

Tools for Analyzing Talk

Part 2: The CLAN Program

August 14, 2018

Brian MacWhinney

Carnegie Mellon University
https://doi.org/10.21415/T5G10R

When citing the use of TalkBank facilities, please use this reference to the last printed

version of the CHILDES manual:

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk. 3rd Edition.

Mahwah, NJ: Lawrence Erlbaum Associates

This allows us to systematically track usage of the programs and data through

scholar.google.com.

https://doi.org/10.21415/T5G10R

Part 2: CLAN 2

Tools for Analyzing Talk ... 1

Part 2: The CLAN Program .. 1

1 Getting Started ... 8
1.1 Why you want to learn CLAN ...8
1.2 Learning CLAN ..8
1.3 Installing CLAN ɀ Mac OS X ...9
1.4 Installing CLAN ɀ Windows ..9

2 Using the Web ... 10
2.1 Community Resources .. 10
2.2 Downloading Materials .. 10
2.3 Using the Browsable Database .. 10
2.4 Downloading Transcripts and Media .. 11

3 Tutorial .. 12
3.1 The Commands Window .. 12

3.1.1 Setting the Working Directory .. 12
3.1.2 The Recall Button .. 13
3.1.3 The ? Button .. 13
3.1.4 The Progs Menu ... 13
3.1.5 The FILE IN Button ... 13
3.1.6 The TIERS Button .. 13

3.2 Typing Command Lines .. 14
3.2.1 Wildcards.. 15
3.2.2 Output Files ... 15
3.2.3 Redirection .. 15

3.3 Sample Runs ... 16
3.3.1 Sample KWAL Run .. 16
3.3.2 Sample FREQ Run ... 16
3.3.3 Sample MLU Run ... 17
3.3.4 Sample COMBO Run ... 18
3.3.5 Sample GEM and GEMFREQ Runs .. 18

3.4 Advanced Commands .. 19
3.5 Exercises .. 22

3.5.1 MLU50 Analysis ... 23
3.5.2 MLU5 Analysis .. 25
3.5.3 MLT Analysis ... 25
3.5.4 TTR Analysis ... 26
3.5.5 Generating Language Profiles.. 26

3.6 Further Exercises .. 28

4 The Editor ... 30
4.1 Screencasts .. 30
4.2 Text Mode vs. CHAT Mode ... 30
4.3 File, Edit, and Font Menus.. 31
4.4 Default Window Positioning, Size, and Font Control ... 31
4.5 CA Styles ... 32
4.6 Setting Special Colors .. 32
4.7 Searching ... 32
4.8 Hiding Tiers .. 33

Part 2: CLAN 3

4.9 Send to Sound Analyzer .. 33
4.10 Tiers Menu Items .. 33
4.11 Running CHECK Inside the Editor ... 33
4.12 Preferences and Options .. 34
4.13 Coder Mode ... 34

4.13.1 Entering Codes .. 35
4.13.2 Setting Up Your Codes File .. 36

5 Media Linkage ... 38
5.1 Sonic Mode .. 38
5.2 Transcriber Mode ... 40

5.2.1 Linking to an already existing transcript.. 41
5.2.2 To create a new transcript .. 41
5.2.3 Sparse Annotation .. 42

5.3 Video Linking ... 42
5.4 SoundWalker .. 43
5.5 Export to Partitur Editors .. 45
5.6 Playback Control ... 45
5.7 Mult iple Video Playback .. 45
5.8 Manual Editing ... 45

6 Other Features .. 47
6.1 Shell Commands .. 47
6.2 Online Help ... 47
6.3 Commands Listing .. 47
6.4 Aliases ... 47
6.5 Macros ... 48
6.6 Testing CLAN .. 48
6.7 Bug Reports... 49
6.8 Feature Requests .. 49

7 Analysis Commands .. 50
7.1 CHAINS .. 51

7.1.1 Sample Runs .. 52
7.1.2 Unique Options .. 54

7.2 CHECK.. 55
7.2.1 How CHECK works ... 55
7.2.2 CHECK in CA Mode ... 56
7.2.3 Running CHECK ... 56
7.2.4 Restrictions on Word Forms .. 56
7.2.5 Unique Options .. 57

7.3 CHIP ... 58
7.3.1 The Tier Creation System .. 58
7.3.2 The CHIP Coding System.. 59
7.3.3 Word Class Analysis ... 60
7.3.4 Summary Measures .. 61
7.3.5 Unique Options .. 62

7.4 COMBO .. 63
7.4.1 Composing Search Strings ... 63
7.4.2 Examples of Search Strings ... 65
7.4.3 Referring to Files in Search Strings ... 65

Part 2: CLAN 4

7.4.4 Cross-tier COMBO ... 66
7.4.5 Cluster Sequences in COMBO... 67
7.4.6 Tracking Final and Initial Words ... 67
7.4.7 Limiting with COMBO.. 67
7.4.8 Adding Codes with COMBO... 68
7.4.9 Unique Options .. 69

7.5 COOCUR .. 71
7.5.1 Unique Options .. 71

7.6 DIST .. 72
7.6.1 Unique Options .. 72

7.7 DSS .. 73
7.7.1 CHAT File Format Requirements .. 73
7.7.2 Selection of a 50-sentence Corpus ... 73
7.7.3 Automatic Calculation of DSS... 74
7.7.4 Sentence Points .. 74
7.7.5 DSS Output .. 74
7.7.6 DSS Summary... 75
7.7.7 DSS for Japanese .. 77
7.7.8 How DSS works .. 79
7.7.9 Unique Options .. 79

7.8 EVAL ... 80
7.8.1 Explanation of EVAL Measures ... 80
7.8.2 EVAL Demo .. 82
7.8.3 EVAL Output .. 83
7.8.4 Comparing Multiple Transcripts .. 84
7.8.5 Unique Options .. 84

7.9 FLUCALC ... 85
7.10 FREQ .. 87

7.10.1 What FREQ ignores ... 87
7.10.2 Studying Lexical Groups using the +s@file switch ... 87
7.10.3 Searches for %mor and %gra combinations ... 88
7.10.4 Searches in Multilingual Corpora ... 88
7.10.5 Building Concordances with FREQ .. 89
7.10.6 Using Wildcards with FREQ .. 89
7.10.7 FREQ for the %mor line .. 91
7.10.8 Errors for morphological codes .. 92
7.10.9 Directing the Output of FREQ ... 92
7.10.10 Limiting in FREQ .. 93
7.10.11 Creating Crosstabulations in FREQ .. 94
7.10.12 TTR for Lemmas ... 94
7.10.13 Studying Unique Words and Shared Words .. 95
7.10.14 Grammatical Complexity Analysis through FREQ ... 95
7.10.15 Unique Options ... 96
7.10.16 Further Illustrations ... 98

7.11 FREQMERG ... 100
7.11.1 Unique Options .. 100

7.12 FREQPOS ... 101
7.12.1 Unique Options .. 101

7.13 GEM ... 102
7.13.1 Sample Runs.. 102

Part 2: CLAN 5

7.13.2 Limiting with GEM.. 103
7.13.3 Unique Options .. 103

7.14 GEMFREQ .. 104
7.14.1 Unique Options .. 104

7.15 GEMLIST .. 104
7.16 IPSYN .. 105

7.16.1 Unique Options .. 107
7.17 KEYMAP ... 107

7.17.1 Sample Runs.. 107
7.17.2 Unique Options .. 108

7.18 KIDEVAL .. 108
7.18.1 Unique Options .. 112

7.19 KWAL .. 113
7.19.1 Tier Selection in KWAL .. 113
7.19.2 KWAL with signs and speech... 114
7.19.3 Unique Options .. 114

7.20 MAXWD .. 116
7.20.1 Unique Options .. 116
7.20.2 Unique Options .. 117

7.21 MLT ... 117
7.21.1 MLT defaults ... 118
7.21.2 Breaking Up Turns ... 118
7.21.3 Sample Runs.. 118
7.21.4 Unique Options .. 118

7.22 MLU ... 120
7.22.1 Exclude files for MLU and MLT ... 122
7.22.2 Unique Options .. 123

7.23 MODREP .. 125
7.23.1 Exclusions and Inclusions ... 126
7.23.2 Using a %mod Line .. 126
7.23.3 MODREP for the %mor line.. 126
7.23.4 Unique Options .. 127

7.24 MORTABLE ... 128
7.25 PHONFREQ ... 128

7.25.1 Unique Options .. 129
7.26 RELY .. 130

7.26.1 Unique Options .. 131
7.27 SCRIPT .. 132

7.27.1 The Model Script ... 132
7.27.2 4ÈÅ 0ÁÒÔÉÃÉÐÁÎÔȭÓ 3ÃÒÉÐÔ .. 132
7.27.3 Running SCRIPT .. 133
7.27.4 Variations ... 133
7.27.5 Unique Options .. 134

7.28 TIMEDUR ... 134
7.29 VOCD ... 134

7.29.1 Origin of the Measure ... 135
7.29.2 Calculation of D .. 136
7.29.3 Sample Size .. 137
7.29.4 VOCD Running and Output ... 137
7.29.5 Unique Options .. 138

Part 2: CLAN 6

7.30 WDLEN ... 139

8 Options ... 141
8.1 +F Option... 141
8.2 +K Option .. 142
8.3 +L Option ... 142
8.4 +P Option .. 142
8.5 +R Option .. 143
8.6 +S Option ... 143
8.7 +T Option .. 145
8.8 +U Option .. 146
8.9 +V Option .. 147
8.10 +W Option ... 147
8.11 +X Option .. 147
8.12 +Y Option .. 147
8.13 +Z Option .. 148
8.14 Metacharacters for Searching ... 148

9 Utility Commands ... 150
9.1 ANVIL2CHAT .. 151
9.2 BATCH .. 151
9.3 CHAT2ANVIL .. 152
9.4 CHAT2CA ... 152
9.5 CHAT2CONLL ... 152
9.6 CHAT2ELAN.. 152
9.7 CHAT2PRAAT .. 152
9.8 CHAT2SRT .. 152
9.9 CHAT2XMAR .. 153
9.10 CHSTRING ... 153
9.11 CMDI ... 155
9.12 COMBINE ... 155
9.13 COMBTIER .. 155
9.14 COMPOUND .. 155
9.15 CONLL2CHAT ... 155
9.16 CP2UTF .. 156
9.17 DATACLEAN ... 156
9.18 DATES ... 157
9.19 DELIM ... 157
9.20 ELAN2CHAT.. 157
9.21 FIXBULLETS ... 158
9.22 FIXIT ... 159
9.23 FIXLANG... 159
9.24 FIXMP3S .. 159
9.25 FLO .. 159
9.26 INDENT .. 159
9.27 INFO .. 159
9.28 JOINITEMS .. 159
9.29 LAB2CHAT .. 160
9.30 LENA2CHAT.. 160
9.31 LIPP2CHAT ... 160
9.32 LONGTIER ... 160

Part 2: CLAN 7

9.33 LOWCASE .. 160
9.34 OLAC ... 160
9.35 ORT.. 161
9.36 PRAAT2CHAT .. 161
9.37 QUOTES .. 161
9.38 REN(ame) .. 161
9.39 REPEAT .. 162
9.40 RETRACE ... 162
9.41 RTFIN .. 162
9.42 SALTIN ... 162
9.43 SILENCE.. 163
9.44 SPREADSHEET ... 163
9.45 SUBTITLES .. 163
9.46 SYNCODING .. 163
9.47 TEXTIN ... 163
9.48 TIERORDER .. 164
9.49 TRIM ... 164
9.50 TRNFIX ... 164
9.51 UNIQ .. 164
9.52 USEDLEX .. 164

10 References ... 165

Part 2: CLAN 8

1 Getting Started
This manual describes the use of the CLAN program, designed and written by Leonid

Spektor at Carnegie Mellon University. The acronym CLAN stands for Computerized

Language ANalysis. CLAN is designed specifically to analyze data transcribed in the

CHAT format. This is the format used in the various segments of the TalkBank system.

There are three parts to the overall TalkBank manual. Part 1 describes the CHAT

transcription system. Part 2 (this current manual) describes the CLAN analysis programs.

Part 3 describes the segments of the CLAN program that perform automatic

morphosyntactic analysis.

1.1 Why you want to learn CLAN

If you are a researcher studying conversational interaction, language learning, or

language disorders, you will want to learn to use CLAN, because it will help you address

basic research questions and explore many different language types. If you are a

clinician, CLAN can help you analyze data from individual clients and compare them

against a large database of similar transcripts. For both these purposes, CLAN

emphasizes the automatic computation of indices such as MLU, TTR, DSS, and IPSyn.

It also provides powerful methods for speeding transcription, linking transcripts to media,

sending data to automatic acoustic analysis, and automatic computation of a wide range

of morphosyntactic features. For conversation analysts, CLAN provides the full range of

Jeffersonian markings within a computationally clear framework. For all these purposes,

CLAN is available free, as is the huge TalkBank database of transcripts compatible with

CLAN analyses.

1.2 Learning CLAN

The first six chapters of this manual provide a basic introduction to CLAN.

1. Chapter 1 explains how to install and configure CLAN. This process has different

steps, depending on whether you are using Windows or Mac OS X.

2. Chapter 2 explains how to access and use materials from the CHILDES and

TalkBank homepages on the web.

3. Chapter 3 provides a tutorial on how to begin using CLAN commands.

4. Chapter 4 explains how to use the editor.

5. Chapter 5 explains how to link transcripts to media.

6. Chapter 6 provides advanced exercises for learning CLAN.

Ideally, you should work through all six chapters in that order. However, some users

may wish to skip some sections. If you are not interested in transcribing new data, you

can skip chapters 4 and 5 on the editor and linkage. People working with CA

(Conversation Analysis) will probably not need to read chapter 3 on CLAN commands.

The examples and analyses all focus on child language data. People working with other

language types such as aphasia, adult conversation, or second language may wish to use

practice the exercises with CHAT files and media appropriate to those areas.

Part 2: CLAN 9

1.3 Installing CLAN ï Mac OS X

Here is how to install and configure CLAN for Mac OS X:

1. If you need to permit downloading of non-AppStore apps, go to

SystemPreferences / Security / General, open the lock, and click on "Anywhere".

2. Next, point your browser at http://talkbank.org/clan and download the Mac

version of CLAN. Click to open clan.dmg and then click to start the installer. It

will install in your Applications folder and your working directory will be:

Applications/CLAN/work. For shared computers, there is also an option to install

in ~/Applications.

3. Drag the CLAN file icon into the dock to create a link for easy access.

4. You may also want to create a link to Applications/CLAN/ in your ñfavoritesò
list.

5. Go to System Preferences and select Keyboard. Check the two boxes there to

use standard function keys and to show Character Viewers.

1.4 Installing CLAN ï Windows

Here is how to install and configure CLAN for Windows:

1. Point your browser at http://talkbank.org/clan and download the Windows version

of CLAN. (Current versions of CLAN are no longer compatible with Windows

95/98/ME.)

2. CLAN will automatically install in c:/TalkBank and your working directory will

be c:/TalkBank/CLAN/work. The installer will create shortcuts for CLAN and the

/work folder.

http://talkbank.org/clan
http://talkbank.org/clan

Part 2: CLAN 10

2 Using the Web
In this chapter, we will first survey some of the community resources available at the

TalkBank homepages. Then we will learn about how to download and play transcripts

and linked media, and how to use the Browsable Database.

2.1 Community Resources

From the TalkBank homepage at http:/.talkbank.org, look at the community resource

information at these links under System:

1. Ground rules. Whenever using TalkBank data, remember to cite the sources

provided.

2. Contributing New Data. How to configure new research projects for eventual

inclusion in TalkBank.

3. IRB Principles. We explain how to configure consent forms to specify the levels of

confidentiality protection appropriate for your project.

4. Programs. Manuals and programs.

Then take a quick look at the homepages for AphasiaBank, BilingBank, CHILDES,

SLABank, PhonBank, CABank, and other banks. Finally, look at the information about

Google Group mailing lists and membership.

2.2 Downloading Materials

By default, CLAN materials will download to your desktop. You can then download

additional materials, such as the manuals. Rather than printing out the long manuals, it is

best to keep them in your /work folder and access them through Adobe Reader.

2.3 Using the Browsable Database

The Browsable Database facility allows you to playback transcripts with linked media

directly from your browser. Here are the steps to follow:

1. Click on the Browsable Database link on the CHILDES homepage. When the new

page opens, glance over the instructions. You can always come back to read these

in detail later.

2. In the left column, click on Eng-UK / Forrester / biggirl.cha.

3. Study the display to get a sense of what a CHAT file looks like. There are headers

for the first 11 lines and then the dialog begins on line 12. *E: is the child Ella and

*F: is her father.

4. Each line is linked to the corresponding segment of the video and both will play

back over the web. Place your cursor on the right arrow on line 11 and either click

or press ñsò. Usually, it takes a few seconds to establish the initial web connection,

but playback is smooth after that.

5. If the video is stopped, pressing the ñsò key starts it. If the video is playing, pressing

the ñsò key stops it. You can just follow along with continuous playback or you can

select certain segments to play.

http://childes.talkbank.org/

Part 2: CLAN 11

2.4 Downloading Transcripts and Media

If you want to study transcripts more closely, you will probably want to download them,

rather than playing through the Browsable Database. Using the Forrester transcripts as an

example, here is how you do this:

1. At http://childes.talkbank.org, click on Index to Corpora, then Eng-UK and

Forrester.

2. Click on the link called download transcripts and the .zip file will download to

your computer.

3. If it is not automatically unzipped, you should unzip it.

4. To download the media, click on Link to Media Folder and you can then download

individual videos one by one. Downloading media takes a lot more time than

downloading transcripts.

http://childes.talkbank.org/

Part 2: CLAN 12

3 Tutorial
Once you have installed CLAN, you start it by double-clicking on its icon or its shortcut.

3.1 The Commands Window

After this, a window titled Commands opens and you can type commands into this

window. If the window does not open automatically, then type Control-d (Windows) or

-d (Macintosh). This window controls many of the functions of CLAN. It remains

active until the program is terminated. The main components of the Commands window

are the command box in the center and the several buttons. There is also some text in the

bottom line giving you the data when your version of CLAN was compiled.

3.1.1 Setting the Working Directory

The first thing you need to do when running CLAN is to set the working directory. The

working directory is the place where the files you would like to work with are located.

For this tutorial, we will use the CLAN library directory as both our Working directory

and our Library directory. To set the working directory:

1. Download the examples.zip file from this URL: http://talkbank.org/examples.zip.

2. After downloading, you should have a folder on your desktop called examples.

3. Press the working button in the Command window and select the examples

directory inside the CLAN directory as your working directory by pressing the

Select Current Directory button.

After selecting your working directory, you will return to the Commands window. The

directory you selected will be listed to the right of the working button. This is useful

because you will always know what directory you are working in without having to leave

the Commands window. You can also double-click on the actual name of the working

directory to see and go back to other directories you have recently visited.

By default, CLAN sets your LIB directory to the /lib folder in the CLAN distribution.

You typically also do not have to worry about setting your output directory, because it

will be the same as your working directory. To test your installation, type the command

ñfreq sample.chaò into the Commands window. Then either hit the return key or press the

Run button. You should get the following output in the CLAN Output window.

> freq sample.cha

freq sample.cha

Tue Aug 7 15:51:12 2007

freq (03 - Aug- 2007) is conducting analyses on:

 ALL speaker tiers

**

From file <sample.cha>

 1 a

 1 any

 1 are

 5 chal k

 1 delicious

 1 don't

 ---- (more lines here)

 2 you

http://talkbank.org/examples.zip

Part 2: CLAN 13

 32 Total number of different word types used

 51 Total number of words (tokens)

0.627 Type/Token ratio

The output continues down the page. The exact shape of this window will depend on

how you have sized it.

3.1.2 The Recall Button

If you want to see some of your old commands, you can use the recall function. Just hit

the Recall button and you will get a window of old commands. The Recall window con-

tains a list of the last 20 commands entered in the Commands window. These commands

can be automatically entered in the Commands window by double-clicking on the line.

This is particularly useful for repetitive tasks and tracking command strings. Another way

to access previously used commands is by using the ¬ arrow on the keyboard. This will

enter the previous command into the Commands window each time the key is pressed.

3.1.3 The ? Button

Pressing the ? button can give you some basic information about file and directory

commands that you may find useful. You enter these commands into the command box.

For example, just try typing dir into the Commands window will list the files in your

working directory.

3.1.4 The Progs Menu

The Progs menu gives you a list of CLAN commands you can run. Try clicking this

button and then selecting the FREQ command. The name of the command will then be

inserted into the Commands window.

3.1.5 The FILE IN Button

Once you have selected the FREQ command, you now see that the File In button will be

available. Click on this button and you will get a dialog that asks you to locate some input

files in your working directory. The files on the left are the items in your working

directory. The files on the right will be the ones used for analysis. The Remove button

that appears under the Files for Analysis scrolling list is used to eliminate files from the

selected data set. The Clear button removes all the files you have added. The radio

button at the bottom right allows you to see only *.cha and *.cex files, if you wish. When

you are finished adding files for analysis, hit Done. After the files are selected and you

have returned to the Commands window, an @ is appended onto the command string.

This symbol represents the set of files listed. In this case, the @ represents the single file

ñsample.chaò.

3.1.6 The TIERS Button

This button will allow you to restrict your analysis to a certain participant. For this

example, we will restrict our analysis to the child, who is coded as *CHI in the transcript,

so we type ñCHIò into the Tier Option dialog, leaving the button for ñmain tierò selected.

Part 2: CLAN 14

At this point, the command being constructed in the Commands window should look like

this: freq @ +t*CHI If you hit the RUN button at the bottom right of the Commands

window, or if you just hit a carriage return, the FREQ program will run and will display

the frequencies of the six words the child is using in this sample transcript.

3.2 Typing Command Lines

There are two ways to build up commands. You can build commands using buttons and

menus. However, this method only provides access to the most basic options, but you

will find it useful when you are beginning. Alternatively, you can just type in commands

directly to the Commands window. Let us try entering a command just by typing.

Suppose we want to run an MLU analysis on the sample.cha file. Let us say that we also

want to restrict the MLU analysis so that it looks only at the childôs utterances. To do

this, we enter the following command into the window:

mlu +t*CHI sample.cha

In this command line, there are three parts. The first part gives the name of the command;

the second part tells the program to look at only the *CHI lines; and the third part tells the

program which file to analyze as input.

