obser-
vation or controlled laboratory experiments, was time-
consuming and expensive.  In both cases, the sample 
sizes were small and dependent upon trained tran-
scribers, who erred and brought their own biases to the 
observations. In addition, laboratory investigation 
raised questions of ecological validity:  how can we be 
sure that what we find in the laboratory has not been 
altered by the setting?  Cost places limits on both 
approaches.  In the mid-1990s, for example, Hart and 
Risley [5] argued that the number of hours of con-
versation parents have with their children is the 
strongest predictor of future academic success. The 
constraints under which Hart and Risley worked 
would be familiar to just about any developmental 
psychologist or field linguist, namely the expense of 
collecting, transcribing, and classifying data.  Hart and 
Risley studied only 42 children for an hour each 
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month over three years.  
 
 In the mid-1950s, at the same time that the cog-
nitive revolution was encouraging researchers to view 
language computationally, work began on the use of 
computers to transcribe speech, a field that has come 
to be known as automatic speech recognition (ASR).   
If soft computing can be construed as addressing that 
set of problems whose solutions are probabilistic in 
nature, ASR is one of its genuine successes, with error 
rates for large vocabulary speech recognition systems 
dropping dramatically since the introduction of 
Bayesian inference techniques in the 1990s and, most 
recently, neural networks [6].    
 
 The LENA Research Foundation (Boulder, 
Colorado, USA), by applying modern speech pro-
cessing to day-long acoustic recordings of children at 
home, has made it possible to take an ethnographic 
approach to language data collection. We noted in a 
preliminary paper [7, p. 1349] that our data consisted 
of “491.2 hours of recorded speech, a volume that 
would have been difficult to manage even a decade 
ago.”  The data set for the current study comprises over 
7,000 hours of recorded speech, a volume that would 
have been not just been difficult to manage a decade 
ago, but impossible to conceive.   

 
 In this paper, we use the phenomenon of child-
directed speech (CDS) to illustrate the extraordinary 
advances in soft-computing.  CDS is the well-known 
manner in which mothers (the choice of gender is 
intentional) speak with their infants and toddlers.  
Though CDS can be characterized in many ways, we 
confine ourselves to a single parameter, the parents’ 
vocal fundamental frequency (f0), a parameter that can 
be extracted from the speech stream and analyzed by 
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computer [8]. This last is important, since it implies an 
objective measure rather than fuzzier impressions of, 
for example, reduced syntactic complexity when 
speaking with children.  We ask a single question: does 
the CDS of fathers, using the proxy of raised f0, differ 
from that of mothers?  In answering this question, we 
show that soft computing techniques can be used to 
process over 7,000 hours of recorded speech and 
nearly 4,000,000 individual conversational instances 
from sixty-two families.  Further, we show the value 
of large-corpora linguistic research, since the results 
reported here using just over 7,000 hours of speech 
vary from the same experiment on just under 500 
hours of speech drawn from the same corpora and 
reported in [7]. 
 
II. CHILD LANGUAGE RESEARCH, AND LENA 

 
 Samples of children’s speech are usually collected 
in the laboratory or during home visits. Researchers 
are in a double bind.  If the recordings are made in the 
laboratory under formal scientific protocols, the 
samples are necessarily small and decontextualized, 
by definition.  On other hand, recordings made in the 
home are costly to obtain. LENA was developed to 
solve the problems of cost, ecological validity, and 
bias by removing, through automatic speech pro-
cessing, the human component from the data 
collection and coding process. 