If you press the return key after entering this command, you should see a CLAN Out put

window that gives you the result of this MLU analysis. This analysis is conducted, by

default, on the %mor line which was generated by the MOR program. If a file does not

have this %mor line, then you will need to use other forms of the MLU command that

only count utterances in words. Also, you will need to learn how to use the various

options, such as +t or +f. One way to learn the options is to use the various buttons in the

graphic user interface as a way of learning what CLAN can do. Once you have learned

these options, it is often easier to just type in this command directly. However, in other

cases, it may be easier to use buttons to locate rare options that are hard to remember.

The decision of whether to type directly or to rely on buttons is one that is left to each

user.

Part 2: CLAN 15

What if you want to send the output to a permanent file and not just to the temporary

CLAN Output window? To do this you add the +f switch:

mlu +t*CHI +f sample.cha

Try entering this command, ending with a carriage return. You should see a message in

the CLAN Output window telling you that a new file called sample.mlu.cex has been

created. If you want to look at that file, type Control-O (Windows) or -o (Mac) for

Open File and you can use the standard navigation window to locate the sample.mlu.cex

file. It should be in the same directory as your sample.cha file.

You do not need to worry about the order in which the options appear. In fact, the only

order rule that is used for CLAN commands is that the command name must come first.

After that, you can put the switches and the file name in any order you wish.

3.2.1 Wildcards

A wildcard uses the asterisk symbol (*) to take the place of something else. For example,

if you want to run this command across a group of ten files all ending with the extension

.cha, you can enter the command in this form:

mlu +tCHI +f *.cha

Wildcards can be used to refer to a group of files (*.cha), a group of speakers (CH*), or a

group of words with a common form (*ing). To see how these could work together, try

out this command:

freq *.cha +sò*ingò

This command runs the FREQ program on all the .cha files in the LIB directory and

looks for all words ending in ñ-ing.ò The output is sent to the CLAN Output window

and you can set your cursor there and scroll back and forth to see the output. You can

print this window or you can save it to a file.

3.2.2 Output Files

When you run a command with the +f option, the program will create an output file with

the .cex extension. It drops the .cha extension from the input file and then adds a two-part

extension to indicate which command has run and the fact that this is CLAN output file

(.cex). If you run this command repeatedly, it will create additional files such as

sample.ml0.cex, sample.ml1.cex, sample.ml2.cex, and the like. You can add up to three

letters after the +f switch, as in:

mlu +fmot sample.cha

If you do this, the output file will have the name ñsample.mot.cex.ò As an example of a

case where this would be helpful, consider how you might want to have a group of output

files for the speech of the mother and another group for the speech of the father. The

motherôs files would be named *.mot.cex and the fatherôs files would be named *.fat.cex.

3.2.3 Redirection

Instead of using the +f switch for output, you may sometimes want to use the redirect

symbol (>). This symbol sends all of the outputs to a single file. The individual analysis

Part 2: CLAN 16

of each file is preserved and grouped into one output file that is named in the command

string. There are three forms of redirection, as illustrated in the following examples:

freq sample.cha > myanalyses

freq sample.cha >> myanalyses

freq sample.cha >& myanalyses

These three forms have slightly different results.

1. The single arrow overwrites material already in the file.

2. The double arrow appends new material to the file, placing it at the end of material

already in the file.

3. The single arrow with the ampersand writes both the analyses of the program and

various system messages to the file.

If you want to analyze a whole collection of files and send the output from each to a sepa-

rate file, use the +f switch instead.

3.3 Sample Runs

Now we are ready to try out a few sample runs with the five most basic CLAN com-

mands: KWAL, FREQ, MLU, COMBO, and GEM.

3.3.1 Sample KWAL Run

KWAL searches data for user-specified words and outputs those keywords in context.

The +s option is used to specify the words to be searched. The context or cluster is a

combination of main tier and the selected dependent tiers in relation to that line. The

following command searches for the keyword ñbunnyò and shows both the two sentences

preceding it, and the two sentences following it in the output. To access the 0042.cha

file, you need to change your working directory to the /transcripts folder inside the

examples folder.

kwal +sbunny - w2 +w2 0042.cha

The -w and +w options indicate how many lines of text should be included before and

after the search words. A segment of the output looks as follows:

--

*** File "0042.cha": line 2724. Keyword: bunny

*CHI: 0 .

*MOT: see ?

*MOT: is the bunny rabbit jumping ?

*MOT: okay .

*MOT: wanna [: want to] open the book ?

--

If you triple-click on the line with the three asterisks, the whole orginal transcript will

open up with that line highlighted. Repetitions and retracing will be excluded by default

unless you add the +r6 switch to the command.

3.3.2 Sample FREQ Run

FREQ counts the frequencies of words used in selected files. It also calculates the typeï

token ratio typically used as a measure of lexical diversity. In its simplest mode, it

generates an alphabetical list of all the words used by all speakers in a transcript along

Part 2: CLAN 17

with the frequency with which these words occur. The following example looks

specifically at the childôs tier. The output will be printed in the CLAN window in

alphabetical order:

freq +t*CHI 0042.cha

In this file, the child uses the filler ñuhò a lot, but that is ignored in the analysis. The

output for this command is:

> freq +t*CHI 0042.cha

freq +t*CHI 0042.cha

Sat Jun 14 14:38:12 2014

freq (13 - Jun - 2014) is conducting analyses on:

 ONLY speaker main tiers matching: *CHI;

**

From file <0042.cha>

Speaker: *CHI:

 1 ah

 2 bow+wow

 1 vroom@o

 3 Total number of different item types used

 4 Total number of items (tokens)

0.750 Type/Token ratio

A statistical summary is provided at the end. In the above example, there were a total of 4

words or tokens used with only 3 different word types. The typeïtoken ratio is found by

dividing the total of unique words by the total of words spoken. For our example, the

typeïtoken ratio would be 3 divided by 4 or 0.750.

The +f option can be used to save the results to a file. CLAN will automatically add the

.frq.cex extension to the new file it creates. By default, FREQ excludes the strings xxx,

yyy, www, as well as any string immediately preceded by one of the following symbols:

0, &, +, -, #. However, FREQ includes all retraced material unless otherwise commanded.

For example, given this utterance:

*CHI: the dog [/] dog barked.

FREQ would give a count of two for the word ñdog,ò and one each for the words ñtheò

and ñbarked.ò If you wish to exclude retraced material, use the +r6 option. To learn more

about the many variations in FREQ, read the section devoted specifically to this useful

command.

3.3.3 Sample MLU Run

The MLU command is used primarily to determine the mean length of utterance of a

specified speaker. It also provides the total number of utterances and of morphemes in a

file. The ratio of morphemes over utterances (MLU) is derived from those two totals. The

following command would perform an MLU analysis on the motherôs tier (+t*MOT)

from the file 0042.cha:

mlu +t*MOT 0042.cha

The output from this command looks like this:

> mlu +t*MOT 0042.cha

mlu +t*MOT 0042.cha

Sat Jun 14 14:41:48 2014

Part 2: CLAN 18

mlu (13 - Jun - 2014) is conducting analyses on:

 ONLY dependent tiers matching: %MOR;

*************** *************************

From file <0042.cha>

MLU for Speaker: *MOT:

 MLU (xxx, yyy and www are EXCLUDED from the utterance and

morpheme counts):

 Number of: utterances = 511, morphemes = 1588

 Ratio of morphemes over utterances = 3.108

 Standard deviati on = 2.214

Thus, we have the motherôs MLU or ratio of morphemes over utterances (3.108) and her

total number of utterances (511).

3.3.4 Sample COMBO Run

COMBO is a powerful program that searches the data for specified combinations of

words or character strings. For example, COMBO will find instances where a speaker

says kitty twice in a row within a single utterance. The following command would search

the motherôs tiers (+t*MOT) of the specified file 0042.cha:

combo +tMOT +s"kitty^kitty" 0042.cha

Here, the string +tMOT selects the motherôs speaker tier only for analysis. When search-

ing for a combination of words with COMBO, it is necessary to precede the combination

with +s (e.g., +s"kitty^kitty") in the command line. The symbol ^ specifies that the word

kitty is immediately followed by the word kitty. The output of the command used above is

as follows:

> combo +tMOT +s"kitty^kitty" 0042.cha

kitty^kitty

combo +tMOT +skitty^kitty 0042.cha

Sat Jun 14 14:44:21 2014

combo (13 - Jun - 2014) is conducting analyses on:

 ONLY speaker main tiers matching: *MOT;

**

From file <0042.cha>

--

*** File "0042.cha": line 3034.

*MOT: (1)kitty (1)kitty kitty .

--

*** File "0042.cha": line 3111.

*MOT: and (1)kitty (1)kitty .

 Strings matched 2 times

3.3.5 Sample GEM and GEMFREQ Runs

GEM and GEMFREQ look at previously tagged selections or ñgemsò within larger

transcripts for further analyses. For example, we might want to divide the transcript by

different social situations or activities. In the 0012.cha file, there are gem markers

delineating the segment of the transcript that involves book reading, using the code word

ñbookò. By dividing the transcripts in this manner, separate analyses can be conducted

on each situation type. Once this is done, you can use this command to compute a

frequency analysis for material in these segments:

gemfreq +t*CHI +sbook 001 2.cha

Part 2: CLAN 19

The output is as follows:

> gemfreq +sbook +t*CHI 0012.cha

gemfreq +sbook +t*CHI 0012.cha

Sat Jun 14 14:54:19 2014

gemfreq (13 - Jun - 2014) is conducting analyses on:

 ONLY speaker main tiers matching: *CHI;

 and ONLY header tiers matching: @BG:; @EG: ;

**

From file <0012.cha>

 24 tiers in gem "book":

 2 kitty

 2 no+no

 2 oh

 2 this

GEM and GEMFREQ are particularly useful in corpora such as the AphasiaBank

transcripts. In these, each participant does a retell of the Cinderella story that is marked

with @G: Cinderella. Using the three Kempler files, the following command will create

three new files with only the Cinderella segment:

gem +sCinderella +n +d1 +t*PAR +t%mor +f *.cha

You can then run further programs such as MLU or FREQ on these shorter files.

3.4 Advanced Commands

This section provides a series of CLAN commands designed to illustrate a fuller range of

options available in some of the most popular CLAN commands. With a few exceptions,

the commands are designed to run on the Adler directory included in the examples.zip

distribution. So, you should begin by opening CLAN and setting your working directory

to the Adler folder. Each command is followed by an English-language explanation of

the meaning of each of the terms in the command, translating in order from left to right.

You should test out each command and study its results. To save typing, you can cut cut

each command from this document and paste it into the CLAN Commands window and

then hit a carriage return.

Run KWAL on the Participant looking for "slipper" in all the files:

kwal +t*PAR +s"slipper*" *.cha

Run KWAL on the Participant looking for "because" in adler23a.cha:

kwal +t*PAR +sòbecauseò adler23a.cha

Run KWAL on the Participant looking specifically for "because" transcribed as (be)cause

(produced as "cause") in adler 23a.cha:

kwal +t*PAR +sò(be)causeò adler23a.cha +r2

Run KWAL on the Participant on the list of words in the whwords.cut in adler23a.cha.

(The whwords.cut file is in the examples/pos folder).

kwal +t*PAR +s@whwords.cut adler23a.cha

Run KWAL on the Participant to exclude utterances coded with the post-code [+ exc] and

create new files in legal CHAT format for all the files:

kwal - s"[+ exc]" +d +t*PAR +t%mor +t@ +f *.cha

Part 2: CLAN 20

Run COMBO on the Participant to find all sequences of "fairyò followed immediately by

ñgodmother" and combine the results from all the files into a single file:

combo +t*PAR +sfairy^godmother +u *.cha

Run COMBO on the Participant's %mor tier to find all combinations of infinitive and

verb in adler01a.cha:

combo +s"inf|*^v|*" +t*PAR +t%mor adler01a.cha

Run MAXWD on the Participant to get the longest utterance in words in all files:

maxwd +g2 +t*PAR *.cha

Run EVAL on the Participant to get a spreadsheet with summary data (duration, MLU,

TTR, % word errors, # utterance errors, % various parts of speech, # repetitions, and #

revisions) in all the files. Add +o4 to get output in raw numbers instead of percentages.

eval +t*PAR +u *.cha

This program is similar to EVAL, but tailored for child data:

kideval +t*PAR +leng *.cha

Run MLU on the Participant, creating one spreadsheet for all files. Add -b to get mlu in

words:

mlu +t*PAR +d +u *.cha

Run MLT on the Participant, creating one spreadsheet for all files. MLT counts

utterances and words on a line that may include xxx (unlike MLU):

mlt +t*PAR +d *.cha

Run TIMEDUR on the Participant, creating a spreadsheet with ratio of words and

utterances over time duration for all files:

timedur +t*PAR +d10 *.cha

Run GEM on the Participant, including the %mor line, using the ñSandwichò gem with

lazy gem marking, outputting legal CHAT format for adler07.cha:

gem +t*PAR +t%mor +sSandwich +n +d1 adler07 a.cha

Same thing, excluding irrelevant lines:

gem +t*PAR +t%mor +sSand wich +n +d1 - s"[+ exc]" adler07 a.cha

Run GEM on the Participant main tier and %mor tier for the Sandwich ñgemò, using lazy

gem marking, create a new file in legal CHAT format called "Sand" for all Adler files

gem +t*PAR +t%mor +sSandwich +n +d1 +fSand *.cha

Run VOCD on the Participant, output to spreadsheet only, and exclude repetitions and

revisions in all the files:

vocd +t*PAR +d3 +r6 *.cha

Run CHIP to compare the Mother and the Child in terms of utterance overlaps with both

the previous speaker (%chi and %adu, echoes) and their own previous utterances (%csr

and %asr, self-repetitions) in chip.cha:

chip +bMOT +cCHI chip.cha (the chip.cha file is in examples/progs)

Same thing, but excluding printing of the results for the self-repetitions:

Part 2: CLAN 21

chip +tMOT +cCHI ïns chip.cha

The next commands all use the FREQ program to illustrate various options.

Run FREQ on the Participant tier and get output in order of descending frequency for

adler01a.cha:

freq +t*PAR +o adler01a.cha

Run FREQ on the Participant tier and send output to a spreadsheet for adler01a.cha. To

open the spreadsheet, triple-click on stat.frq.xls:

freq +t*PAR +d2 adler01a.cha

Same, on all the files in Adler:

freq +t*PAR +d2 *.cha

Same, but only include Anomics:

freq +t@"ID =*|Anomic|*" +d2 *.cha

Run FREQ on the Participant tier and get type token ratio only in a spreadsheet for

adler01a.cha:

freq +t*PAR +d3 adler01a.cha

Run FREQ on the Participant %mor tier and not the Participant speaker tier and get

output in order of descending frequency for adler01a.cha:

freq +t%mor +t*PAR - t* +o adler01a.cha

Run FREQ on the Participant %mor tier for stems only (happily and happier = happy)

and get output in order of descending frequency for adler01a.cha:

freq +t*PAR +t%mor - t* +s"@r - *,o -%ò +o adler01a.cha

Learn how to use the +s switch for analysis of the %mor line

freq + sm

Learn how to use the +s switch for analysis of the %gra line

freq +sg

Run FREQ on the Participant tier, include fillers "uh" and "um", and get output in order

of descending frequency for adler01a.cha:

freq +t*PAR +s+&uh +s+&um +o adler01a.cha

Run FREQ on the Participant tier and count instances of unintelligible jargon for

adler01a.cha:

freq +t*PAR +s"xxx" adler01a.cha

Same, but adding +d to see the actual place of occurrence, then triple-click on any line

that has a file name to open the original:

freq +t*PAR +s"xxx" +d adler01a.cha

Run FREQ on the Participant tier, counting instances of gestures for adler01a.cha:

freq +t*PAR +s&=ges* adler01a.cha

Run FREQ on the Participant tier, including repetitions and revisions, excluding

neologisms (nonword:unknown target), and getting output in order of descending

frequency for adler01a.cha. Add +d6 to include error production info. Add +d4 for type

Part 2: CLAN 22

token info only.

freq +t*PAR +r6 - s"<* \ * n:uk*>" +o adler01a.cha

Run FREQ on the Participant, searching for a list of words in a *.cut file with multiple

words searched per line, where multiple words do not have to be found in consecutive

alignment, but must be in the same utterance, and merging output across all files:

freq +t*PAR +s@0list.cut +c3 +u *.cha

Same with +d added for outputting the original utterance:

freq +t*PAR +s@0list.cut +c3 +u +d *.cha

Here are some additional switches for making specific exclusions:

¶ add -s*** if you want to exclude words that were produced in error (coded with

any of the [* errorcodes] on the main tier)

¶ add +r5 if you want to exclude any text replacements (horse [: dog], beds [:

breads])

¶ add +r6 if you want to include repetitions and revisions

The final section in the description of the FREQ command gives many further

detailed examples of how to use FREQ with the %mor and %gra tier.

3.5 Exercises

This section presents exercises designed to help you think about the application of CLAN

for specific aspects of language analysis. The illustrations in the section below are based

on materials developed by Barbara Pan originally published in Chapter 2 of Sokolov and

Snow (1994). They are included in the /transcripts/ne20 and /transcripts/ne32 folders in

the examples.zip file you downloaded. The original text has been edited to reflect

subsequent changes in the programs and the database. Barbara Pan devised the initial

form of this extremely useful set of exercises and kindly consented to their inclusion

here.

One approach to transcript analysis focuses on the computation of certain measures or

scores that characterize the stage of language development in the children or adults in the

sample.

1. One popular measure (Brown, 1973) is the MLU or mean length of utterance, which

can be computed by the MLU program.

2. A second measure is the MLU of the five longest utterances in a sample, or MLU5.

Wells (1981) found that increases in MLU of the five longest utterances tend to

parallel those in MLU, with both levelling off after about 42 months of age. Brown

suggested that MLU of the longest utterance tends, in children developing normally,

to be approximately three times greater than MLU.

3. A third measure is MLT or Mean Length of Turn which can be computed the the

MLT program.

4. A fourth popular measure of lexical diversity is the typeïtoken ratio of Templin

(1957).

In these exercises, we will use CLAN to generate these four measures of spontaneous

language production for a group of normally developing children at 20 months. The goals

Part 2: CLAN 23

are to use data from a sizeable sample of normally developing children to inform us as to

the average (mean) performance and degree of variation (standard deviation) among chil-

dren at this age on each measure; and to explore whether individual children's

performance relative to their peers was constant across domains. That is, were children

whose MLU was low relative to their peers also low in terms of lexical diversity and

conversational participation? Conversely, were children with relatively advanced

syntactic skills as measured by MLU also relatively advanced in terms of lexical diversity

and the share of the conversational load they assumed?

The speech samples analyzed here are taken from the New England corpus of the

CHILDES database, which includes longitudinal data on 52 normally developing

children. Spontaneous speech of the children interacting with their mothers was collected

in a play setting when the children were 14, 20, and 32 months of age. Transcripts were

prepared according to the CHAT conventions of the Child Language Data Exchange

System, including conventions for morphemicizing speech, such that MLU could be

computed in terms of morphemes rather than words. Data were available for 48 of the 52

children at 20 months. The means and standard deviations for MLU5, TTR, and MLT

reported below are based on these 48 children. Because only 33 of the 48 children

produced 50 or more utterances during the observation session at 20 months, the mean

and standard deviation for MLU50 is based on 33 subjects.

For illustrative purposes, we will discuss five children: the child whose MLU was the

highest for the group (68.cha), the child whose MLU was the lowest (98.cha), and one

child each at the first (66.cha), second (55.cha), and third (14.cha) quartiles. Transcripts

for these five children at 20 months can be found in the /transcripts/ne20 directory in the

examples.zip file found at http://talkbank.org/examples.zip.

Our goal is to compile the following basic measures for each of the five target children:

MLU on 50 utterances, MLU of the five longest utterances, TTR, and MLT. We then

compare these five children to their peers by generating z-scores based on the means and

standard deviations for the available sample for each measure at 20 months. In this way,

we were will generate language profiles for each of our five target children.

3.5.1 MLU50 Analysis

The first CLAN analysis we will perform involves calculating MLU for each child on a

sample of 50 utterances. By default, the MLU program runs on the %mor line that is

already present in these files. This means that it computes the mean length of utterance

in terms of morphemes, not words. Also by default, the MLU program excludes the

strings xxx, yyy, www, as well as any string immediately preceded by one of the

following symbols: 0, &, +, -, #, $, or : (see the CHAT manual for a description of

transcription conventions). The MLU program also excludes from all counts material in

angle brackets followed by [/], [//], or [% bch] (see the CLAN manual for list of symbols

CLAN considers to be word, morpheme, or utterance delimiters). Remember that to

perform any CLAN analysis, you need to be in the directory where your data is when you

issue the appropriate CLAN command. In this case, we want to be in the /transcripts/ne20

folder in the in the examples.zip file that you downloaded from

http://talkbank.org/examples.zip.

The command string we used to compute MLU for all five children is:

Part 2: CLAN 24

mlu +t*CHI +z50u +f *.cha

+t*CHI Analyze the child speaker tier only

+z50u Analyze the first 50 utterances only

+f Save the results in a file

*.cha Analyze all files ending with the extension .cha

The only constraint on the order of elements in a CLAN command is that the name of the

program (here, MLU) must come first. Many users find it good practice to put the name

of the file on which the analysis is to be performed last, so that they can tell at a glance

both what program was used and what file(s) were analyzed. Other elements may come

in any order.

The option +t*CHI tells CLAN that we want only CHI speaker tiers considered in the

analysis. Were we to omit this string, a composite MLU would be computed for all

speakers in the file.

The option + z50u tells CLAN to compute MLU on only the first 50 utterances. We

could, of course, have specified the childôs first 100 utterances (+z100u) or utterances

from the 51st through the 100th (+z51u-100u). With no +z option specified, MLU is

computed on the entire file.

The option +f tells CLAN that we want the output recorded in output files, rather than

simply displayed onscreen. CLAN will create a separate output file for each file on which

it computes MLU. If we wish, we may specify a three-letter file extension for the output

files immediately following the +f option in the command line. If a specific file extension

is not specified, CLAN will assign one automatically. In the case of MLU, the default ex-

tension is .mlu.cex. The .cex at the end is mostly important for Windows, since it allows

the Windows operating system to know that this is a CLAN output file.

Finally, the string *.cha tells CLAN to perform the analysis specified on each file ending

in the extension .cha found in the current directory. To perform the analysis on a single

file, we would specify the entire file name (e.g., 68.cha). It was possible to use the

wildcard * in this and following analyses, rather than specifying each file separately,

because all the files to be analyzed ended with the same file extensions and were in the

same directory; and in each file, the target child was identified by the same speaker code

(i.e., CHI), thus allowing us to specify the childôs tier by means of +t*CHI.

Utilization of wildcards whenever possible is more efficient than repeatedly typing in

similar commands. It also cuts down on typing errors. For illustrative purposes, let us

suppose that we ran the above analysis on only a single child (68.cha), rather than for all

five children at once (by specifying *.cha). We would use the following command:

mlu +t*CHI +z50u 68.cha

The output for this command would be as follows:

> mlu +t*CHI +z50u 68.cha

mlu +t*CHI +z50u 68.cha

Tue Jun 24 17:15:38 2014

mlu (24 - Jun - 2014) is conducting analyses on:

 ONLY dependent tiers matching: %MOR;

**

From file <68.cha>

MLU for Speaker: *CHI:

 MLU (xxx, yyy and www are EXCLUDED from the utterance and

Part 2: CLAN 25

morpheme counts):

 Number of: utterances = 50 , morphemes = 133

 Ratio of morphemes over utterances = 2.660

 Standard deviation = 1.595

MLU reports the number of utterances (in this case, the 50 utterances we specified), the

number of morphemes that occurred in those 50 utterances, the ratio of morphemes over

utterances (MLU in morphemes), and the standard deviation of utterance length in mor-

phemes. The standard deviation statistic gives some indication of how variable the childôs

utterance length is. This childôs average utterance is 2.660 morphemes long, with a stan-

dard deviation of 1.595 morphemes.

Check line 1 of the output for typing errors in entering the command string. Check lines 3

and possibly 4 of the output to be sure the proper speaker tier and input file(s) were spec-

ified. Also, check to be sure that the number of utterances or words reported is what was

specified in the command line. If CLAN finds that the transcript contains fewer

utterances or words than the number specified with the +z option, it will still run the

analysis but will report the actual number of utterances or words analyzed.

3.5.2 MLU5 Analysis

The second CLAN analysis we will perform computes the mean length in morphemes of

each childôs five longest utterances. To do this, we will run MAXWD on the five files in

the ne20 folder and then MLU on the output of MAXWD. By default, MAXWD runs on

the %mor line, rather than the main line.

maxwd +t*CHI +g1 +c5 +d1 * .cha

+gl Identify the longest utterances in terms of morphemes

+c5 Identify the five longest utterances

+d1 Output the data in CHAT format

* .cha The child language transcripts to be analyzed

We then run MLU on the *.cex files that were the output of the previous command.

mlu *.cex

3.5.3 MLT Analysis

The third analysis we will perform is to compute MLT (Mean Length of Turn) for both

child and mother. Note that, unlike the MLU program, the CLAN program MLT includes

the symbols xxx and yyy in all counts. Thus, utterances that consist of only unintelligible

vocal material still constitute turns, as do nonverbal turns with only ñ0ò on the main line.

We can use a single command to run our complete analysis and put all the results into a

single file.

mlt *.cha > allmlt.cex

In this output file, the results for the mother in 68.cha are:

From file <68.cha>

MLT for Speaker: *MOT:

 MLT (xxx, yyy and www are EXCLUDED from the word counts, but are

INCLUDED in utterance counts):

 Number of: utterances = 356, turns = 227, words = 1360

 Ratio of words over turns = 5.991

Part 2: CLAN 26

 Ratio of utterances over turns = 1.568

 Ratio of words over ut terances = 3.820

There is similar output data for the child. This output allows us to consider Mean Length

of Turn either in terms of words per turn or utterances per turn. We chose to use words

per turn in calculating the ratio of child MLT to mother MLT, reasoning that words per

turn is likely to be sensitive for a somewhat longer developmental period. MLT ratio,

then, was calculated as the ratio of child words/turn over mother words/turn. As the child

begins to assume a more equal share of the conversational load, the MLT ratio should

approach 1.00. For file 68.cha, this ratio is: 2.184 ÷ 5.991 = 0.365.

3.5.4 TTR Analysis

The fourth CLAN analysis we will perform for each child is to compute the TTR ortypeï

token ratio. For this we will use the FREQ command. By default, FREQ ignores the

strings xxx (unintelligible speech) and www (irrelevant speech researcher chose not to

transcribe). It also ignores words beginning with the symbols 0, &, +, -, or #. Here we

were interested not in whether the child uses plurals or past tenses, but how many

different vocabulary items she uses. Therefore, we wanted to count cats and cat as two

tokens (i.e., instances) of the word-type cat. Similarly, we wanted to count play and

played as two tokens under the word-type play. To make these distinctions correctly, we

need to use MOR and POST to create a %mor line for our transcript. The process of

doing this is described in the MOR manual. For now, we will assume that the transcripts

already have this %mor line. In that case, the command we use is:

 freq +t*CHI +sò@r- *,o - %" +f *.cha

+t*CHI Analyze the child speaker only

+sò@r-*,o-%" Search for roots or lemmas and ignore the rest

+f Save output in a file

*.cha Analyze all files ending with the extension .cha

The only new element in this command is +sò@r-*,o-%". The +s option tells FREQ to

search for and count certain strings. The r-* part of this switch tells FREQ to look only at

the roots or lemmas that follow the | symbol in the %mor line. The o-% part of the switch

tells FREQ to ignore the rest of the material on the %mor line. The output generated

from this analysis goes into five files. For the 68.cha input file, the output is 68.frq.cex.

At the end of this file, we find this summary analysis:

 83 Total number of different item types used

 244 Total number of items (tokens)

0.340 Type/Token ratio

We can look at each of the five output files to get this summary TTR information for

each child.

3.5.5 Generating Language Profiles

Once we have computed these basic measures of utterance length, lexical diversity, and

conversational participation for our five target children, we need to see how each child

compares to his or her peers in each of these domains. To do this, we use the means and

standard deviations for each measure for the whole New England sample at 20 months, as

Part 2: CLAN 27

given in the following table.

Measure Mean SD Range

MLU50 1.406 0.360 1.00-2.66

MLU5 longest 2.936 1.271 1.00-6.40

TTR 0.433 0.108 0.255-0.611

MLT Ratio 0.189 0.089 0.034-0.438

The distribution of MLU50 scores was quite skewed, with most children who produced at

least 50 utterances falling in the MLU range of 1.00-1.30. As noted earlier, 17 of the 48

children failed to produce even 50 utterances. At this age most children in the sample are

essentially still at the one-word stage, producing few utterances of more than one word or

morpheme. Like MLU50, the shape of the distributions for MLU5 and for the MLT ratio

were somewhat skewed toward the lower end, though not as severely as was MLU50.

Z-scores, or standard scores, are computed by subtracting the sample mean score from the

childôs score on a particular measure and then dividing the result by the overall standard

deviation: (child's score - group mean) / standard deviation. The results of this

computation are given in the following table.

Child MLU50 MLU5 TTR MLT Ratio

14 0.26 0.21 1.65 -0.16

55 -0.30 -0.15 -0.36 -0.53

66 -0.16 -0.11 -0.64 -0.84

68 2.30 2.72 -0.86 1.98

98 -0.96 -0.74 -0.63 -0.08

We would not expect to see radical departures from the group means on any of the mea-

sures. For the most part, this expectation is borne out: we do not see departures greater

than 2 standard deviations from the mean on any measure for any of the five children,

except for the particularly high MLU50 and MLU5 observed for Subject 068.

It is not the case, however, that all five of our target children have flat profiles. Some

children show marked strengths or weaknesses relative to their peers in certain domains.

For example, Subject 14, although very close to the mean in terms of utterance length

(MLU5O and MLU5), shows marked strength in lexical diversity (TTR), even though she

shoulders relatively little of the conversational burden (as measured by MLT ratio).

Overall, Subject 68 seems advanced on all measures except TTR. The subjects at the

second and third quartile in terms of MLU (Subject 055 and Subject 066) have profiles

that are relatively flat: Their z-scores on each measure fall between -1 and 0. However,

the child with the lowest MLU50 (Subject 098) again shows an uneven profile. Despite

her limited production, she manages to bear her portion of the conversational load. You

will recall that unintelligible vocalizations transcribed as xxx or yyy, as well as nonverbal

turns indicated by the postcode [+ trn], are all counted in computing MLT. Therefore, it is

Part 2: CLAN 28

possible that many of this childôs turns consisted of unintelligible vocalizations or

nonverbal gestures.

What we have seen in examining the profiles for these five children is that, even among

normally developing children, different children may have strengths in different domains,

relative to their age mates. For illustrative purposes, we have considered only three do-

mains, as measured by four indices. To get a more detailed picture of a childôs language

production, we might choose to include other indices, or to further refine the measures we

use. For example, we might compute TTR based on the number of words, or we might

time-sample by examining the number of word types and word tokens the child produced

in a certain number of minutes of motherïchild interaction. We might also consider other

measures of conversational competence, such as number of child initiations and

responses; fluency measures, such as number of retraces or hesitations; or pragmatic

measures, such as variety of speech acts produced. Computation of some of these

measures would require that codes be entered in the transcript prior to analysis; however,

the CLAN analyses themselves would, for the most part, simply be variations on the tech-

niques discussed in this chapter. In the exercises that follow, you will have an opportunity

to use these techniques to perform analyses on these five children at both 20 months and

32 months.

3.6 Further Exercises

The files needed for the following exercises are in two directories in the /transcripts/ne20

and /transcripts/ne32 folders in the examples.zip file found at

http://talkbank.org/examples.zip. No data are available for Subject 14 at 32 months.

1. Compute the length in morphemes of each target childôs single longest utterance at

20 months. Compare with the MLU of the five longest utterances. Consider why a

researcher might want to use MLU of the five longest rather than MLU of the single

longest utterance.

2. Use the +z option to compute TTR on each childôs first 50 words at 32 months.

Then do the same for each successive 50-word band up to 300. Check the output

each time to be sure that 50 words were in fact found. If you specify a range of 50

words where there are fewer than 50 words available in the file, FREQ still

performs the analysis, but the output will show the actual number of tokens found.

What do you observe about the stability of TTR across different samples of 50

words?

3. Use the MLU and FREQ programs to examine the motherôs (*MOT) language to

her child at 20 months and at 32 months. What do you observe about the

length/complexity and lexical diversity of the motherôs speech to her child? Do they

remain generally the same across time or change as the childôs language develops?

If you observe change, how can it be characterized?

4. Perform the same analyses for the four target children for whom data are available

at age 32 months. Use the data given earlier to compute z-scores for each target

child on each measure (MLU 50 utterances, MLU of five longest utterances, TTR,

MLT ratio). Then plot profiles for each of the target children at 32 months. What

consistencies and inconsistencies do you see from 20 to 32 months? Which children,

if any, have similar profiles at both ages? Which children's profiles change

Part 2: CLAN 29

markedly from 20 to 32 months?

5. Conduct a case study of a child you know to explore whether type of activity and/or

interlocutor affect mean length of turn (MLT). Videotape the child and mother

engaged in two different activities (e.g., bookreading, having a snack together,

playing with a favorite toy). On another occasion, videotape the child engaged in the

same activities with an unfamiliar adult. Compare the MLT ratio for each activity

and adultïchild pair. Describe any differences you observe.

Part 2: CLAN 30

4 The Editor
CLAN includes an editor that is specifically designed to work cooperatively with CHAT

files. To open up an editor window, either type -n (Control-n on Windows) for a new

file or -o to open an old file (Control-o on Windows). This is what a new text window

looks like on the Macintosh:

You can type into this editor window just as you would in any full-screen text editor,

such as MS-Word. In fact, the basic functions of the CLAN editor and MS-Word are all

the same. Some users say that they find the CLAN editor difficult to learn. However, on

the basic level it is no harder than MS-Word. What makes the CLAN editor difficult is

the fact that it is used to transcribe the difficult material of child language data with all its

special forms, overlaps, and precise timings. These functions are outside of the scope of

editors, such as MS-Word or Pages.

4.1 Screencasts

Use of the tutorial can be supplemented through the online screencasts for specific CLAN

features found at http://talkbank.org/screencasts and on YouTube. These movies, created

by Davida Fromm and Brian MacWhinney, show the use of specific CLAN functions in

real time with real transcripts.

4.2 Text Mode vs. CHAT Mode

The editor works in two basic modes: Text Mode and CHAT Mode. In Text Mode, the

editor functions as a basic text editor. To indicate that you are in Text Mode, the bar at

the bottom of the editor window displays [E][Text]. To enter Text Mode, you must

uncheck the CHAT Mode button on the Mode pulldown menu. In CHAT Mode, the

editor facilitates the typing of new CHAT files and the editing of existing CHAT files. If

your file has the .cha extension, you will automatically be placed into CHAT Mode when

you open it. To indicate that you are in CHAT Mode, the bar at the bottom of the editor

window displays [E][CHAT].

When you are first learning to use the editor, it is best to begin in CHAT mode. When

http://talkbank.org/screencasts

Part 2: CLAN 31

you start CLAN, it automatically opens a new window for text editing. By default, this

file will be opened using CHAT mode. You can use this editor window to start learning

the editor or you can open an existing CHAT file using the option in the File menu. It is

probably easiest to start work with an existing file. To open a file, type Command-o

(Macintosh) or Control-o (Windows). You will be asked to locate a file. Try to open the

sample.cha file that you will find in the Lib directory inside the CLAN directory or

folder. This is just a sample file, so you do not need to worry about accidentally saving

changes.

You should stay in CHAT mode until you have learned the basic editing commands. You

can insert characters by typing in the usual way. Movement of the cursor with the mouse

and arrow keys works the same way as in Word or Pages. Functions like scrolling,

highlighting, cutting, and pasting also work in the standard way. You should try out these

functions right away. Use keys and the scroll bar to move around in the sample.cha file.

Cut and paste sections and type a few sentences, just to convince yourself that you are

already familiar with the basic editor functions.

4.3 File, Edit, and Font Menus

The functions of opening files, printing, cutting, undoing, and font changing are the same

as in Pages or Word. These commands can be found under the File, Edit, and Font

menus in the menu bar. The keyboard shortcuts for pulling down these menu items are

listed next to the menu options. Note that there is also a File function called ñSave Last

Clip As ...ò which you can use to save a time-delimited sound segment as a separate file.

This function works on Mac and older Windows systems. However, this function will

not work on versions of Windows after about 2016, because it relies on QuickTime,

which is no longer supported.

4.4 Default Window Positioning, Size, and Font Control

When CLAN starts up it will open a new Commands window and a new Text window in

the same position it used when you last ran CLAN. If you want to change the position or

size of a window, you can move it and resize it. You can then close it and open a new

text window using -n and it will assume the size and position of the earlier window.

Repositioning also works in the same way for the Commands window, but you cannot

resize the Commands window.

When starting up video playback, it can be the case that the movie window occupies too

much of the screen. In order to size it properly, you can click on the green button in the

top of the QuickTime video window and the window will be resized to the smallest

dimension. Then you drag on the botton right corner to expand it to the size you wish.

The system for controlling the default Font depends on your operating system. On

Windows (PC) there is a Font menu under View. You use the Set Font option to set the

text window font, and the Set Commands Font to set the Commands window font. The

option to Set Default Font is only needed in rare cases when no default font had yet been

selected. When using the View pulldown to change font or size, both the font and the size

must be selected. If you select only one, no change will be made. On Macintosh, you can

use the Size/Style menu to control the font.

Part 2: CLAN 32

4.5 CA Styles

CHAT supports many of the CA (Conversation Analysis) codes as developed by Sacks,

Schegloff, Jefferson (1974) and their students. The implementation of CA inside CLAN

was guided by suggestions from Johannes Wagner, Chris Ramsden, Michael Forrester,

Tim Koschmann, Charles Goodwin, and Curt LeBaron. Files that use CA styles should

declare this fact by including CA in the @Options line, as in this example:

@Options: CA

By default, CA files will use the CAfont, because the characters in this font have a fixed

width, allowing the INDENT program to make sure that CA overlap markers are clearly

aligned. When doing CA transcription, you can also select underlining and italics,

although bold is not allowed, because it is too difficult to recognize. Special CA

characters can be inserted by typing the F1 function key followed by some letter or

number, as indicated in a list that you can find by selecting Special Characters under

CLANôs Windows menu. The full list is at http://talkbank.org/CABank/codes.html .

The F1 and F2 keys are also used to facilitate the entry of special characters for Hebrew,

Arabic, and other systems. These uses are also listed in the Special Characters window.

The raised h diacritic is bound to F1-shift-h and the subscript dot is bound to F1-comma.

4.6 Setting Special Colors

You can set the color of certain tiers to improve the readability of your files. To do this,

select the Color Keywords option in the Size/Style pulldown menu. In the dialog that

appears, type the tier that you want to color in the upper box. For example, you may

want to have %mor or *CHI in a special color. Then click on ñadd to listò and edit the

color to the type you wish. The easiest way to do this is to use the crayon selector. Then

make sure you select ñcolor entire tier.ò To learn the various uses of this dialog, try

selecting and applying different options.

4.7 Searching

In the middle of the Edit pulldown menu, you will find a series of commands for

searching. The Find command brings up a dialog that allows you to enter a search string

and to perform a reverse search. The Find Same command allows you to repeat that

same search multiple times. The Go To Line command allows you to move to a

particular line number. The Replace command brings up a dialog like the Find dialog.

However, this dialog allows you to find a certain string and replace it with another one.

You can replace some strings and not others by skipping over the ones you do not want to

replace with the Find-Next function. When you need to perform a large series of

different replacements, you can set up a file of replacement forms and use it by pressing

the from file button. You then are led through the words in this replacement file one by

one. The form of that file is like this:
ñString_A ò ñReplacement_A ò

ñString_B ò ñReplacement_B ò

http://talkbank.org/CABank/codes.html

Part 2: CLAN 33

4.8 Hiding Tiers

To hide or unhide a certain dependent tier, type Esc-4. (Remember to always release the

escape key before typing the next key). Then you type e to exclude a tier and %mor for

the morphological tier. If you want to exclude all tiers, you type just %. To reset the tiers

and to see them all, you type Esc-4 and then r.

You can use the 0hide.cut file in CLANôs /lib folder to set defaults for hiding and

displaying tiers. In that file, (unused) comment line start with the # sign. If you want to

hide a particular tier, just remove the # sign. To go back to displaying that tier, replace

the # sign.

4.9 Send to Sound Analyzer

This option under the Mode menu allows you to send a bulleted sound segment to Praat

or Pitchworks. You choose which analyzer you want to use by an option under the Edit

menu. The default analyzer is Praat. The bullets must be formatted in the current format

(post 2006). If you have a file using the old format, you can use the FIXBULLETS

program to fix them. If you are using Praat, you must first start up the Praat window

(download Praat from http://www.fon.hum.uva.nl/praat) and place your cursor in front of

a bullet for a sound segment. Selecting Send to Sound Analyzer then sends that clip to

the Praat window for further analysis. To run Praat in the background without a GUI,

you can also send this command from a Perl or Tcl script:

system (ñ\ òC:\ \ Program Files \ \ Praatcon.exe \ ò myPraatScript.txt

4.10 Tiers Menu Items

When you open a CHAT file with an @Participants line, the editor looks at each of the

participants in that line and inserts their codes into the Tiers menu. You can then enter

the name quickly, using the commands listed in that menu. If you make changes to the

@Participants line, you can press the Update button at the bottom of the menu to reload

new speaker names. As an alternative to manual typing of information on the @ID lines,

you can enter information for each participant separately using the dialog system that you

start up using the ID Headers option in the Tiers menu.

4.11 Running CHECK Inside the Editor

You can run CHECK from inside the editor. You do this by typing Esc-L or selecting

Check Opened File from the Mode menu. If you are in CHAT Mode, CHECK will look

for the correct use of CHAT. Make sure that you have set your Lib directory to the place

where the depfile.cut file is located. On Windows, this should be c:\TalkBank\CLAN\lib.

CHECK can also be run from the command line using a command such as: check *.cha.

See the section on CHECK in the command descriptions of this manual for more details.

The command line version of CHECK is able to spot a few additional problems that

cannot be detected by the version that operates inside the editor.

Part 2: CLAN 34

4.12 Preferences and Options

You can set various Editor preferences by pulling down the Edit menu and selecting

Options. The following dialog box will pop up:

These options control the following features:

1. Checkpoint frequency. This controls how often your file will be saved. If you set

the frequency to 50, it will save after each group of 50 characters that you enter.

2. Limit of lines in CLAN output. This determines how many output lines will go to

your CLAN output screen. It is good to use a large number, since this will allow

you to scroll backwards through large output results.

3. Tier for disambiguation. This is the default tier for the Disambiguator Mode

function.

4. Open Commands window at startup. Selecting this option makes it so that the

Commands window comes up automatically whenever you open CLAN.

5. No backup file. By default, the editor creates a backup file, in case the program

hangs. If you check this, CLAN will not create a backup file.

6. Start in CHAT Coder mode. Checking this will start you in Text Mode when you

open a new text window.

7. Auto-wrap in Text Mode. This will wrap long lines when you type.

8. Auto-wrap CLAN output. This will wrap long lines in the output.

9. Show mixed stereo sound wave. CLAN can only display a single sound wave

when editing. If you are using a stereo sound, you may want to choose this

option.

10. Output Unix CRs. This is for people who use CLAN on Unix.

4.13 Coder Mode

Coder Mode is an advanced editor feature that is useful for researchers who have defined

a fully structured coding scheme that they wish to apply to all the utterances in a

transcript. To begin Coder Mode, you need to shift out of Editor Mode. To verify your

current mode, just double-click on a file. Near the bottom of the text window is a line like

this:

Part 2: CLAN 35

CLAN [E] [chat] barry .cha 1

The [E] entry indicates that you are in editor mode and the [chat] entry indicates that you

are in CHAT Mode. To begin coding, you first want to set your cursor on the first

utterance you want to code. If the file already has %spa lines coded, you will be adding

additional codes. If none are present yet, Coderôs Editor will be adding new %spa line.

You can use the barry.cha file in the examples/transcripts directory that you have

downloaded from http://talkbank.org/examples.zip to test this out. Once you have placed

the cursor anywhere on the first line you want to code, you are ready to leave CHAT

Mode and start using Coder Mode. To go into Coder Mode, type Esc-e (always release

the escape key before entering the next key). You will be asked to load a codes file. Just

navigate to the examples/coder/ directory and select one of the demo codes files

beginning with the word ñcode.ò We will use codes1.cut for our example.

4.13.1 Entering Codes

The coding tier that appears at the top line of the codes1.cut file is shown at the bottom of

the screen. In this case it is %spa:. You can either double-click this symbol or just hit the

carriage return and the editor will insert the appropriate coding tier header (e.g. %spa), a

colon and a tab on the line following the main line. Next it will display the codes at the

top level of your coding scheme. In this case, they are $POS and $NEG. You can select

one of these codes by using either the cursor keys, the plus and minus keys or a mouse

click. If a code is selected, it will be highlighted. You can enter it by hitting the carriage

return or double-clicking it. Next, we see the second level of the coding scheme.