 
 Since all readers may not be familiar with ASR 
and since we argue that the adoption of ASR has 
changed the landscape of child language research, we 
offer a short introduction to ASR.  For a more com-
plete introduction, see [9]-[12].  Speech is the per-
turbation of air by the human vocal apparatus.   
Modern ASR treats speech as a noisy version of an 
idealized speech string intended by the speaker.  ASR 
systems produce a probabilistic mapping from the 
acoustic signal to the speech string.  They do this 
through familiar Bayesian inference techniques.   If we 
let O represent a sequence of acoustic observations, 
and S a sequence of words from a language L, we can 
state the speech recognition problem as a conditional 
probability:  

 
G(S) = max(P(S|O)) s.t. S L    (1) 

 
Equation (1) is read, “G(S) is the most probable word 
string, among all candidate word strings, S, given 
acoustic observation O and such that S is a legal string 
in the language.”   Invoking Bayes’ rule this becomes: 
 

G(S) = s.t. S L   (2) 
 

Since the acoustic observation does not change for 
candidate word strings, equation (2) becomes: 
 

G(S) = max(P(O|S) * P(S) s.t. S L    (3) 
 
 In the language of ASR, the first term on the right-
hand side—the likelihood—is known as the acoustic 
model.  The second term—the prior—is known as the 
language model.  Modern speech recognizers, use 
standard digital signal processing techniques to extract 
feature vectors from periodic samples of an acoustic 
waveform.  These are probabilistically mapped to 
speech units, usually triphones, a term that deserves 
some explanation.  Each human language has its own 
inventory of phones, where a phone is a distinct sound. 
A typical English phone is the initial p in ‘pan,’ known 
as a bilabial stop and produced by closing the lips, 
adding pressure to the closed oral cavity, then re-
leasing the increased air pressure by opening the lips.  
A triphone is a phone with its left and right sub-
phonetic contexts.  Its use is an attempt to model co-
articulation, the property exhibited in the English 
vowel eh, for example, which could produce a 
somewhat different set of acoustic features, depending 
on whether it appears in wed, yell, or Ben [10].  Taken 
together, the feature extraction and subsequent 
statistical mapping, allow us to express the likelihood 
of an acoustic observation given a word string.    
 
 At a slightly higher level, the probabilistic re-
lationship between something that is observed—here 
an acoustic signal—and something not observed—
here a word string—can be described using hidden 
Markov models (HMM).  The HMM, as much as any-
thing else, has been responsible for the success of ASR 
in the past two to three decades [10]-[11].   Viewed 
this way, automatic speech recognition is an instance 
of generalized classification: place subcomponents of 
the acoustic signal into the word (or phone or 
subphone) bucket where they best fit.  As we will 
shortly see, the LENA system classifies speech signals 
but, instead of classifying them into words, it groups 
them by conversational role in the language of infants, 
toddlers, and their parents.  
 

Using LENA and software we developed, we 
have collected, labeled, and analyzed over 7,000 hours 
of speech data from infants, toddlers, and their parents.   
There are two components to LENA: an acoustic 
recording device and software that performs digital 
signal processing and classification (i.e., labeling) 
tasks.  The LENA recorder weighs less than 60 grams, 
holds up to 16 hours of audio recordings, and is 
designed to be worn in a specialized vest.  LENA uses 
techniques common to most ASR systems until the 
very recent introduction of neural networks [6], but 
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with a crucial difference.  Audio streams are mapped 
not to words, as in standard ASR, but to over sixty 
labels that indicate the source of the sound, labels such 
as key child, and adult male near [13]-[14].  

 
The environment in which speech is collected can 

dramatically affect accuracy.  Ambient noise, an 
unconstrained vocabulary, conversational as opposed 
to read speech—all characteristics of the environments 
in which LENA is intended to be used—reduce 
classification accuracy.  Several studies show a mean 
agreement of 76.25% between LENA and human 
transcribers [15]-[17].  This is consistent with standard 
ASR systems [9], [12].  More recently, a four-
alternative, forced-choice task with 24 judges and 
2,340 segments of LENA-labeled speech data found 
an agreement between judges and LENA of 79%, 
again, consistent with standard ASR systems [18]-
[19].   