To get a quick overview of your coding choices, type Esc-s several times in succession

and you will see the various levels of your coding hierarchy. Then return back to the top

level to make your first selection. When you are ready to select a top-level code, double-

click on it with your mouse. Once you have selected a code on the top level of the

hierarchy, the coder moves down to the next level and you repeat the process until that

complete code is constructed. To test this out, try to construct the code $POS:COM:VE.

The coding scheme entered in codes1.cut is hierarchical, and you are expected to go

through all the decisions in the hierarchy. However, if you do not wish to code lower

levels, type Esc-c to signal that you have completed the current code. You may then enter

any subsequent codes for the current tier.

Once you have entered all the codes for a tier, type Esc-c to signal that you are finished

coding the current tier. You may then either highlight a different coding tier relevant to

the same main line, or move on to code another main line. To move on to another main

line, you may use the arrow keys to move the cursor or you may automatically proceed to

next main speaker tier by typing Control-t. Typing Control-t will move the cursor to the

next main line, insert the highlighted dependent coding tier, and position you to select a

code from the list of codes given. If you want to move to yet another line, skipping over a

line, type Control-t again. Try out these various commands to see how they work.

If you want to code data for only one speaker, you can restrict the way in which the Con-

trol-t feature works by using Esc-t to reset the set-next-tier-name function. For example,

you confine the operation of the coder to only the *CHI lines, by typing Esc-t and then

entering CHI. You can only do this when you are ready to move on to the next line.

If you receive the message ñFinish coding current tierò in response to a command (as, for

Part 2: CLAN 36

example, when trying to change to editor mode), use Esc-c to extricate yourself from the

coding process. At that point, you can reissue your original command. Here is a summary

of the commands for controlling the coding window. On Macintosh, use the command

key instead of the control key. Remember to release the esc key before the next

character.

Command Function

esc - c finish current code

esc - c (again) finish current tier

control - z undo

control - t or F1 finish current tier and go to next

esc - t restrict coding to a particular speaker

esc - esc go to the next speaker

esc - s show subcodes under cursor

4.13.2 Setting Up Your Codes File

When you are ready to begin serious coding, you will want to create your own codes file

to replace our sample. To do this, open up a new file using command-N. When editing

this new codes file, make sure that you are in Text Mode and not CHAT Mode. You

select Text Mode from the menu by deselecting (unchecking) CHAT Mode in the Mode

menu. To make sure you are in Text Mode, look for [E][TEXT] in the bottom line of the

Editor window. If you decide to use another editor or if you do not use Text Mode in

CLAN, you will probably have problems.

You will probably find it useful to refer to the sample codes files in the /coder folder in

the examples.zip file found at http://talkbank.org/examples.zip. In the next paragraphs,

we will explain the construction of the codes-basic.cut file in that folder. The first line of

your codes-basic.cut file is:

\ +b50 +d +l1 +s1

In this example, the +b option sets the checkpoint buffer (that is, the interval at which the

program will automatically back up the work you have done so far in that session). If you

find the interval is too long or too short, you can adjust it by changing the value of b. The

+d option tells the editor to keep a ñ.bakò backup of your original CHAT file. To turn off

the backup option, use ïd. The +l option reorders the presentation of the codes based on

their frequency of occurrence. There are three values of the +l option:

0 leave codes without frequency ordering

1 move most frequent code to the top

2 move codes up one level by frequency

If you use the +s option, the program assumes that all the codes at a particular level have

the same codes symmetrically nested within them. For example, consider the codes-

basic.cut file:

\ +b50 +l1 +s1

%spa:

 " $MOT

 :POS

 :Que

 :Res

 :NEG

 " $CHI

Part 2: CLAN 37

 The spaces in this file must be spaces and not tabs. The line with $MOT begins with a

space. Then there is the quote sign, followed by one more space. There are two spaces

before :POS, because that code appears in the second field. There are three spaces before

:Que, because that code appears in the third field. There must be a tab following the

colon on the %spa: tier, because that code needs to be inserted in the actual output in the

CHAT file. The above file is a shorthand for the following complete listing of code

types:

$MOT:POS:Que

$MOT:POS:Res

$MOT:NEG:Que

$MOT:NEG:Res

$CHI:POS:Que

$CHI:POS:Res

$CHI:NEG:Que

$CHI:NEG:Res

It is not necessary to explicitly type out each of the eight combinations of codes. With the

+s1 switch turned on, each code at a level is copied across the branches so that all of the

siblings on a given level have the same set of offspring. A more extensive example of a

file that uses this type of inheritance is the system for error coding given in the

/coder/codeserr.cut file in the examples.zip file found at http://talkbank.org/examples.zip.

If not all codes at a given level occur within each of the codes at the next highest level,

each individual combination must be spelled out explicitly and the +s option should not

be used. The second line in the file should declare the name for your dependent tier. It

should end with a tab, so that the tab is inserted automatically in the line you are con-

structing. A single codes.cut file can include coding systems for many different

dependent tiers with each system in order in the file and beginning with an identifier such

as $spa:. Setting up the codes.cut file properly is the trickiest part of Coder Mode. Once

properly specified, however, it rarely requires modification. If you have problems getting

the editor to work, chances are the problem is with your codes.cut file.

Part 2: CLAN 38

5 Media Linkage
In the old days, transcribers would use a foot pedal to control the rewinding and replaying

of tapes. With the advent of digitized audio and video, it is now possible to use the

computer to control the replay of sound during transcription. Moreover, it is possible to

link specific segments of the digitized audio or video to segments of the computerized

transcript. This linkage is achieved by inserting a header tier of this shape

@Media: clip, audio

The first field in the @Media line is the name of the media file. You do not need to

include the extension of the media file name. Each transcript should be associated with

one and only one media file. To keep your project well organized it is best if the media

file name matches the transcript file name. The second field in the @Media header tells

whether the media is audio, video, or missing.

Once this header tier is entered, you can use various methods to insert sound markers that

appear initially to the user as bullets. When these bullets are opened, they look like this:

*ROS: alert [!] alert ! .1927_4086 .

When then are closed then look like this:

*ROS: alert [!] alert ! .

The size and shape of the bullet character varies across different fonts, but it will usually

be a bit darker than what you see above. The information in the bullet provides clearer

transcription and immediate playback directly from the transcript. The first number in the

bullet indicates the beginning of the segment in milliseconds and the second number

indicates the end in milliseconds.

Once a CHAT files has been linked to audio or video, it is easy to playback the

interaction from the transcript using ñContinuous Playbackò mode (Esc-8, remember to

always release the escape key before typing the next key). In this mode, the waveform

display is turned off and the computer plays back the entire transcript, one utterance after

another, while moving the cursor and adjusting the screen to continually display the cur-

rent utterances. This has the effect of ñfollowing the bouncing ballò as in the old sing-

along cartoons or karaoke video. In Continuous Movie Playback Mode, the video is

played as the cursor highlights utterances in the text.

To create a text that can be played back and studied in this way, however, the user can

make use of any combination of six separate methods: sonic mode, transcriber mode,

video mode, sound walker, time mark editing, and exporting to partitur editors. This

chapter describes each of these six methods and leaves it up to the individual researcher

which of these methods is best for his or her project.

To use any of these methods, you need to have a digitized audio or video file. Audio files

can be in either .wav or .mp3 format. Video files can be in any video format that can be

played by QuickTime (Mac) or Windows Media Player (WMP for PC). You will also

need to have QuickTime or WMP installed on your machine.

5.1 Sonic Mode

Sonic Mode involves transcribing from a sound waveform. This mode can also be used

Part 2: CLAN 39

with a video file. In that case, before beginning, Sonic Mode extracts the audio track

from the video file. If you do not specifically select the Sonic Mode option, you can still

edit video directly without reference to the audio, as described in the section on Video

Linking below.

To begin Sonic transcription, you should launch CLAN and open a new file. Type in your

basic header tiers first, along with the @Media header discussed above. Then, go to the

Mode pulldown menu and select ñSonic Modeò and you will be asked to locate the

digitized sound file. Once you have selected your file, the waveform comes up, starting at

the beginning of the file. Several functions are available at this point:

1. Sound playing from the waveform. You can drag your cursor over a segment of

the waveform to highlight it. When you release your mouse, the segment will play.

As long as it stays highlighted, you can replay it by holding down the command key

and clicking the mouse. On Windows, you use the control key, instead of the

command key. At this point, it does not matter where in the bottom waveform

window your cursor is positioned. But, if you click on the bullet in the text window,

then you will play the sound linked to the bullet on which you click in that window.

2. Waveform demarcation. You can move the borders of a highlighted region by

holding down the shift key and clicking your mouse to place the cursor at the place

to which you wish the region to move. You can use this method to either expand or

contract the highlighted region. As a side effect, once you expand or contract an

area, the sound will also play.

3. Transcription. While you are working with the waveform, you can repeatedly play

the sound by using command-click. This will help you recognize the utterance you

are trying to transcribe. You then go back to the editor window and type out the

utterance that corresponds to the highlighted segment.

4. Expanding and hiding the bullets. If you want to see the exact temporal references

that are hiding inside the bullet symbols, you can type Esc-A to expand them.

Typing Esc-A again will hide them again.

5. Linking. When you believe that the highlighted waveform corresponds correctly to

the utterance you have transcribed, you can click on the ñsò button to the left of the

waveform display and a bullet will be inserted. This bullet contains information

regarding the exact onset and offset of the highlighted segment. You can achieve the

same effect using command-I (insert time code). If you want to change the value of

a bullet already in the transcript, you do the same thing while your cursor is inside

or right next to the bullet in the transcript window.

6. Changing the waveform window. The +H and -H buttons on the left allow you to

increase or decrease the amount of time displayed in the window. For highly

accurate border placement, use a very wide horizontal display. The +V and -V

buttons allow you to control the amplitude of the waveform. The *L and *R

buttons can be used to enable or disable the left and right channels in a stereo

recording. When the asterisk is present, the channel is enabled. When it is

removed, it is disabled.

7. Scrolling. At the bottom of the sound window is a scroll-bar that allows you to

move forward or backward in the sound file (please note that scrolling in the sound

file can take some time as the sound files for long recordings are very large and take

up processing capacity).

Part 2: CLAN 40

8. Utterance -> Waveform Display. To highlight the section of the waveform associ-

ated with an utterance, you need to triple-click on the bullet following the utterance

you want to replay. You must triple-click at a point just before the bullet to get

reliable movement of the waveform. If you do this correctly, the waveform will

redisplay. Then you can replay it by using command-click.

9. Waveform -> Utterance Display. Correspondingly, you can double-click an area

of the waveform and, if there is a corresponding bullet in the transcript, then the line

with that bullet will be highlighted.

10. Changing the current segment. To modify the extent of the current highlighted

segment in the waveform window, you can use these four functions:

¶ control <- (left arrow) will decrease the BEGIN value by 25 msec for the

segment in the text window and media.

¶ control -> (right arrow) will increase the BEGIN value by 25 msec for the

segment in the text window and media.

¶ command <- (left arrow) will decrease the END value by 25 msec for the

segment in the text window and media.

¶ command -> (right arrow) will increase the END value by 25 msec for the

segment in the text window and media.

Here are some additional features of these four commands:

¶ If you place your cursor right next to a bullet, these same four functions will

also work even if the waveform window is not open.

¶ If you open a bullet and hit one of these key combinations, you will hear the

audio and see the time values changing inside the bullet.

¶ If you keep any of these key combinations pressed down, they will continue

to change the time until released.

¶ On Mac OSX, the first two commands are linked to functions in Mission

Control. To change this, go in System Preferences->Keyboard->Shortcuts-

>Mission Control and uncheck ñmove left a spaceò and ñmove right a

spaceò.

¶ Also, in OSX you can change the color of the highlighted region in System

Preferences -> General -> Highlight Color.

¶ For changes that are less that 25 msec, just edit the time values in the bullets

directly.

11. Undo. If you make a mistake in linking or selecting an area, you can use the Undo

function with command-Z to undo that mistake.

12. Time duration information . Just above the waveform, you will see the editor

mode line. This is the black line that begins with the date. If you click on this line,

you will see three additional numbers. The first is the beginning and end time of the

current bullets-1 and F5bullets-2window in seconds. The second is the duration of

the selected part of the waveform in hours:minutes:seconds.milliseconds. The third

is the position of the cursor in seconds.milliseconds. If you click once again on the

mode line, you will see sampling rate information for the audio file.

5.2 Transcriber Mode

This mode is faster than Sonic or Video Mode, but often less precise. However, unlike

Part 2: CLAN 41

Sonic Mode, it can also be used for video transcription. Transcriber Mode is intended for

two uses. The first is for transcribers who wish to link a digitized file to an already

existing CHAT transcript. The second is for transcribers who wish to produce a new

transcript from a digitized file.

5.2.1 Linking to an already existing transcript

To link a video or audio file to an already existing transcript, please follow these steps:

1. Place your CLAN transcript and video file in the same directory.

2. Set your working directory as the location of the video and transcript.

3. Open the CLAN transcript.

4. Type escape-L to make sure that your transcript passes CHECK. If not, fix any

problems.

5. Insert an @Media header after the last @ID line, as described at the beginning of

this chapter.

6. Place your cursor somewhere within the first utterance.

7. Click on Mode, Transcribe Sound or Movie or just type F5.

8. When CLAN asks you for the media, click on the audio or video file you want to

transcribe.

9. The movie or audio will automatically start playing in Quicktime (Mac) or

Windows Media Player (PC). When it does, listen for the different utterances. At

the end of each utterance, press the spacebar. This will automatically record a bullet

at the end of the line that ñconnectsò the video to the transcript.

10. If you get off at any point in time, click on the video window and the video will stop

running.

11. Once playback is stopped, reposition your cursor at the last correct bullet and again

click on ñTranscribe sound or movie.ò The movie will automatically begin at the

bullet where your cursor is. As you press the spacebar, the new bullets will

overwrite the old ones.

12. After you have spent some time inserting bullets, click file, save. The bullets will

be saved into your transcript.

13. After you are done adding bullets, click in the video window to stop the process.

Then go to the top of the file, and insert @Begin and @Participants lines. Use the

@Participants to generate key shortcuts under the View menu. Then replay the first

bullet, transcribe it, and use the appropriate command-1 or command-2 key to enter

the speaker ID. Then go on to the next utterance and repeat the process. The result

will be a full transcription that is roughly linked to the audio.

5.2.2 To create a new transcript

You can use the F5 insertion mode to create a new transcript in which the links have

already been inserted. Here are the steps:

1. Open a blank file.

2. Make sure that your media file is in your working directory along with your new

blank file.

3. Enter the @Begin, @Languages, and @Media headers.

4. Go to "Mode," and select "Transcribe Sound or Movie {F5}."

5. Find the sound or movie clip you want to transcribe.

Part 2: CLAN 42

6. When you click on it, the sound or movie will open in another window.

7. Immediately, start pressing the spacebar at the end of each utterance. This will

insert a bullet into the blank transcript.

8. When you are finished inserting the bullets, save the file.

9. Then, one at a time, Crtl-click on the bullets and transcribe them.

10. If the bullets need some adjusting, you may do this while you are transcribing by

manipulating the numbers in the movie window and clicking on the save button in

the lower right hand corner. You can also expand the bullets {Esc-A} and type it in

manually.

11. Save frequently.

12. When you are done transcribing, it is a good idea to look at the transcript in

continuous playback mode to make sure everything is transcribed correctly. To do

this go to "Mode," and then "Continuous Playback {Esc-8}."

5.2.3 Sparse Annotation

For some applications, it is not necessary to produce a complete transcription of an

interaction. Instead, it is sufficient to link a few comments to just a few important

segments. We can refer to this as sparse annotation of ñnakedò video. For example,

during a one-hour classroom Mathematics lesson, it might be sufficient to point out just a

few "teachable moments." To do this, you can follow these steps:

1. open a new file.

2. insert a few basic headers, along with the @Media header discussed at the

beginning of this chapter. Make sure the media is in your working directory.

3. select the "Edit" menu and pulldown to "Select F5 option"

4. in segment length type 3000 for 3 second bullet length press OK button

5. start F5 mode by pressing F5 key

6. select the media you want and CLAN will start playing.

7. when you hear what you want to comment on click F1 or F2 or F5

8. the bullet will be inserted into text and playback will stop

9. click on transcript text window and add comment to that bullet.

10. move text cursor to the last bullet less tier, i.e. "*: ".

11. press F5 again and the process will start again from last stop.

5.3 Video Linking

To achieve maximum compatibility with CLAN and web-based video playback, we

recommend using the H.264 format, which is now the default for high-definition. This is

the format used by all new recording devices. Older video can be converted to H.264

format using programs like iSKySoft Video Converter or Handbrake. Additional

information about video recording can be found at http://www.talkbank.org/info/dv.html.

When starting up video playback, it can be the case that the movie window occupies too

much of the screen. In order to size it properly, you can click on the green button in the

top of the QuickTime video window and the window will be resized to the smallest

dimension. Then you drag on the botton right corner to expand it to the size you wish.

To learn how to do video linking, you should refer to the screencasts at

http://www.talkbank.org/info/dv.html

Part 2: CLAN 43

http://talkbank.org/screencasts. If you want to link your transcript to a movie or create a

new transcript that is linked to a movie, you can use one of two methods ï Transcriber

Mode or Manual Linking Mode. Transcriber Mode was described in the previous section.

It is a quick and easy method that will prove useful for beginning linking to a transcript.

Using this method, however, sacrifices precision. It is then necessary to go back and

tighten up the links using the Manual Linking method. The Help screen on the video

window gives you the functions you will need for this. Many of these functions apply to

both video and audio. Their use is summarized here:

1. <- will set back the current time. This function makes small changes at first and then

larger ones if you keep it pressed down.

2. -> will advance the current time. This function makes small changes at first and then

larger ones if you keep it pressed down.

3. control <- will decrease the beginning value for the segment in the text window as

well as the beginning value for the media in the video window. This function makes

small changes at first and then larger ones if you keep it pressed down.

4. control -> will increase the beginning value for the segment in the text window as

well as the beginning value for the media in the video window. This function makes

small changes at first and then larger ones if you keep it pressed down.

5. command <- will decrease the beginning value for the segment in the text window

as well as the beginning value for the media in the video window. This function

makes small changes at first and then larger ones if you keep it pressed down.

6. command -> will increase the beginning value for the segment in the text window as

well as the beginning value for the media in the video window. This function makes

small changes at first and then larger ones if you keep it pressed down.

7. / pressing the button with the right slash with the start time active moves the start

time to current time. If the current time is active, it moves the current time to the

start time.

8. \ pressing the button with the left slash with the end time active moves the end time

to current time. If the current time is active, it moves the current time to the end

time.

9. Triple-clicking on the relevant cell has the same effect as the above two functions.

10. You can play the current segment either by pressing the repeat button or the space

button when the video window is active. The behavior of the repeat play function

can be altered by inserting various values in the box to the right of ñrepeatò. These

are illustrated in this way:

 -400 add 400 milliseconds to the beginning of the segment to be

repeated

 +400 add 400 milliseconds to the end of the segment to be repeated

 b400 play the first 400 milliseconds of the segment

 e400 play the last 400 milliseconds of the segment

5.4 SoundWalker

 The SoundWalker facility is based on a design from Jack DuBois at UC Santa Barbara.

This controller allows you to step forward and backwards through a digitized file, using a

few function keys. It attempts to imitate the old transcriber foot pedal, but with some

http://talkbank.org/screencasts

Part 2: CLAN 44

additional functionality. The options you can set are:

1. walk length: This sets how long a segment you want to have repeated.

2. loop number: If you set 3, for example, the programs plays each step three times

before moving on.

3. backspace: The amount of rewinding in milliseconds at the end of each loop.

4. walk pause length: The duration of the pause between loops.

5. playback speed: This setting allows you to speed up or slow down your playback

rate.

The basic contrast here is between "stepping" which means moving one step forward or

back and "walking" which just keeps on stepping one step after another in the manner

you have specified with the above option. The keys you use are:

F6 walk

F7 step backward

F8 play current step

F9 step forward

shift F7 play to the end

F1-F12 stop playing

You will find all these options in the "Walker Controller" dialog that you open under the

Window menu. Once you open the Walker Controller and thereby enable SoundWalker,

the functions described above become enabled.

If you would like to use a real foot pedal with SoundWalker, you can order one

(Windows only) from www.xkeys.com. This foot pedal installs along with the keyboard

and allows you to bind F6, F7, and F8 to the left, middle, and right pedals for the

functions of rewind, play, and forward.

http://www.xkeys.com/

Part 2: CLAN 45

5.5 Export to Partitur Editors

Although CLAN is an excellent tool for basic transcription and linkage, more fine-

grained control for overlap marking is best achieved in a Partitur or ñmusical scoreò

editor like EXMARaLDA or ELAN. To convert CHAT files to and from ELAN and

EXMARaLDA, you can use the CHAT2ELAN, ELAN2CHAT, CHAT2EXMAR, and

EXMAR2CHAT programs. When editing in ELAN and EXMARaLDA, it is best to

focus only on the use of these tools for time alignment and not for other aspects of

editing, since CLAN is more highly structured for these other aspects of transcription.

5.6 Playback Control

Once a transcript has been linked, you will want to study it through playback. Basic

playback uses the Esc-8 command for continuous playback and command-click for

playback of a single utterance. You can also use Esc-9 to playback only the segments

marked with time codes and ignore the silence in between. This function is particularly

useful if you choose to hide certain speakerôs tiers. For example, if you hide the Mother

using Esc-4, then when you use Esc-9 it will skip over the segments spoken by the

Mother.

5.7 Multiple Video Playback

If you have recorded an interaction using several cameras, and if the videos you have

created are all synchronized in time, you can switch playback back and forth from these

multiple video files using a single CHAT transcript. To do this, you should name your

videos with a constant first part of the name and then add an additional variable part to

distinguish each video. For example, you could have ñscale01ò as your constant name

and then the three videos would have the names scale01-1.mov, scale01-2.mov, and

scale01-3.mov. If this is your naming convention for the three videos, then you would

have these two lines in your *.cha transcript file:

@Media: scale 01, vide o

@Videos: 1, 2, 3

If you want somewhat more mnemonic names, you could name the files as scale05-

1center, scale05-2left, and scale05-3right and then the @Videos line would be:

@Videos: 1center, 2left, 3 right

When you open the transcript, and start playback using continuous playback with Esc-8

or some other method, the default video will be the first one in the list. To switch to

playback from another video clip, stop the playback and type F3 followed by the number

of the video you want to play. For example, if you want to shift playback from scale05-1

to scale05-3, you would type F3-3. A sample file with three videos for testing out this

process can be downloaded from http://talkbank.org/resources/F3.

5.8 Manual Editing

You can use manual editing of the bullets to modify playback in three ways. The first

way, which is very often quite important and practical, is to simply open up the bullets

using Esc-A and modify the numbers using your own impressions of the length of the

http://talkbank.org/resources/F3

Part 2: CLAN 46

sound. You can modify either number and check your work by playing the new

alignment using command-click.

The second method uses the four key combinations described in section 7.1 on the Sonic

Mode for changing the boundaries of the segment in a sound bullet. To make this work,

place your cursor right next to a bullet, and then these same four functions will also work

even if the waveform window is not open. If you open a bullet and hit one of these key

combinations, you will hear the audio and see the time values changing inside the bullet.

The third method for manual editing applies in fewer cases. It is useful if you have an

audio recording with a large segment that you do not wish to transcribe, you may also

wish to exempt this segment from continuous playback. If you do not apply forced

skipping to do this, you will need to listen through this untranscribed material during

continuous playback. To implement forced skipping, you should open your bullets using

Esc-A. Then go to the end of the bullet after the skip and insert a dash after the second

time value. For example, you might change 4035_5230 to 4045_5300. Then close the

bullets and save the file.

Part 2: CLAN 47

6 Other Features

6.1 Shell Commands

CLAN provides several commands that help you move around in the file system and

copy files. These include:

cd This command allows you to change directories. With two dots, you can move

up one directory. If you type a folderôs name and the folder is in the current

folder, you can move right to that folder. If you type a folderôs absolute address,

you can move to that folder from any other folder. For example, the command

cd HardDisk:Applications: CLAN on the Macintosh will take you to the

CLAN directory.

copy If you want to copy files without going back to the Finder, you can use this

command. The -q option asks to make sure you want to make the copy.

del This command allows you to delete files. Using this in combination with the +re

switch can be very dangerous. In this combination, the command del * can

delete all files from your current working directory and those below it. Please

be careful!

dir This command lists all the files in your current directory.

info This command displays the available programs and commands.

list This command lists the files that are currently in your input files list.

rmdir This command deletes a directory or folder.

type This command displays a file in the CLAN output window.

6.2 Online Help

CLAN has a limited form of online help. To use this help, you simply type the name of

the command without any further options and without a file name. The computer will

then provide you with a brief description of the command and a list of its available

options. To see how this works, just type freq and a carriage return and observe what

happens. If you need help remembering the various shell commands discussed in the

previous section, you can click on the Help button at the right of the Commands

window. If there is something that you do not understand about CLAN, the best thing

you can do is to try to find the answer to your problem in this manual.

6.3 Commands Listing

It is possible to get a complete list of keystroke bindings for CLAN commands by typing

Esc-h. This creates a file called keys_list.cut that you can then read, save, or print out.

6.4 Aliases

If you make frequent use of a CLAN command with specific switches, you can save time

and memory and increase reliability by creating an alias. Aliases come in two flavors:

those that require arguments and those that do not. By default, an alias executes a fully

formed command with no arguments. For example, given this alias

Part 2: CLAN 48

chifreq freq +t*chi *.cha

typing ñchifreqò will execute that complete command with no additional arguments.

The second type of alias accepts arguments. These aliases are marked in the aliases.cut

file in CLANôs lib/fixes folder as "%argument-needed". For example, this alias

trim kwal +t* +t@ +t% +d +f

will save you from having to remember all the details of how to configure KWAL to

remove a given dependent tier. So, if you then type:

trim ït%mor *.cha

This will operate as if the command were really:

kwal +t* +t@ +t% - t%mor +d +f *.cha

If you want to remove both %mor and %gra lines, you can then just type:

trim ït%mor ït%gra *.cha

This trim alias is already included in the 0aliases.cut file in CLAN/lib/fixes. If you want

to create additional aliases, you can read what it says in that file and put your additional

aliases in an aliases.cut file inside /lib/fixes.

If you type the word ñtrimò by itself, CLAN will give you the usage message. For aliases

that take no argument, you would have to type a question mark, as in chifreq ?, to see the

usage message.

6.5 Macros

CLAN can store up to 10 Macros. Typing Esc-n will open up a dialog that lets you assign

strings to numbers. For example, you might want to assign the string %spa: as Macro #1.

You would type %spa: into the box next to Macro String: and then enter the number ñ1ò

above. Then you could insert this string by typing control-w-1. You will also see that

just typing control-w pops up a list of all the macros you have assigned.

6.6 Testing CLAN

It is a good idea to make sure that CLAN is conducting analyses correctly. In some cases

you may think that the program is doing something different from what it is designed to

do. To prevent misunderstandings and misinterpretations, you should set up a small test

file that contains the various features you want CLAN to analyze. For example, if you are

running a FREQ analysis, you can set a file with several instances of the words or codes

for which you are searching. Be sure to include items that should be ñmissesò along with

those that should be ñhits.ò For example, if you do not want CLAN to count items on a

tier, make sure you put some unique word on that tier. If the output of FREQ includes

that word, you know that something is wrong. In general, you should be testing not for

correct performance but for possible incorrect performance. To make sure that you are

using the +t and +s switches correctly, make up a small file and then run KWAL over it

without specifying any +s switch. This should output exactly the parts of the file that you

intend to include or exclude.

Part 2: CLAN 49

6.7 Bug Reports

Although CLAN has been extensively tested for years, it is possible that some analyses

will provide incorrect results. When this occurs, the first thing to do is to reread the

relevant sections of the manual to be sure that you have entered all your commands

correctly. If a rereading of the manual does not solve the problem, then you can send e-

mail to macw@cmu.edu to try to get further assistance. In some cases, there may be true

ñbugsò or program errors that are making correct analyses impossible. Should the

program not operate properly, please send e-mail to macw@cmu.edu with the following

information:

1. a description of the machine you are using and the operating system you are run-

ning,

2. a copy of the file that the program was being run on,

3. the complete command line used when the malfunction occurred,

4. all the results obtained by use of that command, and

5. the date of compilation of your CLAN program, which you can find by clicking on

ñAbout CLANò at the top left of the menu bar on Macintosh or the ñHelp CLANò

option at the top right of the menu bar for Windows.

Use WinZip or Stuffit to save the input and output files and include them as an e-mail at-

tachment. Please try to create the smallest possible file you can that will still illustrate the

bug.

6.8 Feature Requests

CLAN has been designed in response to information we have received from users about

the kinds of programs they need for furthering their research. Your input is important, be-

cause we are continually designing new commands and improving existing programs. If

you find that these programs are not capable of producing the specific type of analysis

that you are trying to achieve, contact us and we will do our best to help. Sometimes we

can explain ways of using CLAN to achieve your goals. In other cases, it may be

necessary to modify the program. Each request must include a simple example of an

input file and the output you would like, given this input. Also, please explain how this

output will help you in your research. You can address inquiries by email to

macw@cmu.edu.

Part 2: CLAN 50

7 Analysis Commands
The analytic work of CLAN is performed by a series of commands that search for strings

and compute a variety of indices. These commands are all run from the Commands

window. In this section, we will examine each of the commands and the various options

that they take. The commands are listed alphabetically. The following table provides an

overview of the various CLAN commands. The CHECK program is included here,

because it is so important for all aspects of use of CLAN.

CLAN also includes two other major groups of commands. The first group is used to

perform morphosyntactic analysis on files by tagging words for their part of speech and

detecting grammatical relations. These programs are discussed in in the MOR manual.

In addition, CLAN includes a large group of Utility commands that are described in the

chapter on Utility Commands.

Command Page Function

CHAINS 51 Tracks sequences of interactional codes across speakers.

CHECK 55 Verifies the correct use of CHAT format.

CHIP 58 Examines parent-child repetition and expansion.

COMBO 63 Searches for complex string patterns.

COOCUR 71 Examines patterns of co-occurence between words.

DIST 72 Examines patterns of separation between speech act codes.

DSS 73 Computes the Developmental Sentence Score.

EVAL 80

FREQ 85 Computes the frequencies of the words in a file or files.

FREQMERG 100 Combines the outputs of various runs of FREQ.

The best way to see a

complete list of

options for a command

is to type the name of

the command followed

by a carriage return in

the Commands

window. For example,

if you type just the

word chip, you will

see a list of all

available options.

Many of these will be

options shared with

other programs. For

information on these,

the best approach is to

go to the chapter 8 in

100 Tracks the frequencies in various utterance positions.

Part 2: CLAN 51

this manual which

describes all these

shared options.

In addition, many of

the programs have

some unique options.

FREQMERG has no

unique options.

FREQPOS

GEM 102 Finds areas of text that were marked with GEM markers.

GEMFREQ 104 Computes frequencies for words inside GEM markers.

GEMLIST 104 Lists the pattern of GEM markers in a file or files.

IPSYN 105 Computes IPSYN scores

KEYMAP 107 Lists the frequencies of codes that follow a target code.

KIDEVAL 108 Computes a wide variety of indices using other programs.

KWAL 113 Searches for word patterns and prints the line.

MAXWD 116 Finds the longest words in a file.

MLT 117 Computes the mean length of turn.

MLU 120 Computes the mean length of utterance.

MODREP 125 Matches the childôs phonology to the parental model.

MORTABLE 128 Create a frequency table of parts of speech and affixes.

PHONFREQ 128 Computes the frequency of phonemes.

RELY 130 Measures reliability across two transcriptions.

SCRIPT 132 Compares transcripts to target scripts

TIMEDUR 132 Computes time durations of utterances and pauses

VOCD 134 Computes the VOCD lexical diversity measure.

WDLEN 139 Computes the length of utterances in words.

7.1 CHAINS

CHAINS is used to track sequences of interactional codes. These codes must be entered

by hand on a single specified coding tier. To test out CHAINS, you may wish to try the

file chains.cha that contains the following sample data.

@Begin

@Participants: CHI Sarah Target_child, MOT Carol Mother

*MOT: sure go ahead [c].

%cod: $A

%spa: $nia:gi

*CHI: can I [c] can I really [c].

%cod: $A $D. $B.

%spa: $nia:fp $npp:yq.

Part 2: CLAN 52

%sit: $ext $why. $mor

*MOT: you do [c] or you don't [c].

%cod: $B $C.

%spa: $npp:pa

*MOT: that's it [c].

%cod: $C

%spa: $nia:pa

@End

The symbol [c] in this file is used to delimit clauses. Currently, its only role is within the

context of CHAINS. The %cod coding tier is a project-specific tier used to code possible

worlds, as defined by narrative theory. The %cod, %sit, and %spa tiers have periods

inserted to indicate the correspondence between [c] clausal units on the main line and se-

quences of codes on the dependent tier.

To change the order in which codes are displayed in the output, create a file called

codes.ord. This file could be in either your working directory or in the \childes\clan\lib

directory. CHAINS will automatically find this file. If the file is not found then the codes

are displayed in alphabetical order, as before. In the codes.ord file, list all codes in any

order you like, one code per line. You can list more codes than could be found in any one

file. But if you do not list all the codes, the missing codes will be inserted in alphabetical

order. All codes must begin with the $ symbol.

7.1.1 Sample Runs

For our first CHAINS analysis of this sample file, let us look at the %spa tier. If you run

the command:

chains + t%spa chains.cha

you will get a complete analysis of all chains of individual speech acts for all speakers, as

in the following output:

> chains +t%spa chains.cha

CHAINS +t%spa chains.cha

Mon May 17 13:09:34 1999

CHAINS (04 - May- 99) is conducting analyses o n:

 ALL speaker tiers

 and those speakers' ONLY dependent tiers matching: %SPA;

**

From file <chains.cha>

Speaker markers: 1=*MOT, 2=*CHI

$nia:fp $nia:gi $nia:pa $npp:pa $npp:yq line #

0 1 0 0 0 3

2 0 0 0 2 6

0 0 0 1 0 10

0 0 1 0 0 13

ALL speakers:

 $nia:fp $nia:gi $nia:pa $npp:pa $npp:yq

chains 1 1 1 1 1

Avg leng 1.00 1.00 1.00 1.00 1.00

Std dev 0.00 0.00 0.00 0.00 0.00

Min leng 1 1 1 1 1

Max leng 1 1 1 1 1

Speakers *MOT:

 $nia:fp $nia:gi $nia:pa $npp:pa $npp:yq

chains 0 1 1 1 0

Part 2: CLAN 53

Avg leng 0.00 1.00 1.00 1.00 0.00

Std dev 0.00 0.00 0.00 0.00 0.00

Min leng 0 1 1 1 0

Max leng 0 1 1 1 0

SP Part. 0 1 1 1 0

SP/Total 0.00 1.00 1.00 1.00 0.00

Speakers *CHI:

 $nia:fp $nia:gi $nia:p a $npp:pa $npp:yq

chains 1 0 0 0 1

Avg leng 1.00 0.00 0.00 0.00 1.00

Std dev 0.00 0.00 0.00 0.00 0.00

Min leng 1 0 0 0 1

Max leng 1 0 0 0 1

SP Part. 1 0 0 0 1

SP/Total 1.00 0.00 0.00 0.00 1.00

It is also possible to use the +s switch to merge the analysis across the various speech act

codes. If you do this, alternative instances will still be reported, separated by commas.

Here is an example:

chains +d +t%spa chains.cha +s$nia:%

This command should produce the following output:

Speaker markers: 1=*MOT, 2=*CHI

$nia: line #

1 gi 3

2 fp 6

 6

1 pa 13

ALL speak ers:

 $nia:

chains 2

Avg leng 1.50

Std dev 0.50

Min leng 1

Max leng 2

Speakers *MOT:

 $nia:

chains 2

Avg leng 1.00

Std dev - 0.00

Min leng 1

Max leng 1

SP Part. 2

SP/Total 0.67

Speakers *CHI:

 $nia:

chains 1

Avg leng 1.00

Std dev 0.00

Min leng 1

Max leng 1

SP Part. 1

SP/Total 0.33

You can use CHAINS to track two coding tiers at a time. For example, one can look at

chains across both the %cod and the %sit tiers by using the following command. This

Part 2: CLAN 54

command also illustrates the use of the +c switch, which allows the user to define units of

analysis lower than the utterance. In the example file, the [c] symbol is used to delimit

clauses. The following command makes use of this marking:

chains +c"[c]" +d +t%cod chains.cha +t%sit

The output from this analysis is:

Speaker markers: 1=*MOT, 2=*CHI

$a $b $c $d

line #

1

3

2 $ext $why 2 $ext $why

6

 2 $mor

6

 1 1

11

 1

14

ALL speakers:

 $a $b $c $d

chains 1 1 1 1

Avg leng 2.00 2.00 2.00 1.00

Std dev 0.00 0.00 0.00 0.00

Min leng 2 2 2 1

Max leng 2 2 2 1

Speakers *MOT:

 $a $b $c $d

chains 1 1 1 0

Avg leng 1.00 1.00 2.00 0.00

Std dev 0.00 0.00 0.00 0.00

Min leng 1 1 2 0

Max leng 1 1 2 0

SP Part. 1 1 1 0

SP/Total 0.50 0.50 1.00 0.00

Speakers *CHI:

 $a $b $c $d

chains 1 1 0 1

Avg leng 1.00 1.00 0.00 1.00

Std dev 0.00 0.00 0.00 0.00

Min leng 1 1 0 1

Max leng 1 1 0 1

SP Part. 1 1 0 1

SP/Total 0.50 0.50 0.00 1.00

7.1.2 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word chains, you will see a list of up to 30 available options. Many of these

will be options shared with other programs. For these, the best approach is to go to the

chapter 8 in this manual that describes all these shared options.

In addition, many of the programs have some unique options. CHAINS has the following

unique options:

Part 2: CLAN 55

+c The default unit for a CHAINS analysis is the utterance. You can use the +c option

to track some unit type other than utterances. The other unit type must be delimited

in your files with some other punctuation symbol that you specify after the +c, as

in +c"[c]" which uses the symbol [c] as a unit delimiter. If you have a large set of

delimiters you can put them in a file and use the form +c@filename. To see how

this switch operates try out this command:

 chains +c"[c]" +d +t%cod chains.cha

+d Use this switch to change zeroes to spaces in the output. The following command

illustrates this option:

 chains +d +t%spa chains.cha +s$nia:%

 The +d1 value of this option works the same as +d, while also displaying every

input line in the output.

+sS This option is used to specify codes to track. For example, +s$b will track only the

$b code. A set of codes to be tracked can be placed in a file and tracked using the

form +s@filename. In the examples given earlier, the following command was

used to illustrate this feature:

 chains +d +t%spa chains.cha +s$nia:%

+wN Sets the width between columns to N characters.

7.2 CHECK

Checking the syntactic accuracy of a file can be done in two ways. One method is to

work within the editor. In the editor, you can start up the CHECK program by just typing

Esc-L. Alternatively, you can run CHECK as a separate program. The CHECK program

checks the syntax of the specified CHAT files. If errors are found, the offending line is

printed, followed by a description of the problem.

7.2.1 How CHECK works

CHECK makes two passes through each CHAT file. On the first pass, it checks the over-

all structure of the file. It makes sure that the file begins with @Begin and ends with

@End, that each line starts with either *, @, %, or a tab, and that colons are used

properly with main lines, dependent tiers, and headers that require entries. If errors are

found at this level, CHECK reports the problem and stops, because further processing

would be misleading. If there are problems on this level, you will need to fix them before

continuing with CHECK. Errors on the first level can mask the detection of further errors

on the second level. It is important not to think that a file has passed CHECK until all

errors have been removed.

The second pass checks the detailed structure of the file. To do this, it relies heavily on

depfile.cut, which we call the ñdepfile.ò The depfile distributed with CLAN inside the /lib

folder lists the legitimate CHAT headers and dependent tier names as well as many of the

strings allowed within the main line and the various dependent tiers. When running

CHECK, you should have the file called depfile.cut located in your LIB directory, which

you set from the Commands window. If the programs cannot find the depfile, they will

query you for its location.

Part 2: CLAN 56

If you find that the depfile is not permitting things that are important to your research,

please contact macw@cmu.edu to discuss ways in which we can extend the CHAT

system and its reflection in the XML Schema.

7.2.2 CHECK in CA Mode

CHECK can also be used with files that have been produced using CA mode. The

features that CHECK is looking for in CA Mode are:

1. Each utterance should begin with a number and a speaker code in the form

#:speaker:<whitespace>.

2. There should be paired parentheses around pause numbers.

3. Numbers marking pause duration are allowed on their own line.

4. Latching should be paired.

5. The double parentheses marking comments should be paired.

6. Overlap markers should be paired.

7. Superscript zeros should be paired.

8. The up-arrow, down-arrow, and zeros are allowed inside words.

7.2.3 Running CHECK

There are two ways to run CHECK. If you are working on new data, it is easiest to run

CHECK from inside the editor. To do this, you type Esc-L and check runs through the

file looking for errors. It highlights the point of the error and tells you what the nature of

the error is. Then you need to fix the error to allow CHECK to move on through the file.

The other way of running CHECK is to issue the command from the commands window.

This is the best method to use when you want to check a large collection of files. If you

want to examine several directories, you can use the +re option to make check work

recursively across directories. If you send the output of check to the CLAN Output

window, you can locate errors in that window and then triple-click on the file name and

CLAN will take you right to the problem that needs to be fixed. This is an excellent way

of working when you have many files and only a few errors.

7.2.4 Restrictions on Word Forms

To guarantee consistent transcription of word forms and to facilitate the building of MOR

grammars for various languages, CHAT has adopted a set of tight restrictions on word

forms. Earlier versions of CLAN and CHAT were considerably less restrictive.

However, this absence of tight rules led to many inaccuracies in transcription and

analysis. Beginning in 1998, the rules were significantly tightened. In addition, an earlier

system of marking morphemes on the main line was dropped in favor of automatic

analysis of words through MOR. The various options for word level transcription are

summarized in the chapter of the CHAT manual on Words. However, it is useful here to

provide some additional detail regarding specific CHECK features.

One major restriction on words forms is that they cannot include numbers. Earlier

versions of CHAT allowed for numbers inside UNIBET representations. However, since

we now use IPA instead of UNIBET for phonological coding, numbers are no longer

needed in this context. Also, actual numbers such as ñ79ò are written out in their

component words as ñseventy nineò without dashes. Therefore, numbers are not needed

mailto:macw@cmu.edu

Part 2: CLAN 57

in this context either.

We also do not allow capital letters inside words. This is done to avoid errors and forms

that cannot be recognized by MOR. The exceptions to this principle are for words with

underlining, as in Santa_Claus or F_B_I. CHECK also prohibits dashes within words in

many contexts.

Use CHECK early and often, particularly when you are learning to code in CHAT. When

you begin transcribing, check your file inside the editor using Esc-L, even before it is

complete. When CHECK complains about something, you can learn right away how to

fix it before continuing with the same error. If you are being overwhelmed by CHECK

errors, you can use the +d1 switch to limit error reports to one of each type. Or you can

focus your work first on eliminating main line errors by using the -t% switch. You will

also want to learn how to use the query-replace function in your text editor to make

general changes and CHSTRING to make changes across sets of files.

7.2.5 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word chains, you will see a list of up to 30 available options. Many of these

will be options shared with other programs. For these, the best approach is to go to the

chapter 8 in this manual that describes all these shared options.

In addition, many of the programs have some unique options. CHECK has the following

unique options:

+d This option attempts to suppress repeated warnings of the same error type. It is

convenient to use this in your initial runs when your file has consistent repeated

divergences from standard CHAT form. However, you must be careful not to rely

too much on this switch, because it will mask many types of errors you will even-

tually want to correct. The +d1 value of this switch represses errors even more se-

verely to only one of each type.

+e This switch allows the user to select a type of error for checking. To find the

numbers for the different errors, type:

 check +e

 Then look for the error type you want to track, such as error #16, and type:

 check +e16 *.cha

+g1 Setting +g1 turns on the treatment of prosodic contour markers such as -. or -? as

utterance delimiters, as discussed in the section on prosodic delimiters in the

CHAT manual. Setting -g1 sets the treatment back to the default, which is to not

treat these codes as delimiters.

+g2 By default, CHECK requires tabs after the colon on the main line and at the be-

ginning of each line. However, versions of Word Perfect before 5.0 cannot write

out text files that include tabs. Other non-ASCII editors may also have this prob-

lem. To get around the problem, you can set the -g2 switch in CHECK that stops

checking for tabs. If you want to turn this type of checking back on, use the +g2

switch.

+g3 Without the +g3 switch, CHECK does minimal checking for the correctness of the

internal contents of words. With this switch turned on, the program makes sure that

Part 2: CLAN 58

words do not contain numbers, capital letters, or spurious apostrophes.