 
III. CHILD-DIRECTED SPEECH 

 
Child-Directed Speech (CDS), or motherese, can 

be described syntactically (reduced complexity), 
phonologically (hyperarticulation), lexically (special-
ized vocabulary), and acoustically (raised fundamental 
frequency).  CDS has been attested in Japanese and 
several European languages.  One study showed that 
the forty-eight infant subjects preferred the speech 
register commonly associated with motherese over 
standard speech.  Another demonstrated that infants 
prefer the distinctive prosody of motherese and that 
this distinctive prosody corresponds to clausal bound-
aries.  These and other results have led some research-
ers to argue that CDS plays a role in language acquisi-
tion [20]-[22].   Indeed, at least one study implicates 
CDS in the evolution of language itself [23].    

 
Since the break-through research of Gunnar Fant 

in the 1960s, linguists have modeled the vocal tract as 
an idealized acoustic filter that modulates the wave-
forms generated by vocal fold vibrations.  These vibra-
tions produce complex and periodic waveforms that 
can be decomposed through Fourier analysis.  The 
lowest frequency component of the vocal waveform is 
called fundamental frequency or f0.  Said another way, 
f0 is the first harmonic of the speech signal.  The term 
pitch usually refers to what the listener perceives as 
opposed to fundamental frequency, which is what the 
talker produces.  Since the two are correlated [8], we 
use the terms f0 and pitch interchangeably.  Here, we 
use fundamental frequency as the dependent measure 
to describe motherese.   It is important to point out that 
motherese is not our primary interest, nor is funda-
mental frequency.  We might just have easily extracted 
phrase duration, amplitude, f2, or any among many 

acoustic correlates of behaviors.   This paper is a proof 
of concept.  It shows that soft computing techniques 
along with very large data collections can be used to 
solve problems that have bedeviled speech scientists 
for forty years, namely ecological validity and the cost 
of data collection and coding.  Because our speech data 
were collected using inexpensive digital recording and 
storage devices and analyzed using automatic speech 
processing techniques, we have examined 7000+ 
hours of speech as opposed to, for example, the nine 
hours reported in [24].   
 

IV. MATERIALS AND METHODS 
 

Though CDS can be described in multiple ways,  
we have confined our investigation to raised pitch, 
because it is one of the most easily recognized features 
of CDS, but most importantly, because pitch can be 
extracted from audio files using a pitch extraction 
algorithm and analyzed computationally [8], [25].  In 
a word, the determination of raised pitch is objective, 
in a way that other language features such as syntax 
can never be. We can now state the null hypotheses 
with precision: Mothers and fathers will produce 
higher mean f0 during CDS than during non-CDS. 

 
To investigate this hypothesis, over 7,000 hours 

of intra-family speech were recorded and labeled using 
LENA, and stored in a conventional Linux file system.  
Specially constructed software traversed the file 
system, building nearly four million 1-2 second 
instances of conversation as WAV files. Adult speech 
was distinguished from child speech by context.  A 
speech segment, whose source LENA determined to 
be an adult, was considered adult speech if it was 
found adjacent to another adult segment;  it was 
considered to be CDS if it was found adjacent to a 
segment whose source LENA determined to be a child.  
The f0 of each adult participating in a conversation was 
extracted using RAPT [25]-[26] and analyzed with the 
specially constructed software mentioned above.   
Table I shows the study details.  
 

V. RESULTS 
 

 The results of the study are shown in Tables II, III 
and IV, and graphically in Figs. 1 and 2.  As expected,   
mean f0 values for mothers and fathers were consistent 
with known values for adult women and men 
(Mmothers=227.5 Hz, SDmothers=54.2 Hz; Mfathers=148.5 
Hz, SDfathers=40.4 Hz).  In Figs 1 and 2, adult-directed 
speech (ADS) is on the abscissa and CDS is on the 
ordinate.  An observation on the bisector, the lighter 
line, indicates equal f0 in the ADS and CDS situations.   
During periods of ADS, mothers’ mean f0 was 222.1 
Hz (SD=53.6 Hz) and during CDS it was 233.0 Hz 
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(SD=54.7 Hz).  The difference between mothers’ ADS 
and CDS was significant (t(151)=27.89, p<10-60).   
During periods of ADS, fathers’ mean f0 was 146.1 Hz 
(SD=39.4 Hz) and during CDS it was 150.9 Hz 
(SD=41.3 Hz).  The difference between fathers’ ADS 
and CDS was significant (t(151)=8.07, p<10-12). 
 