CHECK also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage

return in the Commands window. Information regarding the additional options shared

across commands can be found in the chapter on Options.

7.3 CHIP

CHIP was designed and written by Jeffrey Sokolov. The program analyzes specified pairs

of utterances. CHIP has been used to explore parental input, the relation between speech

acts and imitation, and individual differences in imitativeness in both normal and

language-impaired children. Researchers who publish work based on the use of this pro-

gram should cite Sokolov and MacWhinney (1990). There are four major aspects of

CHIP to be described: (1) the tier creation system, (2) the coding system, (3) the

technique for defining substitution classes, and (4) the nature of the summary statistics.

7.3.1 The Tier Creation System

CHIP compares two specified utterances and produces an analysis that it then inserts onto

a new coding tier. The first utterance in the designated utterance pair is the ñsourceò

utterance and the second is the ñresponseò utterance. The response is compared to the

source. Speakers are designated by the +b and +c codes. An example of a minimal CHIP

command is as follows:

chip +bMOT +cCHI chip.cha

We can run this command runs on the following seven-utterance chip.cha file that is dis-

tributed with CLAN.

@Begin

@Participants: MOT Mother, CHI Child

*MOT: whatôs that?

*CHI: hat.

*MOT: a hat!

*CHI: a hat.

*MOT: and whatôs this?

*CHI: a hat !

*MOT: yes thatôs the hat .

@End

The output from running this simple CHIP command on this short file is as follows:

CHIP (04 - May- 99) is conducting analyses on:

 ALL speaker tiers

*** *************************************

From file <chip.cha>

*MOT: what's that ?

*CHI: hat .

%chi: $NO_REP $REP = 0.00

*MOT: a hat !

%asr: $NO_REP $REP = 0.00

%adu: $EXA:hat $ADD:a $EXPAN $DIST = 1 $REP = 0.50

*CHI: a hat .

%csr: $EXA:hat $ADD:a $EXPAN $DIST = 2 $REP = 0.50

%chi: $EXA:a - hat $EXACT $DIST = 1 $REP = 1.00

Part 2: CLAN 59

*MOT: and what's this ?

%asr: $NO_REP $REP = 0.00

%adu: $NO_REP $REP = 0.00

*CHI: that a hat !

%csr: $EXA:a - hat $ADD:that $EXPAN $DIST = 2 $REP = 0.67

%chi: $NO_REP $REP = 0.00

*MOT: yes t hat's the hat .

%asr: $NO_REP $REP = 0.00

%adu: $EXA:hat $ADD:yes - that's - the $DEL:that - a $DIST=1 $REP=0.25

The output also includes a long set of summary statistics which are discussed later. In the

first part of this output, CHIP has introduced four different dependent tiers:

%chi : This tier is an analysis of the childôs response to an adultôs utterance, so the

adultôs utterance is the source and the childôs utterance is the response.

%adu: This tier is an analysis of the adultôs response to a childôs utterance, so the child

is the source and the adult is the response.

%csr : This tier is an analysis of the childôs self repetitions. Here the child is both the

source and the response.

%asr: This tier is an analysis of the adultôs self repetitions. Here the adult is both the

source and the response.

By default, CHIP produces all four of these tiers. However, by using the -n option, the

user can limit the tiers that are produced. Three combinations are possible:

1. You can use both -ns and -nb. The -ns switch excludes both the %csr tier and the

%asr tier. The -nb switch excludes the %adu tier. Use of both switches results in an

analysis that computes only the %chi tier.

2. You can use both -ns and -nc. The -ns switch excludes both the %csr tier and the

%asr tier. The -nc switch excludes the %chi tier. Use of both these switches results

in an analysis that computes only the %adu tier.

3. You can use both -nb and -nc. This results in an analysis that produces only the

%csr and the %asr tiers.

It is not possible to use all three of these switches at once.

7.3.2 The CHIP Coding System

The CHIP coding system includes aspects of several earlier systems (Bohannon &

Stanowicz, 1988; Demetras, Post, & Snow, 1986; Hirsh-Pasek, Trieman, &

Schneiderman, 1984; Hoff-Ginsberg, 1985; Moerk, 1983; Nelson, Denninger, Bonvilian,

Kaplan, & Baker, 1984). It differs from earlier systems in that it computes codes

automatically. This leads to increases in speed and reliability, but certain decreases in

flexibility and coverage.

The codes produced by CHIP indicate lexical and morphological additions, deletions,

exact matches and substitutions. The codes are as follows:

$ADD additions of N continuous words

$DEL deletions of N continuous words

$EXA exact matches of N continuous words

$SUB substitutions of N continuous words from within a word list

Part 2: CLAN 60

$MADD morphological addition based on matching word stem

$MDEL morphological deletion based on matching word stem

$MEXA morphological exact match based on matching word stem

$MSUB morphological substitution based on matching word stem

$DIST the distance the response utterance is from the source

$NO_REP the source and response do not overlap

$LO_REP the overlap is below a user-specified minimum

$EXACT source-response pairs with no changes

$SUBST pairs with substitutions, but no additions or deletions

$EXPAN pairs with additions, but no deletions or substitutions

$EXP_SUB pairs with additions and substitutions, but no deletions

$REDUC pairs with deletions, but no additions or substitutions

$RED_SUB pairs with deletions and substitutions, but no additions

$FRO an item from the word list has been fronted

$REP the percentage of repetition between source and response

Let us take the last line of the chip.cha file as an example:

*MOT: yes that's the ha t .

%asr: $NO_REP $REP = 0.00

%adu: $EXA:hat $ADD:yes - that's - the $DEL:that - a $DIST=1 $REP=0.25

The %adu dependent tier indicates that the adultôs response contained an EXAct match of

the string ñhat,ò the ADDition of the string ñyes-thatôs-theò and the DELetion of ña.ò The

DIST=1 indicates that the adultôs response was ñoneò utterance from the childôs, and the

repetition index for this comparison was 0.25 (1 matching stem divided by 4 total stems

in the adultôs response).

CHIP also takes advantage of CHAT-style morphological coding. Upon encountering a

word, the program determines the wordôs stem and then stores any associated prefixes or

suffixes along with the stem. During the coding process, if lexical stems match exactly,

the program then also looks for additions, deletions, repetitions, or substitutions of

attached morphemes.

7.3.3 Word Class Analysis

In the standard analysis of the last line of the chip.cha file, the fact that the adult and the

child both use a definite article before the noun hat is not registered by the default CHIP

analysis. However, it is possible to set up a substitution class for small groups of words

such as definite articles or modal auxiliaries that will allow CHIP to track such within-

class substitutions, as well as to analyze within-class deletions, additions, or exact

repetitions. To do this, the user must first create a file containing the list of words to be

considered as substitutions. For example, to code the substitution of articles, the file

distributed in examples/pos/articles.cut can be used. This file has just the two articles a

and the. Both the +g option and the +h (word-list file name) options are used, as in the

following example:

Part 2: CLAN 61

chip +cCHI +bMOT +g +harticles.cut chip.cha

The output of this command will add a $SUB field to the %adu tier:

*CHI: a hat!

*MOT: yes thatôs the hat.

%adu: $EXA:that $EXA:hat $ADD:yes $SUB:the $MADD:' s $DIST = 1

$REP =0.50

The +g option enables the substitutions, and the +harticle.cut option directs CHIP to ex-

amine the word list previously created by the user. Note that the %adu now indicates that

there was an EXAct repetition of hat, an ADDition of the string yes thatôs and a within-

class substitution of the for a. If the substitution option is used, EXPANsions and

REDUCtions are tracked for the included word list only. In addition to modifying the

dependent tier, using the substitution option also affects the summary statistics that are

produced. With the substitution option, the summary statistics will be calculated relative

only to the word list included with the +h switch. In many cases, you will want to run

CHIP analyses both with and without the substitution option and compare the contrasting

analyses.

You can also use CLAN iterative limiting techniques to increase the power of your CHIP

analyses. If you are interested in isolating and coding those parental responses that were

expansions involving closed-class verbs, you would first perform a CHIP analysis and

then use KWAL to obtain a smaller collection of examples. Once this smaller list is ob-

tained, it may be hand coded and then once again submitted to KWAL or FREQ analysis.

This notion of iterative analysis is extremely powerful and takes full advantage of the

benefits of both automatic and manual coding.

7.3.4 Summary Measures

In addition to analyzing utterances and creating separate dependent tiers, CHIP also

produces a set of summary measures. These measures include absolute and proportional

values for each of the coding categories for each speaker type that are outlined below.

The definition of each of these measures is as follows. In these codes, the asterisk stands

for any one of the four basic operations of ADD, DEL, EXA, and SUB.

Total # of Utterances The number of utterances for all speakers regardless of the number

of intervening utterances and speaker identification.

Total Responses The total number of responses for each speaker type regardless of

amount of overlap.

Overlap The number of responses in which there is an overlap of at least one word stem

in the source and response utterances.

No Overlap The number of responses in which there is NO overlap between the source

and response utterances.

Avg_Dist The sum of the DIST values divided by the total number of overlapping

utterances.

%_Overlap The percentage of overlapping responses over the total number of

responses.

Rep_Index Average proportion of repetition between the source and response

utterance across all the overlapping responses in the data.

Part 2: CLAN 62

*_OPS The total (absolute) number of add, delete, exact, or substitution operations for

all overlapping utterance pairs in the data.

%_*_OPS The numerator in these percentages is the operator being tracked and the

denominator is the sum of all four operator types.

*_WORD The total (absolute) number of add, delete, exact, or substitution words for

all overlapping utterance pairs in the data.

%_*_WORDS The numerator in these percentages is the word operator being

tracked and the denominator is the sum of all four-word operator types.

MORPH_* The total number of morphological changes on exactly matching stems.

%_MORPH_* The total number of morphological changes divided by the number of

exactly matching stems.

AV_WORD_*The average number of words per operation across all the overlapping

utterance pairs in the data.

FRONTED The number of lexical items from the word list that have been fronted.

IMITAT ?? Number of imitations.

%_IMITAT ?? The numerator is the number of imitations and the denominator is ???

EXACT The number of exactly matching responses.

EXPAN The number of responses containing only exact matches and additions.

REDUC The number of responses containing only exact-matches and deletions.

SUBST The number of responses containing only exact matches and substitutions.

7.3.5 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word chip, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. CHIP has the following

unique options:

+b Specify that speaker ID S is an ñadult.ò The speaker does not actually have to be

an adult. The ñbò simply indicates which speaker is taken to be the source. If you

want to study the ñchildò as respondent, you would focus on the %chi line. If you

want to see focus on the ñadultò as respondent, you would focus on the %adu line.

+c Specify that speaker ID S is a ñchild.ò The speaker does not actually have to be a

child. The ñcò simply indicates which speaker is taken to be the ñresponseò. If you

want to study the ñchildò as respondent, you would focus on the %chi line. If you

want to see focus on the ñadultò as respondent, you would focus on the %adu line.

+d Using +d with no further number outputs only coding tiers, which are useful for

iterative analyses. Using +d1 outputs only summary statistics, which can then be

sent to a statistical program.

Part 2: CLAN 63

+g Enable the substitution option. This option is meaningful in the presence of a word

list in a file specified by the +h/-h switch, because substitutions are coded with

respect to this list.

+h Use a word list file. The target file is specified after the letter ñh.ò Words to be

included (with +h) or excluded (with -h) are searched for in the target file. The use

of an include file enables CHIP to compare ADD and DEL categories for any

utterance pair analyses to determine if there are substitutions within word classes.

For example, the use of a file containing a list of pronouns would enable CHIP to

determine that the instances of ADD of ñIò and DEL of ñyouò across a source and

response utterance are substitutions within a word class.

 Standard CLAN wildcards may be used anywhere in the word list. When the tran-

script uses CHAT-style morphological coding (e.g., Iôve), only words from the

word list file will match to stems in the transcript. In other words, specific mor-

phology may not be traced within a word list analysis. Note that all the operation

and word-based summary statistics are tabulated with respect to the word list only.

The word list option may be used for any research purpose including grammatical

word classes, number terms, color terms, or mental verbs. Note also that the -h

option is useful for excluding certain terms such as ñokayò or ñyeahò from the

analysis. Doing this often improves the ability of the program to pick up matching

utterances.

+n This switch has three values: +nb, +nc, and +ns. See the examples given earlier for

a discussion of the use of these switches in combination.

+qN Set the utterance window to N utterances. The default window is seven utterances.

CHIP identifies the source-response utterances pairs to code. When a response is

encountered, the program works backwards (through a window determined by the

+q option) until it identifies the most recent potential source utterance. Only one

source utterance is coded for each response utterance. Once the source-response

pair has been identified, a simple matching procedure is performed.

+x Set the minimum repetition index for coding.

CHIP also uses several options that are shared with other commands. For a complete list

of options for a command, type the name of the command followed by a carriage return

in the Commands window. Information regarding the additional options shared across

commands can be found in the chapter on Options.

7.4 COMBO

COMBO provides the user with ways of composing Boolean search strings to match

patterns of letters, words, or groups of words in the data files. This program is

particularly important for researchers who are interested in syntactic analysis. The search

strings are specified with either the +s/-s option or in a separate file. Use of the +s switch

is obligatory in COMBO. When learning to use COMBO, what is most tricky is learning

how to specify the correct search strings.

7.4.1 Composing Search Strings

Boolean searching uses algebraic symbols to better define words or combinations of

words to be searched for in data. COMBO uses regular expressions to define the search

Part 2: CLAN 64

pattern. These six special symbols are listed in the following table:

Meaning Type Symbol

immediately FOLLOWED by Boolean ^

inclusive OR Boolean +

logical NOT Boolean !

repeated character metacharacter *

single character metacharacter _

quoting metacharacter \

Inserting the ̂operator between two strings causes the program to search for the first

string followed by the second string. The + operator inserted between two strings causes

the program to search for either of the two strings. In this case, it is not necessary for both

to match the text to have a successful match of the whole expression. Any one match is

sufficient. The ! operated inserted before a string causes the program to match a string of

text that does not contain that string.

The items of the regular expression will be matched to the items in the text only if they

directly follow one another. For example, the expression big^cat will match only the word

big directly followed by the word cat as in big cat. To find the word big followed by the

word cat immediately or otherwise, use the metacharacter * between the items big and

cat, as in big^*^cat . This expression will match, for example, big black cat. Notice that, in

this example, * ends up matching not just any string of characters, but any string of words

or characters up to the point where cat is matched. Inside a word, such as go*, the

asterisk stands for any number of characters. In the form ^*^, it stands for any number of

words. The * alone cannot be used in conjunction with the +g or +x option.

The underscore is used to ñstand in forò for any single character. If you want to match

any single word, you can use the underscore with the asterisk as in +s"_*." which will

match any single word followed by a period. For example, in the string cat., the

underscore would match c, the asterisk would match at and the period would match the

period.

The backslash (\) is used to quote either the asterisk or the underline. When you want to

search for the actual characters * and _, rather than using them as metacharacters, you

insert the \ character before them.

Using metacharacters can be quite helpful in defining search strings. Suppose you want to

search for the words weight, weighs, weighing, weighed, and weigh. You could use the

string weigh* to find all the previously mentioned forms. Metacharacters may be used

anywhere in the search string.

When COMBO finds a match to a search string, it prints out the entire utterance in which

the search string matched, along with any previous context or following context that had

been included with the +w or -w switches. This whole area printed out is what we will

call the ñwindow.ò

Part 2: CLAN 65

7.4.2 Examples of Search Strings

The following command searches the sample.cha file and prints out the window which

contains the word ñwantò when it is directly followed by the word ñto.ò

combo +swant^to sample.cha

If you are interested not just in cases where ñtoò immediately follows ñwant,ò but also

cases where it eventually follows, you can use the following command syntax:

combo +s"want^*^to" sample.cha

The next command searches the file and prints out any window that contains both ñwantò

and ñtoò in any order:

combo +s"w ant^to" +x sample.cha

The next command searches sample.cha and sample2.cha for the words ñwonderfulò or

ñchalkò and prints the window that contains either word:

combo +s"wonderful+chalk" sample*.cha

The next command searches sample.cha for the word ñneatò when it is not directly fol-

lowed by the words ñtoyò or ñtoy-s.ò Note that you need the ^ in addition to the ! to

clearly specify the exact nature of the search you wish to be performed.

combo +s"nea t^!toy*" sample.cha

In this next example, the COMBO program will search the text for either the word ñseeò

directly followed by the word ñwhatò or all the words matching ñtoy*.ò

combo +s"see^(what+toy*)" sample.cha

You can use parentheses to group the search strings unambiguously as in the next

example:

combo +s"what*^(other+that*)" sample.cha

This command causes the program to search for words matching ñwhatò followed by

either the word ñthatò or the word ñother.ò An example of the types of strings that would

be found are: ñwhat that,ò ñwhatôs that,ò and ñwhat other.ò It will not match ñwhat is

thatò or ñwhat do you want.ò Parentheses are necessary in the command line because the

program reads the string from left to right. Parentheses are also important in the next

example.

combo +s"the^*^!grey^*^(dog+cat)" sample2.cha

This command causes the program to search the file sample2.cha for the followed, im-

mediately or eventually, by any word or words except grey. This combination is then to

be followed by either dog or cat. The intention of this search is to find strings like the big

dog or the boy with a cat, and not to match strings like the big grey cat. Note the use of

the parentheses in the example. Without parentheses around dog+cat, the program would

match simply cat. In this example, the sequence ^*^ is used to indicate ñimmediately or

later.ò If we had used only the symbol ^ instead of the ̂*^ , we would have matched only

strings in which the word immediately following the was not grey.

7.4.3 Referring to Files in Search Strings

Inside the +s switch, one can include reference to one, two, or even more groups of words

that are listed in separate files. For example, you can look for combinations of prep-

Part 2: CLAN 66

ositions with articles by using this switch:

 +s@preps^@arts

To use this form, you first need to create a file of prepositions called ñprepsò with one

preposition on each line and a file of articles called ñartsò with one article on each line.

By maintaining files of words for different parts of speech or different semantic fields,

you can use COMBO to achieve a wide variety of syntactic and semantic analyses. Some

suggestions for words to be grouped into files are given in the chapter of the CHAT

manual on word lists. Some particularly easy lists to create would be those including all

the modal verbs, all the articles, or all the prepositions. When building these lists,

remember the possible existence of dialect and spelling variations such as dat for that.

Here is a somewhat more complex example of how to refer to files in search strings. In

this case, we are looking in Spanish files for words that follow the definite articles la and

el and begin with either vowels or the silent ñhò followed by a vowel. So, we can have

one file, called arts.cut, with the words el and la each on their own line. Then, we can

have another file, called vowels.cut, that looks like this:

hu*

u*

ha*

a* etc.

In this case, the command we use looks like this:

combo +s@arts .cut ^@vowels.cut test.cha

7.4.4 Cross-tier COMBO

You can use the +d7 switch in COMBO to search for matches between the %gra and

%mor lines, because these two lines are in one-to-one correspondence. Here is an

example of a command to search for cases in which the SUBJ on the %gra line is a verb

on the %mor line. In this command, the letter ñgò before the pipe symbol refers to the

%gra tier and the letter ñmò refers to the %mor tier.

combo +d7 +sg|SUBJ^m|v filename.cha

More generally, particular dependent tiers can be included or excluded by using the +t

option immediately followed by the tier code. By default, COMBO excludes the header

and dependent code tiers from the search and output. However, when the +t switch is

used for dependent tiers, they are combined with their speaker tiers into clusters. For

example, if the search expression is the^*^kitten , the match would be found even if the is

on the speaker tier and kitten is on one of the speakerôs associated dependent tiers. This

feature is useful if one wants to select for analyses only speaker tiers that contain specific

word(s) on the main tier and some specific codes on the dependent code tier. For

example, if one wants to produce a frequency count of the words want and to when either

one of them is coded as $INI on the %spa line, or neat when it is $CON on the %spa line,

the following two commands could be used:

combo +s(want^to^$INI*)+(neat^$CON*) +g5 +t%spa +f +d sample.cha

freq +swant +sto +sneat sample.cmb

In this example, the +g5 option specifies that the words want, to, as well as the $INI on

the %spa line may occur in any order. The +t%spa option must be added to allow the

program to look at the %spa tier when searching for a match. The main tier is always

Part 2: CLAN 67

searched, but dependent tiers are only searched if they are specifically included with the

+t switch. The +d option is used to specify that the information produced by the program,

such as file name, line number and exact position of words on the tier, should be

excluded from the output. This way the output is in a legal CHAT format and can be used

as an input to another CLAN program, FREQ in this case.

7.4.5 Cluster Sequences in COMBO

Most computer search programs work on a single line at a time. If these programs find a

match on the line, they print it out and then move on. Because of the structure of CHAT

and the relation between the main line and the dependent tiers, it is more useful to have

the CLAN commands work on ñclustersò instead of lines. The notion of a cluster is

particularly important for search programs, such as COMBO and KWAL . A cluster can

be defined as a single utterance by a single speaker, along with all its dependent tiers. By

default, CLAN commands work on a single cluster at a time. For COMBO, one can

extend this search scope to a pair of contiguous clusters or even a sequence of several

clusters by using the +b switch. However, this switch should only be used when cross-

cluster matches are important, because addition of the switch tends to slow down the

running of the program. To illustrate the use of the +b switch, consider how you might

want to perform a FREQ analysis on sentences that the mother directs to the younger

child, as opposed to sentences directed to the older child or other adults. To find the

sentences directed to the younger child, one can imagine that sentences from the mother

that are followed by sentences from the younger child are most likely directed to the

younger child. To find these, you can use this command:

combo +b2 +t*MOT +t*CHI +s \ *MOT:^*^ \ *CHI: eve01.cha

7.4.6 Tracking Final and Initial Words

To find the final words of utterances, you need to use the complete delimiter set in your

COMBO search string. You can do this with this syntax (\!+?+.) where the parentheses

enclose a set of alternative delimiters. To specify the single word that appears before

these delimiters, you can use the asterisk wildcard preceded by an underline. Note that

this use of the asterisk treats it as referring to any number of letters, rather than any

number of words. By itself, the asterisk in COMBO search strings usually means any

number of words, but when preceded by the underline, it means any number of

characters. Here is the full command:

combo +s"_*^(\ !+?+.)" +f sample.cha

Then you can run FREQ on the output file.

You can use COMBO to track initial words by including the line begin %mor:, as in this

example, which searches for an initial wh-word in a question.

combo +re +s" \ %mor:^pro:wh|*^?" +t%mor +t*CHI *.cha +u

7.4.7 Limiting with COMBO

Often researchers want to limit their analysis to some group of utterances. CLAN

provides the user with a series of switches within each program for doing the simplest

types of limiting. For example, the +t/-t switch allows the user to include or exclude

whole tiers. However, sometimes these simple mechanisms are not suficient and the user

Part 2: CLAN 68

must use COMBO or KWAL for more detailed control of limiting. COMBO is the most

powerful program for limiting, because it has the most versatile methods for string search

using the +s switch. Here is an illustration. Suppose that, in sample.cha, you want to find

the frequency count of all the speech act codes associated with the speaker *MOT when

this speaker used the phrase ñwant toò in an utterance. To accomplish this analysis, use

this command:

co mbo +t*MOT +t%spa sample.cha +s'want^to' +d

The +t*MOT switch tells the program to select only the main lines associated with the

speaker *MOT. The +t%spa tells the program to add the %spa tier to the *MOT main

speaker tiers. By default, the dependent tiers are excluded from the analysis. After this,

comes the file name, which can appear anywhere after the program name. The

+s"want^to" then tells the program to select only the *MOT clusters that contain the

phrase want to. You can then run programs like FREQ or MLU on the output.

Sometimes researchers want to maintain a copy of their data that is stripped of the var-

ious coding tiers. This can be done by this command:

 combo +s* +o@ - t% +f *.cha

The +o switch controls the addition of the header material that would otherwise be ex-

cluded from the output and the -t switch controls the deletion of the dependent tiers. It is

also possible to include or exclude individual speakers or dependent tiers by providing

additional +t or -t switches. The best way to understand the use of limiting for controlling

data display is to try the various options on a small sample file.

7.4.8 Adding Codes with COMBO

Often researchers leave a mark in a transcript indicating that a certain sentence has

matched some search pattern. For example, imagine that you want to locate all sentences

with a preposition followed immediately by the word ñtheò and then tag these sentences

in some way. You can use the COMBO +d4 switch to do this. First, you would create a

fi le with all the prepositions (one on each line) and call it something like prep.cut. Then

you would create a second support file called something like combo.cut with this line:

"@prep.cut^the" "$Pthe" "%cod:"

The first string in this line gives the term used by the standard +s search switch. The

second string says that the code produced will bye $Pthe. The third string says that this

code should be placed on a %cod line under the utterance that is matched. If there is no

%cod line there yet, one will be created. The COMBO command that uses this

information would then be:

combo +s"@combo.cut" +d4 filename.cha

The resulting file will have this line added:

%cod: $Pthe

You can include as many lines as you wish in the combo.cut file to control the addition of

additional codes and additional coding lines. Once you are done with this, you can use

these new codes to control better inclusion and exclusion of utterances and other types of

searches.

Part 2: CLAN 69

7.4.9 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word combo, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. COMBO has the following

unique options:

+bN COMBO usually works on only one cluster at a time. However, when you want to

look at several clusters in a row, you can use this switch. For example, +b4 would

allow COMBO to search across a sequence of four clusters.

+d Normally, COMBO outputs the location of the tier where the match occurs. When

the +d switch is turned on you can output only each matched sentence in a simple

legal CHAT format.

+d1 This switch outputs legal CHAT format along with line numbers and file names.

+d2 This switch outputs files names once per file only.

+d3 This switch outputs legal CHAT format, but with only the actual words matched

by the search string, along with @Comment headers that are ignored by other

programs.

+d4 Use of the +d4 switch was described in the previous section.

+d7 Search for words linked between two tiers.

+g1 COMBO can operate in either string-oriented or word-oriented mode. The default

mode is word-oriented. The +g1 switch changes the mode to string-oriented.

Word-oriented search assumes that the string of characters requested in the search

string is surrounded by spaces or other word delimiting characters. The string-

oriented search does not make this assumption. It sees a string of characters simply

as a string of characters. In most cases, there is no need to use this switch, because

the default word-oriented mode is usually more useful.

 The interpretation of metacharacters varies depending on the search mode. In

word-oriented search mode, an expression with the asterisk metacharacter, such as

air*^plane , will match air plane as well as airpline plane or airy plane. It will not

match airplane because, in word-oriented mode, the program expects to find two

words. It will not match air in the plane because the text is broken into words by

assuming that all adjacent nonspace characters are part of the same word, and a

space marks the end of that word. You can think of the search string air as a signal

for the computer to search for the expressions: _air_, _air., air?, air! , and so forth,

where the underline indicates a space.

 The same expression air*^plane in string-oriented search mode will match airline

plane, airy plane, air in the plane or airplane. They will all be found because the

search string, in this case, specifies the string consisting of the letters ña,ò ñi,ò and

ñrò, followed by any number of characters, followed by the string ñp,ò ñl,ò ña,ò

ñn,ò and ñe.ò In string-oriented search, the expression (air^plane) will match

airplane but not air plane because no space character was specified in the search

string. In general, the string-oriented mode is not as useful as the word-oriented

mode. One of the few cases when this mode is useful is when you want to find all

but some given forms. For example, if you are looking for all the forms of the verb

Part 2: CLAN 70

kick except the ing form, you can use the expression ñkick*^! ^!ingò and the +g

switch.

+g2: Do a string oriented search on just one word. This option is for searching for

strings within each word.

+g3: Do not continue searching on a tier after first failure. This option is in cases users

do not want to look for word patterns further down the tier, if the first match fails.

This option is used for searches with the "not", "!", operator.

+g4: Exclude utterance delimiters from search. This will remove all utterance delimiters

from the search string. It is useful, if you want to find the last word on the tier.

+g5: Make search <s1>^<s2> identical to search <s2>^<s1>. This option is used as a

short cut. Normally words specified this way "word1^word2" are searched for in a

specific order. This option will match for word1 and word2 regardless whether

word1 precedes word2 or follows it on the tier. Otherwise user will have to specify

this: (word1^word2)+(word2^word1). By default, the ^ operator means followed

by, but the +g6 options turns ^ into a true AND operator. So COMBO search will

succeed only if all words separated by "^" are found anywhere on the cluster tier.

This also takes care of the situation when dependent tiers are not always in the

same order.

+o The +t switch is used to control the addition or deletion of particular tiers or lines

from the input and the output to COMBO. In some cases, you may want to include

a tier in the output that is not being included in the input. This typically happens

when you want to match a string in only one dependent tier, such as the %mor tier,

but you want all tiers to be included in the output. To do this you would use a

command of the following shape:

 combo +t%mor +s"*ALL" +o% sample2.cha

+s This option is obligatory for COMBO. It is used to specify a regular expression to

search for in a data line(s). This option should be immediately followed by the

regular expression itself. The rules for forming a regular expression are discussed

in detail earlier in this section.

-s This switch allows you to exclude certain line from a COMBO search. It can be

used in combination with the +s switch.

+t Dependent tiers can be included or excluded by using the +t option immediately

followed by the tier code. By default, COMBO excludes the header and dependent

code tiers from the search and output. However, when the dependent code tiers are

included by using the +t option, they are combined with their speaker tiers into

clusters. For example, if the search expression is the^*^kitten , the match would be

found even if the is on the speaker tier and kitten is on one of the speakerôs

associated dependent tiers. This feature is useful if one wants to select for analyses

only speaker tiers that contain specific word(s) on the main tier and some specific

codes on the dependent code tier. For example, if one wants to produce a

frequency count of the words want and to when either one of them is coded as an

imitation on the %spa line, or neat when it is a continuation on the %spa line, the

following two commands could be used:

 combo +s(want^to^*^%spa:^*^$INI*)+(neat^*^%spa:^*^$CON*)

 +t%spa +f +d sample.cha

 freq +swant +sto +sneat sample.cmb

Part 2: CLAN 71

 In this example, the +s option specifies that the words want, to, and $INI may oc-

cur in any order on the selected tiers. The +t%spa option must be added to allow

the program to look at the %spa tier when searching for a match. The +d option is

used to specify that the information produced by the program, such as file name,

line number and exact position of words on the tier, should be excluded from the

output. This way the output is in a legal CHAT format and can be used as an input

to another CLAN program, FREQ in this case. The same effect could also be

obtained by using the piping feature.

COMBO also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage

return in the Commands window. Information regarding the additional options shared

across commands can be found in the chapter on Options.

7.5 COOCUR

The COOCCUR program tabulates co-occurences of words. This is helpful for analyzing

syntactic clusters. By default, the cluster length is two words, but you can reset this value

just by inserting any integer up to 20 immediately after the +n option. The second word

of the initial cluster will become the first word of the following cluster, and so on.

 cooccur +t*MOT +n3 sample.cha +f

The +t*MOT switch tells the program to select only the *MOT main speaker tiers. The

header and dependent code tiers are excluded by default. The +n3 option tells the

program to combine three words into a word cluster. The program will then go through

all of *MOT main speaker tiers in the sample.cha file, three words at a time. When

COOCCUR reaches the end of an utterance, it marks the end of a cluster, so that no

clusters are broken across speakers or across utterances. Co-ocurrences of codes on the

%mor line can be searched using commands such as this example:

 cooccur +t%mor - t* +s*def sample2.cha

7.5.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word cooccur, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. COOCCUR has the

following unique options:

+d Strip the numbers from the output data that indicate how often a certain cluster

occurred.

+n Set cluster length to a certain number. For example, +n3 will set cluster length to

3.

+s Select either a word or a file of words with @filename to search for.

COOCCUR also uses several options that are shared with other commands. For a com-

plete list of options for a command, type the name of the command followed by a

carriage return in the Commands window. Information regarding the additional options

Part 2: CLAN 72

shared across commands can be found in the chapter on Options.

have a final delimiter. It can also be used to insert final periods on other lines.

7.6 DIST

This program produces a listing of the average distances between words or codes in a file.

DIST computes how many utterances exist between occurrences of a specified key word

or code. The following example demonstrates a use of the DIST program.

dist +t%spa - t* +b: sample.cha

This command line tells the program to look at the %spa tiers in the file sample.cha for

codes containing the : symbol. It then does a frequency count of each of these codes, as a

group, and counts the number of turns between occurrences. The -t* option causes the

program to ignore data from the main speaker tiers.

7.6.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word dist, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. DIST has the following

unique options:

+b This option allows you to specify a special character after the +b. This character is

something like the colon that you have chosen to use to divide some complex code

into its component parts. For example, you might designate a word as a noun on

the dependent tier then further designate that word as a pronoun by placing a code

on the dependent tier such as $NOU:pro. The program would analyze each element

of the complex code individually and as a class. For the example cited earlier, the

program would show the distance between those items marked with a $NOU (a

larger class of words) and show the distance between those items marked with

$NOU:pro as a subset of the larger set. The +b option for the example would look

like this with a colon following the +b:

 dist +b: sample.cha

+d Output data in a form suitable for statistical analysis.

+g Including this switch in the command line causes the program to count only one

occurrence of each word for each utterance. So multiple occurrences of a word or

code will count as one occurrence.

+o This option allows you to consider only words that contain the character specified

by the b option, rather than all codes in addition to those containing your special

character.

DIST also uses several options that are shared with other commands. For a complete list

of options for a command, type the name of the command followed by a carriage return

in the Commands window. Information regarding the additional options shared across

commands can be found in the chapter on Options.

Part 2: CLAN 73

7.7 DSS

This program is designed to provide an automatic computation of the Developmental

Sentence Score (DSS) of Lee and Canter (1974). This score is based on the assignment of

scores for a variety of syntactic, morphological, and lexical structures across eight

grammatical domains. The computation of DSS relies on the part of speech (POS)

analysis of the %mor tier.

7.7.1 CHAT File Format Requirements

For DSS to run correctly on a file, the following CHAT conventions must be followed:

1. All utterances must have delimiters, and imperatives must end with an exclamation

mark.

2. Incomplete or interrupted utterances must end either with the +... or the +/. codes.

3. Only the pronoun ñIò and the first letter of proper nouns should be in uppercase.

4. Utterances that contain a noun and a verb in a subject-predicate relation in an un-

usual word order must contain a [+ dss] postcode after the utterance delimiter to be

included.

5. DSS automatically excludes any child utterances that are imitations of the imme-

diately preceding adult utterance. If, however, the analyst feels that there are ad-

ditional child utterances that are imitations and should be excluded from the

analysis, the [+ dsse] postcode must be included for these utterances. This

exclusion will also apply to KIDEVAL.

7.7.2 Selection of a 50-sentence Corpus

DSS scores are based on analysis of a corpus of 50 sentences. The dss program is de-

signed to extract a set of 50 sentences from a language sample using Leeôs six inclusion

criteria.

1. The corpus should contain 50 complete sentences. A sentence is considered

complete if it has a noun and a verb in the subject-predicate relationship. To check

for this, the program looks for a nominal phrase followed by a verb. Imperatives

such as ñLook!ò also are included. Imperative sentences must have end with an

exclamation mark. Immature sentences containing word order reversals such as ñcar

a garage come outò or ñhit a finger hammer Daddyò also should be included.

However, these sentences must contain the [+ dss] code after the utterance delimiter

on the main tier to be included in the analysis.

2. The speech sample must be a block of consecutive sentences. To be represen-

tative, the sentences constituting the corpora must occur consecutively in a block,

ignoring incomplete utterances. The analyst may use his or her discretion as to

which block of sentences are the most representative. The DSS program au-

tomatically includes the first 50 consecutive sentences in the transcript. If you wish

to start the analysis at some other point, you can use the +z switch in combination

with KWAL and piping to DSS.

3. All sentences in the language sample must be different. Only unique child

sentences will be included in the corpora. DSS automatically analyzes each sentence

and excludes any repeated sentences.

4. Unintelligible sentences should be excluded from the corpus. The DSS program

Part 2: CLAN 74

automatically excludes any sentences containing unintelligible segments. Thus, any

sentence containing the xxx, yyy and www codes on the main tier will be excluded

from the analysis.

5. Echoed sentences should be excluded from the corpus. Any sentence that is a

repetition of the adultôs preceding sentence is automatically excluded. Additionally,

any sentences containing a [+ dsse] post-code are excluded.

6. Incomplete sentences should be excluded. Any sentence that has the +... or the +/.

sentence delimiters, indicating that they were either incomplete or interrupted, will

not be included in the analysis.

7. DSS analysis can only be used if at least 50% of the utterances are complete

sentences as defined by Lee. If fewer than 50% of the sentences are complete

sentences, then the Developmental Sentence Type analysis (DST) is appropriate

instead.

7.7.3 Automatic Calculation of DSS

To compute DSS, the user must first complete a morphological analysis of the file using

the MOR program with the +c option. After completing the MOR analysis, the %mor

line should be disambiguated using POST. Once the disambiguated %mor is created, the

user can run DSS to compute the Developmental Sentence Analysis. The DSS program

has two modes: automatic and interactive. The use of the +e option invokes the automatic

mode. A basic automatic DSS command has this shape:

dss +b*CHI +le +e sample.mor

7.7.4 Sentence Points

DSS assigns a sentence point to each sentence if it ñmeets all the adult standard rulesò

(Lee, p. 137). Sentence points should be withheld for all errors and omissions. Errors,

including neologisms, should be marked with the [*] codes used in the CHAT error

coding system. Omissions should be marked with a code such as 0det or 0aux, for

example, to mark a missing determiner or a missing auxiliary.

Warning: MOR cannot distinguish between non-complementing infinitive structures,

such as I stopped to play, which receives 3 points as secondary verb and infinitival

complement structures, such as I had to go, which receive 5 points as secondary verbs.

When the latter occurs, you must edit the output table to assign two more points.

7.7.5 DSS Output

Once all 50 sentences have been assigned sentence points, the DSS program automati-

cally generates a table. For both the automatic and interactive modes, each sentence is

displayed on the leftmost column of the table with the corresponding point values. For

the interactive mode, the attempt markers for each grammatical category, sentence point

assignments, and the DSS score also are displayed. The Developmental Sentence Score is

calculated by dividing the sum of the total values for each sentence by the number of

sentences in the analysis.

The output of the table has specifically been designed for users to determine ñat a glanceò

areas of strength and weakness for the individual child for these eight grammatical

categories. The low points values for both the indefinite and personal pronoun (IP, PP)

categories in the table below indicate that this child used earlier developing forms

Part 2: CLAN 75

exclusively. In addition, the attempt mark for the main verb (MV) and interrogative

reversal (IR) categories suggest possible difficulties in question formulation.

Sentence |IP |PP |M V |SV |NG |CNJ|IR |WHQ|S|TOT|

I like this. | 1 | 1 | 1 | | | | | |1| 4|

I like that. | 1 | 1 | 1 | | | | | |1| 4|

I want hot dog. | | 1 | 1 | | | | | |0| 2|

I like it . | 1 | 1 | 1 | | | | | |1| 4|

what this say. | 1 | | - | | | | - | 2 |0| 3|

Developmental Sentence Score: 3.4 (i.e. 17/5)

7.7.6 DSS Summary

DSS has been designed to adhere as strictly as possible to the criteria for both sentence

selection and scoring outlined by Lee. The goal is the calculation of DSS scores based

upon Leeôs (1974) criteria, as outlined below. The numbers indicate the scores assigned

for each type of usage.

Indefinite Pronouns (IP) (A)

1 it, this, that

3a no, some, more, all, lot(s), one(s), two (etc.), other(s), another

3b something, somebody, someone

4 nothing, nobody, none, no one

7a any, anything, anybody, anyone

7b every, everyone, everything, everybody

7c both, few, many, each, several, most, least, last, second, third (etc.)

Personal Pronouns (PP) (B)

1 1st and 2nd person: I, me, my, mine, your(s)

2 3rd person: he, him, his, she, her(s)

3a plurals: we, us, our(s) they, them, their

3b these, those

5 reflexives: myself, yourself, himself, herself, itself, themselves, ourselves

6 Wh-pronouns: who, which, whose, whom, what, how much

 Wh-word + infinitive: I know what to do, I know who(m) to take.

7 (his) own, one, oneself, whichever, whoever, whatever

 Each has his own. Take whatever you like.

Main Verb (MV) (C)

1a uninflected verb

1b copula, is or ôs. Itôs red.

1c is + verb + ing

2a -s and -ed

2b irregular past, ate, saw

2c copula am, are, was, were\

2d auxiliary am, are, was, were

4a can, will may + verb

4b obligatory do + verb

4c emphatic do + verb

6a could, would, should, might + verb

6b obligatory does, did + verb

Part 2: CLAN 76

6c emphatic does, did +verb

7a passive including with get and be

7b must, shall + verb

7c have + verb + en

7d have got

8a have been + verb + ing, had been + verb + ing

8b modal + have + verb + en

8c modal + be + verb + ing

8d other auxiliary combinations (e.g., should have been sleeping)

Secondary Verbs (SV) (D)

2a five early developing infinitives

2b I wanna see, Iôm gonna see, I gotta see, Lemme see, Letôs play

3 noncomplementing infinitives: I stopped to play

4 participle, present or past: I see a boy running. I found the vase broken.

5a early infinitives with differing subjects in basic sentences:

 I want you to come

5b later infinitival complements: I had to go

5c obligatory deletions: Make it [to] go

5d infinitive with wh-word: I know what to get

7 passive infinitive with get: I have to get dressed

 with be: I want to be pulled.

8 gerund: Swinging is fun.

Negative (NG) (E)

1 it, this, that + copula or auxiliary is, ôs + not: Itôs not mine.

 This is not a dog.

4 canôt donôt

5 isnôt wonôt

7a uncontracted negatives with have: I have not eaten it.

7b any other pro-aux + neg forms: youôre not, heôs not

7c any other aux-negative contractions: arenôt, couldnôt

Conjunction (CNJ) (F)

3 and

5a but

5b so, and so, so that

5c or, if

8a where, when, how, while, whether, (or not), till, until, unless, since,

 before, after, for, as, as + adjective + as, as if, like, that, than

8d wh-words + infinitive: I know how to do it.

Interrogative Reversal (IR) (G)

1 reversal of copula: isnôt it red?

4 reversal of auxiliary be: Is he coming?

6a obligatory -do, -does, -did Do they run?

6b reversal of modal: Can you play?

6c tag questions: Itôs fun isnôt it?

Part 2: CLAN 77

8a reversal of auxiliary have: Has he seen you?

8b reversal with two auxiliaries: Has he been eating?

8c reversal with three auxiliaries: Could he have been going?

Wh-question (WHQ) (H)

2a who, what, what + noun

2b where, how many, how much, what....do, what....for

4 when, how, how + adjective

7 why, what it, how come, how about + gerund

8 whose, which, which + noun

7.7.7 DSS for Japanese

DSS can be used for Japanese data to provide an automatic computation of the

Developmental Sentence Score for Japanese (DSSJ; Miyata, & al., 2013) based on the

Developmental Sentence Score of Lee (1974). The DSSJ scores are based on a corpus of

100 utterances with disambiguated %mor tiers. The basic command has this shape:

dss +lj +djpn .cut +b*CHI +c100 +e *.cha

The items scored by DSSJ are listed below. The numbers indicate the scores assigned for

each type of usage. The morpological codes refer to the codes used in JMOR06 and

WAKACHI2002 v.5.

Verb Final Inflection (Vlast)

1 PAST (tabeta), PRES (taberu), IMP:te (tabete!)

2 HORT (tabeyoo), CONN (tabeteé)

3 COND:tara (tabetara)

4 CONN&wa (tabecha), GER (tabe), NEG&IMP:de (tabenaide!)

5 IMP (tabero), NEG&OBL (tabenakucha)

Verb Middle Inflection (Vmid)

1 COMPL (tabechau), NEG (tabenai), ASP/sub|i (tabeteru/tabete iru)

2 DESID (tabetai), POT (taberareru/tabereru), POL (tabemasu),

 sub|ku (tabete kuru), sub|ik (tabete iku)

3 sub|mi (tabete miru), sub|ar (tabete aru), sub|ok (tabete oku),

 sub|age (tabete ageru)

4 PASS (taberareru)

5 sub|moraw (tabete morau), sub|kure (tabete kureru)

Adjective Inflection (ADJ)

1 A-PRES (oishii)

3 A-NEG- (oishikunai), A-ADV (oishiku)

4 A-PAST (oishikatta)

Copula (COP)

1 da&PRES (da)

3 de&wa-NEG-PRES (janai), de&CONN (gakusee de)

4 da-PAST (datta), da&PRES:na (gakusee na no), ni&ADV (gakusee ni naru)

5 de&CONN&wa (kami ja dame)

Adjectival Nouns + Copula (AN+COP)

Part 2: CLAN 78

4 AN+da&PRES (kiree da), AN+ni&ADV (kiree ni), AN+da&PRES:na (kiree na)

Conjunctive particles (CONJ ptl)

2 kara=causal (kiree da kara)

3 to (taberu to ii) , kara=temporal (kaette kara taberu), kedo (tabeta kedo)

4 shi (taberu shi), noni (tabeta noni)

Conjunctions (CONJ)

4 datte (datte tabeta mon), ja (ja taberu), de/sorede (de tabeta), dakara (dakara

 tabeta)

5 demo (demo tabechatta)

Elaborated Noun Phrases (NP)

2 N+no+(N) (ringo no e), A+N (oishii ringo)

3 N+to+N (ringo to nashi), Adn+N (ironna ringo), V+N (tabeta ringo)

5 AN+na+N (kiree na ringo), V+SNR (tabeta no ga chigau)

Formal Nouns (FML)

4 koto (tabeta koto aru)

5 hoo (tabeta hoo ga ii)

Compounds (COMP)

1 N+N (geta+bako)

5 PROP+N (Nagoya+eki), V+V (tabe+owaru), N+V (jagaimo+hori)

Case and Post Particles (CASE)

1 ga (ringo ga oishii), ni (ringo ni tsukeru)

2 to (Papa to asonda), de (ie de taberu)

3 o (ringo o taberu), kara (ringo kara deta)

5 made (ie made hashiru)

Topic, Focus, Quotation Particles (TOP, FOC, QUOT)

1 wa (ringo wa ii), mo (ringo mo ii)

2 tte (ringo tte nani?)