 In Figs. 1 and 2, the heavier line is the ordinary 
least-squares fitted linear regression for the distri-
bution shown in each figure.  The fit of the line was 
significant for both mothers (R2=0.844, p<10-61) and 
fathers (R2=0.373, p<10-16).  Both mothers and fathers 
used higher mean f0 values in the CDS condition than 
in the ADS condition, although the relationship was 
stronger for mothers than for fathers as is shown in 
Tables V and VI. 
 
VI. CONCLUSION AND FUTURE DIRECTIONS 

 
 In this paper, we showed that a very large data-
base of naturally-collected audio can be processed and 
analyzed for features known to be important for hu-
man communication.  Here we analyzed hundreds of 
daylong recordings collected from the auditory per-
spective of a preschool child in his or her normal 
family routine.  Thousands of hours of audio were 
collected in situ, diarized with automatic speech 
processing techniques from the LENA Foundation, 
then further processed by our algorithms to extract a 
speech feature—fundamental frequency—of specific 
talkers in the context of the diarization coding. 
 
 This work has two main goals.  First, it shows that 
a very large database of wild-type auditory data can be 
successfully captured and processed.  Researchers in 
data base construction, algorithms, speech science, 
automatic speech recognition, speech and language 
disorders, digital signal processing, and bioacoustics 
may benefit from and contribute to the techniques 
described here.  Theoretical implications include ap-
plying this technology and approach to better 
understand fields from data management to the imple-
mentation of language in human communication 
systems.  Practical implications of this work include 
better understanding of early human communication, 
improving algorithms and processing techniques for 
automatic speech processing and automatic speech 
recognition, and identifying communication charac-
teristics of children who may be at risk of develop-
mental delay or disorder. 
 
 Second, this work addresses the question of how 
fathers and mothers control their speech in different 
communicative contexts.  The fundamental frequency 
shift described here for mothers has been similarly  

described by other researchers, but with many fewer 
observations and outside of the naturalistic environ-
ment described here.  Another question of interest, 
addressed but not examined thoroughly in the lite-
rature, is the differential speech behavior that fathers 
show in the presence of adults and children.  We show 
that fathers’ speech patterns are similar to mothers’ in 
gross respect—that is, on average fathers use higher f0 
in CDS as compared to ADS—but the patterns are not 
identical.  We point out here that the sample included 
both typically developing children and those with 
some hearing loss.  
 
 Further, the results presented here differ from 
results the authors reported in an identical experiment 
on a 491.2 hour subset of the corpora.  That experiment 
indicated that mothers (t(32)=18.6, p<10-18) but not 
fathers (t(32)=.55, p>.5) raise f0 during CDS [7].  Not 
only is it possible to use very large corpora of auditory 
data in research, their use can correct problems that 
appear in work based on much smaller corpora.  We 
take this to be a significant finding, since 491.2 hours 
of recorded data is itself a large corpus. A detailed 
description of the difference is beyond the scope of 
this report but may reveal important differences 
between mothers and fathers.   
 
 Having demonstrated the fundamental utility of a 
very large collection of audio recordings through a 
fully explicated example, we expect this research 
program to have several fruitful avenues in the future.   
 
TABLE I.   Participants & Materials 

 
  

Participants 62 Families 

Child Sex 52% female 
48% male  

Child Age M = 2.53 yrs (SD = .69 yrs) 

Data Unprocessed whole-day recordings 
(single channel, 16KHz, 16 bit, PCM) 

Total 
Recordings 

7,541.23 hours in 641 sessions 
10.34 mean sessions/family 
117.83 mean hours per family 
 

Conversations Total: 1,414.51 hours 
Total Conversations: 3,829,565 
Mean Conversations per family: 61,767.2 

LENA coding 
used to 
determine 
adjacency  

CHN: child near 
MAN: male adult near 
FNN: female adult near 

Software 1) LENA software for coding [13] 
2) Software for f0 extraction [24]-[25] 
3) Custom-built software to find and 

extract CDS. Available from 
HomeBank [26] 

4) Custom-built data analytic software 
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Fig. 1.  Fundamental frequency of mothers’ speech.  

 
Fig. 2.  The fundamental frequency of fathers’ 
 
 TABLE II.  f0 Mothers and Fathers 

 M(HZ) SD(HZ) 

MOTHERS 227.5 57.2 

FATHERS 148.5 40.4 

 
TABLE III.   f0 Mothers’ ADS & CDS 

 M(HZ) SD(HZ) 

MOTHERS ADS 221.1 53.6 

MOTHERS CDS 233.0 54.7 
 

 
 TABLE IV.  f0 Fathers CDS 

 M(HZ) SD(HZ) 

FATHERS ADS 146.1 39.4 

FATHERS CDS 150.0 41.3 

 
 TABLE V.  ADS CDS Compared  

 t p 

MOTHERS t(151)=27.89 <10-60 

FATHERS T(151)=8.07 <10-12 

 
 TABLE VI.  Regression 

 R2 p 

MOTHERS  
FATHERS 

0.844 
0.373 

10-61 

10-16 

 

First, there is a need to refine and extend existing 
approaches to data collection, analysis, and proc-
essing. Researchers have reported on LENA system 
per-formance, and we expect this work to continue. 
Nevertheless, proprietary aspects of the system are 
inaccessible to researchers.  Further, the LENA system 
may not be appropriate for use in some applications, 
such as for children with sensory or other disorders.  
To date, the LENA system has no fully functional 
alternatives.  To address this, we are working toward 
developing an alternative system without proprietary 
restrictions.  This work also includes improving al-
gorithms in the pre- and post-processing stages of raw 
data analysis.  Due to the large volume of data to be 
processed, improved efficiency and reliability are 
needed.   
 
 Second, this technology and approach has great 
potential to impact at-risk populations including 
children with developmental disorders and children 
and families from low socio-economic or other dis-
advantaged backgrounds.  In another project, we are 
looking at the effect of mild-to-moderate hearing loss 
on the speech development of preschoolers.  We are 
using the automatic methods to assess speech pro-
duction characteristics and compare them between 
preschoolers with and without hearing loss.   
 
 Third, this technology can lead to better 
understanding of typical development.  As wearable 
biotechnology rapidly grows and changes, researchers 
have a dramatically different ability to observe and 
document typical development, not only in the domain 
of communication and language but also in domains 
such as motor control or sociobiological charac-
teristics, to name just two.  It is currently not well- 
understood how observable patterns in various 
domains interact.  For example, the work reported here 
suggests that fathers may use different speech char-
acteristics than mothers in the speech they engage in 
with their children.  Exploring these differences in a 
variety of contexts will help researchers better 
understand the role of fathers. 
 
 Fourth, despite the advantages demonstrated here, 
data collection and analysis remains a challenging 
task.  To reduce the burden and positively leverage the 
results of many researchers working in this field, there 
are efforts to archive and document audio data, 
associated metadata, and processing tools.  The ac-
cessible online repository HomeBank makes a wide 
variety of data available to researchers to explore new 
possible applications, improve the technology, and 
contribute additional data.  The data used in this ex-
periment along with the custom-built software are 
available through HomeBank [27]. 
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 The work reported here is an early demonstration 
of new, exciting technology and its application to a 
practical question of interest to researchers in speech 
and allied fields.  The methods and procedures hold 
great promise to advance both the theoretical 
underpinnings and the practical application of this 
emerging science. 
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