3 dake (ringo dake), to (quot) (ringo to iu toé)

5 kurai (sannin kurai ita), shika (sannin shika inai)

Adverbs (ADV)

2 motto (motto taberu), moo (moo tabenai), mata (mata taberu)

3 mada (mada tabetenai), chotto (chotto taberu), ippai (ippai taberu)

4 ichiban (ichiban oishii), nanka (nanka oishii), sugu (sugu taberu)

5 yappari (yappari taberu), sakki (sakki taberu)

Sentence Final Particles (SFP)

1 yo (taberu yo), no (taberu no), ne (taberu ne)

2 kanaa (taberu kanaa), mon (taberu mon), ka (taberu ka), naa (taberu naa)

3 no+yo (taberu no yo)

4 yo+ne (taberu yo ne), kke (tabeta kke)

Sentence Modalizers (SMOD)

3 desu (oishii desu)

Part 2: CLAN 79

4 mitai (ringo mitai), deshoo (tabeta deshoo)

5 yoo (ikeru yoo ni suru), jan (tabeta jan)

Miyata, S., MacWhinney, B. Otomo, K. Sirai, H., Oshima-Takane, Y., Hirakawa, M.,

Shirai, Y., Sugiura, M. and Itoh, K. (2013). Developmental Sentence Scoring for

Japanese. First Language 33, 2, x-x. http://fla.sagepub.com/content/early/recent

www2.aasa.ac.jp/people/smiyata/papers/Miyata&al_DSSJ_FirstLanguage2013.pdf

7.7.8 How DSS works

DSS relies on a series of rules stated in the rules file in CLAN/lib/dss, such as eng.cut.

These rules are listed in a ñSTARTRULESò line at the beginning of the file. They are

fired in order from left to right. Each rule matches one of the top-level categories in the

DSS. For example, the D rules (fourth letter of the alphabet) match the SV category that

is the fourth category in the DSS. Within each rule there is a series of conditions. These

conditions each have a focus and points. Here is an example:

FOCUS: pro|it+pro:dem|t hat+pro:dem|this

POINTS: A1

This condition checks for the presence of the pronouns it, that, or this and assigns one A1

points if they are located. The pattern matching for the Focus uses the syntax of a

COMBO search pattern. This means that the asterisk is a wild card for ñanythingò; the

plus means ñorò, and the up arrow means ñfollowed byò. DSS goes through the sentence

one word at a time. For each word, it checks for a match across all the rules. Within a

rule, DSS checks across conditions in order from top to bottom. Once a match is found,

it adds the points for that match and then moves on to the next word. This means that, if

a condition assigning fewer points could block the application of a condition assigning

more points, you need to order the condition assigning more points before the condition

assigning fewer points. Specifically, the C1 condition for main verbs is ordered after C2

and C7 for this reason. If there is no blocking relation between conditions, then you do

not have to worry about condition ordering.

The Japanese implementation of DSS differs from the English implementation in one

important way. In Japanese, after a match occurs, no more rules are searched and the

processor moves directly on to the next word. In English, on the other hand, after a

match occurs, the processor moves on to the next rules before moving on to the next

word.

Miyata, S., Hirakawa, M., Ito, K., MacWhinney, B., Oshima-Takane, Y., Otomo, K.

Shirai, Y., Sirai, H., & Sugiura, M. (2009). Constructing a New Language Measure for

Japanese: Developmental Sentence Scoring for Japanese. In: Miyata, S. (Ed.)

Development of a Developmental Index of Japanese and its application to Speech

Developmental Disorders. Report of the Grant-in Aid for Scientific Research (B)(2006-

2008) No. 18330141, Head Investigator: Susanne Miyata, Aichi Shukutoku University.

15-66.

7.7.9 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word dss, you will see a list of all available options. Many of these will be

http://fla.sagepub.com/content/early/recent
http://www2.aasa.ac.jp/people/smiyata/papers/Miyata&al_DSSJ_FirstLanguage2013.pdf

Part 2: CLAN 80

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. DSS has the following

unique options:

+b Designate which speaker to be analyzed.

+c Determine the number of sentences to be included in analysis. The default for

this option is 50 sentences. These sentences must contain both a subject and a verb, be

intelligible, and be unique and non-imitative. A strict criteria is used in the development

of the corpora. Any sentences containing xxx yyy and www codes will be excluded from

the corpora.

+e Automatically generate a DSS table.

+s This switch has specific usage with DSS. To include sentences marked with the

[+ dss] code, the following option should be included on the command line: +s"[+ dss]".

To exclude sentences with the [+ imit] postcode, the user should include the following

option on the command line: -s"[+ imit]". These are the only two uses for the +s/-s

option.

Additional options shared across commands can be found in the chapter on Options.

7.8 EVAL

EVAL is a CLAN program that analyzes transcripts and yields a spreadsheet displaying

many language characteristics. The program can be used in three ways:

1. It can analyze a participant's performance of a discourse task.

2. It can analyze a participant's performance of a discourse task from the AphasiaBank

Protocol and compare the results to those of a reference group from the

AphasiaBank database. The resulting spreadsheet displays the participant's analysis

side-by-side with the mean scores of the comparison group, and indicates where the

participant and the comparison group differ by one or more standard deviations.

3. It can analyze the baseline performance, then you can re-administer and analyze the

discourse task after a period of therapy. The spreadsheet displays the pre- and post-

therapy results side-by-side, allowing a comparison of performance at different time

points.

The use of EVAL is described in tutorial screencasts available from

http://talkbank.org/screencasts .

7.8.1 Explanation of EVAL Measures

All measures are calculated from the %mor line except for FREQ types and FREQ

tokens which are calculated from the speaker tier.

1. Duration: total time of the sample in hours:minutes:seconds. For simplified EVAL

transcripts, which are not linked with time bullets, users who want this information

need to add a TIME DURATION line to the ID lines in the transcript (see EVAL

Manual, Section 4.c). For linked transcripts EVAL calculates this item

automatically.

2. Total Utts: total utterances. Includes all utterances used in computing MLU, plus

http://talkbank.org/screencasts

Part 2: CLAN 81

utterances with xxx (unintelligible). Excludes non-word utterances, for example a

gesture only, coded as *PAR: &=head:yes.

3. MLU Utts: number of utterances used to compute MLU. Excludes utterances with

xxx code and non-word utterances (*PAR: 0). Adding +s to the EVAL command

counts utterances and words in utterances with xxx.

4. MLU Words: MLU in words. Excludes words in utterances with xxx, yyy or www

codes.

5. MLU Morphemes: MLU in morphemes. Excludes morphemes in utterances with

xxx, yyy or www codes.

6. FREQ types: total word types as counted by FREQ. The default does not include

repetitions and revisions.

7. FREQ tokens: total word tokens as counted by FREQ. The default does not include

repetitions and revisions.

8. FREQ TTR: type/token ratio

9. Verbs/Utt: verbs per utterance: (roughly corresponds to clauses per utterance).

Includes verbs, copulas, and auxiliaries followed by past or present participles; does

not include modals.

10. % Word Errors: percentage of words that are coded as errors [*]. This item can be

displayed as a raw number rather than a percentage by adding +o4 to the EVAL

command.

11. Utt Errors: number of utterances coded as errors. For EVAL transcriptions the code

is [+ *]. For transcripts with full error coding, the [+ *] code subsumes utterance-

level errors from the Error Coding section of the CHAT manual ([+ jar], [+ es], [+

cir], [+ per], and [+ gram]). This code is intended to flag errors for closer

examination. It does not allow accurate comparison with the control database, since

any utterance-level errors of controls are not coded.

12. mor Words: the number of words used for analysis by MOR. Unlike FREQ, by

default MOR counts pre- and post-clitics as words.

13. Density: measure of propositional idea density. This measure was adapted with

permission, from CPIDR3 (Computerized Propositional Idea Density Rater, third

major version), developed under the direction of Michael A. Covington, University

of Georgia Artificial Intelligence Center, August 17, 2007. CPIDR replicates

Turner and Greenôs rules (1977) for extracting propositions from text, based on the

theory of Kintsch (1974) and the work of Snowdon et al. (1996) who who showed

that propositional idea density can be approximated by the number of verbs,

adjectives, adverbs, prepositions, and conjunctions divided by the total number of

words. For a list of the words counted as propositions from each CHAT file, add

+e2 to the EVAL command.

The next 15 items (#14-28) are expressed as percentages of total words by default.

Adding +o4 to the EVAL command displays them as raw numbers.

14. % Nouns

15. % Plurals

16. % Verbs: includes those tagged by MOR as verb, participle, copula and modal

17. % Aux: auxiliaries

18. % 3S: third person singular

19. % 1S/3S: identical forms for first and third person (e.g. I was, he was)

Part 2: CLAN 82

20. % Past

21. % PastP: past participle

22. % PresP: present participle

23. % prep: prepositions

24. %adv: adverbs

25. %adj: adjectives

26. % conj: conjunctions

27. % det: determiners (includes articles, demonstratives, interrogatives, numbers, and

posessives used as determiners)

28. % pro: pronouns

29. noun/verb ratio: total # of nouns ÷ total # of verbs (excluding auxiliaries and

modals)

30. open/closed ratio: total # of open class words ÷ total # of closed class words; open

class = all nouns, all verbs excluding auxiliaries and modals, all adjectives, all

adverbs excluding adv:int; closed class = all other MOR eng cut files excluding

co.cut and on.cut files.

31. retracing [//]: number retracings (self-corrections or changes)

32. repetition [/]: number of repetitions

By default, sentences marked by [+ exc] are excluded from the analysis. To include

them, add the +sò[+ exc]ò to the EVAL command.

For cases where target replacements are in the transcript next to error productions with

missing morphemes (e.g., he is kick [: kicking] [* m:0ing] the ball), the EVAL and

MORTABLE programs will reflect the speaker's morphological production (e.g., v|kick)

and not count anything that was not produced (e.g., part|kick-PRESP). For cases where

target replacements are in the transcript next to error productions for superfluous

morphemes (e.g., there is one birds [: bird] [* m:+s] in the tree), the EVAL and

MORTABLE programs will not count the superfluous morphemes (e.g., n|bird-PL)

because they were not used correctly.

7.8.2 EVAL Demo

To run a demo of the EVAL program, follow these steps:

1. To start the comparison, push the Progs (for programs) button in the CLAN

commands window, and select Eval from the drop-down menu of CLAN commands.

Push the Option button, and you will see a list of the files in your working directory

folder. Navigate to the /examples/eval folder, and double click on eval_demo.cha

and it will be displayed on the rightside of the box. When you have chosen the right

file for analysis, click on Done.

2. A new window, shown below, will appear for selecting EVAL options. For this

demonstration, you want to compare eval_demo.cha to a sample from the

AphasiaBank database. Since eval_demo.cha is a transcript of an anomic aphasic

person, we suggest choosing Anomic as the aphasia type for comparison. Under Age

range, since the eval_demo participant is 55 years old, we suggest choosing 45-65

(in this format). If you want only males or only females, choose the appropriate

circle. If you want both genders included, leave those circles blank, which is the

choice we suggest here. Next select the AphasiaBank discourse task you want to

compare to eval_demo.cha. The eval_demo.cha file is a transcript of the Sandwich

Part 2: CLAN 83

Gem, so select Sandwich under Gem choices. Your window will now look like this:

3. Press the OK button, and the Commands window will echo this full command you

have constructed:

eval @ +t*PAR: +dòAnomic45-65ò +gòSandwichò +u

4. Press Run and CLAN will produce an output file called eval_demo.xls, as listed in

the CLAN Output window. Click three times on that last line and the results will

open in Excel. If Excel warns you about opening the files, just say ñyesò. The

columns list various outputs in terms of indices and part of speech frequencies.

7.8.3 EVAL Output

After triple-clicking on the output from this demo, you open up a spreadsheet. Below is

the first part of that spreadsheet. Data from the eval_demo transcript are displayed across

the first row, and the information for the comparison database is displayed in the rows

below. The top line of the first column identifies the name of the file being analyzed.

Below that is a row specifying the percentage of a standard deviation that eval_demo

differs from the database. When the difference is a standard deviation or more, the next

row indicates this with one asterisk for one standard deviation or more, and two asterisks

for two or more. The next three rows provide information about the comparison database:

the mean, the minimum, the maximum, and the standard deviation for each of the

language measures EVAL produces. Below this the characteristics of the comparison

database are listed (in this case the Sandwich Gem and Anomic participants from 45-65

years old). The next line specifies the number of files in the AphasiaBank database that

met the criteria for the comparison database; in this case it was 25. The final line is the

CLAN command that was used to generate this spreadsheet. The second column is the

ID information for the person whose language is in the transcript.

Part 2: CLAN 84

7.8.4 Comparing Multiple Transcripts

EVAL can also be used to analyze and compare files (e.g., measure change over time in

therapy) without any reference to the AphasiaBank database or the AphasiaBank

discourse tasks. As an example, you can use the sample files eval_demo02a.cha and

eval_demo02b.cha that are already in your examples/eval folder.

Next, push the PROGS button in the CLAN Commands window, and select eval from the

dropdown menu of CLAN commands. Push the option button, and you will see a list of

the files in your working directory folder. Double click on the files you want to analyze

and they will be displayed on the right side of the box. When you have finished your

selections, click the Done button.

A new window, shown below, will appear for selecting database options. Under the

heading Database types, choose Deselect Database. If your transcriptions contain only

one gem or none of the AphasiaBank protocol gems, you can bypass the rest of the

choices in the box, and just press OK. If your transcriptions contain more than one gem

from the AphasiaBank protocol, and you want to choose one for analysis, choose the

circle next to the one you want to analyze and then push OK. The command box will

show the appropriate command for your selections. Press run, and the CLAN output will

appear on your desktop. Triple click on the last line of the CLAN output to open the

Excel spreadsheet displaying your data in one spreadsheet.

7.8.5 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word eval, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. EVAL has the following

unique options:

+bS: add S characters to the morpheme delimiters list (default: -#~+)

Part 2: CLAN 85

-bS: remove S characters from the morphemes list (-b: empty morphemes list)

+cN: create database file (N == 1: eval +c1 +t"*par")

+dS: specify database keyword(s) ñSò. The choices are: Anomic, Global, Broca,

Wernicke, TransSensory, TransMotor, Conduction, NotAphasicByWAB, Control,

Fluent, Nonfluent, Fluent, AllAphasia

+e1: create list of database files used for comparisons

+e2: create proposition word list for each CHAT file

+g: gem tier should contain all words specified by +gS

-g: look for gems in database only

+gS: select gems which are labeled by label S

+n: gem is terminated by the next @G (default: automatic detection)

-n: gem is defined by @BG and @EG (default: automatic detection)

+o4: output raw values instead of percentage values

7.9 FLUCALC

The FLUCALC program works very much like KIDEVAL. However, it has fewer

options. It tracks the frequencies of the various fluency indicators summarized in the

section of the CHAT manual on ñDisfluency Transcriptionò such as retraces, blockings,

and initial segment repetitions. Like KIDEVAL, it requires the presence of a %mor tier

and the selection of a certain speaker as the target. For example, the +t*PAR switch

would select utterances from PAR for analysis. See KIDEVAL for the relevant options.

FLUCALC will perform a fluency analysis of a language sample, in both raw counts and

percentages of intended words. It will also provide a ñbetaò weighted disfluency value

over words, based on the formula proposed by the Illinois Stuttering Project (Yairi &

Ambrose, 1999) for computations made on syllable counts.

You must use fluency codes specified in the CHAT manual and the Clinicianôs Guide to

CLAN. As noted, values are currently word-based (rather than syllable-based). Plans are

underway to permit a syllable-based option to be used in interpreting scores against

commonly reported measures such as the SSI-4.

You must run MOR for the appropriate language in order to then run FluCalc.

The same speech/language sample can be used for both language sample analysis

(KidEval, EVAL) and fluency appraisal via FluCalc.

Output is in spreadsheet format (please note that CLAN spreadsheets are Excel

compatible, but must be imported using options that Excel will provide when you first

open the spreadsheet).

The user can select to have FLUCALC use either words or syllables as the denominator

for the computation of percentages. For indices that look at intended words, the forms on

the %mor line are used, because that line excludes repetitions and nonwords. The

columns in the output specify the following values (beyond those provided by header

information, such as gender, age, corpus, etc.):

¶ mor Utts: total utterances in the sample

¶ mor Words: total intended words, as given on the %mor line

¶ mor syllables: total syllables of the words on the %mor line

Part 2: CLAN 86

¶ words/minute: words from the %mor line

¶ syllables/minute: syllables in the words in the %mor line

¶ #Prolongation: raw count of sound prolongations

¶ %Prolongation

¶ #Broken word

¶ %Broken word

¶ #Block

¶ %Block

¶ #PWR: part-word repetition

¶ %PWR

¶ #PWR-RU: part-word repetition units, these are sometimes called iterations, or

the actual number of repetitions in a part-word repetition unit. This column totals

all RUs seen in the sample, for use in the weighted disfluency score

¶ %PWR-RU

¶ #WWR: whole word repetition

¶ %WWR

¶ #WWR-mono: monosyllabic repetition

¶ %WWR-mono

¶ #WWR-RU: repetition units; please see PWR above

¶ %WWR-RU

¶ #WWR-RU-mono: repetition units; please see PWR above

¶ %WWR-RU-mono

¶ mean RU = (PWR-RU + WWR-RU) / (PWR+WWR)

¶ #Phonological fragment: these are best viewed as abandoned word attempts, e.g.

&+fr - tadpole, where the speaker appears to change word choices; this code was

original to CLAN programs.

¶ %Phonological fragment

¶ #Phrase repetitions

¶ %Phrase repetitions

¶ #Word revisions

¶ %Word revisions

¶ #Phrase revisions

¶ %Phrase revisions

¶ #Pauses

¶ %Pauses

¶ #Filled pauses

¶ %Filled pauses

¶ #TD: typical disfluencies; this is the sum of phrase repetitions, word revisions,

phrase revisions, pause counts, pause duration, and filled pauses.

¶ %TD

Part 2: CLAN 87

¶ #SLD: stutter-like disfluencies; this the sum of prolongations, broken words,

blocks, PWRs, phonological fragments, and monosyllabic WWRs.

¶ %SLD: proportion of stutter-like disfluencies over total intended words

¶ #Total (SLD+TD): this sums all forms of disfluency, both stutter-like and typical,

seen in the sample

¶ %Total (SLD+TD)

¶ SLD Ratio: SLD/(SLD+TD)

¶ Weighted SLD: This is an adapted version of the SLD formula for distinguishing

between typical disfluency and stuttering profiles in young children. It was

originated by Yairi & Ambrose (1999) and referenced against a standard sample

of 100 syllables. This formula penalizes the severity of the segment repetition

profile as well as the presence of prolonged sounds and blocks, which are

virtually absent in any sample of typically fluent speech. The formula is:

((PWR + mono- WWR) * ((PWR - RU + mono- WWR- RU)/(PWR + mono- WWR))) +

(2 * (prologations + blocks))

7.10 FREQ

One of the most powerful programs in CLAN is the FREQ program for frequency anal-

ysis. In its basic form, without special switches, it is also one of the easiest programs to

use and a good program to start with when learning to use CLAN. FREQ constructs a

frequency word count for user-specified files. A frequency word count is the calculation

of the number of times a word occurs in a file or set of files. FREQ produces a list of all

the words used in the file, along with their frequency counts, and calculates a typeïtoken

ratio. The typeïtoken ratio is found by calculating the total number of unique words used

by a selected speaker (or speakers) and dividing that number by the total number of

words used by the same speaker(s). It is generally used as a rough measure of lexical

diversity. Of course, the typeïtoken ratio can only be used to compare samples of equiva-

lent size, because the ratio of types to tokens tends to vary with sample size.

7.10.1 What FREQ ignores

The CHAT manual specifies two special symbols that are used when transcribing dif-

ficult material. The xxx symbol is used to indicate unintelligible speech and the www

symbol is used to indicate speech that is untranscribable for technical reasons. FREQ

ignores these symbols by default. Also excluded are all the words beginning with one of

the following characters: 0, &, +, -, #. If you wish to include them in your analyses, list

them, along with other words you are searching for, using the +s/-s option. The FREQ

program also ignores header and code tiers by default. Use the +t option if you want to

include headers or coding tiers.

7.10.2 Studying Lexical Groups using the +s@file switch

The simplest use of FREQ is to ask it to give a complete frequency count of all the words

in a transcript. However, FREQ can also be used to study the development and use of

lexical groups. For example, if you want to study how children use personal pronouns

between the ages of 2 and 3 years, a frequency count of these forms would be helpful.

Part 2: CLAN 88

Other lexical groups that might be interesting to track could be the set of all conjunctions,

all prepositions, all morality words, names of foods, and so on. To get a listing of the

frequencies of such words, you need to put all the words you want to track into a text file,

one word on each line by itself, and then use the +s switch with the name of the file

preceded by the @ sign, as in this example:

freq +s@a rticles.cut +f sample.cha

This command would conduct a frequency analysis on all the articles that you have put in

the file called articles.cut. You can create the articles.cut file using either the CLAN

editor in Text Mode or some other editor saving in ñtext only.ò The file looks like this:

a

the

an

7.10.3 Searches for %mor and %gra combinations

Because the %mor and %gra lines are in one-to-one alignment, you can use the +d7

switch with FREQ to search for items that have a particular characterization on both

lines. For example, these commands will find words that are marked as relativizers on

the %mor line and which are tagged as having the OBJ grammatical relation role on the

%gra tier:

freq sample.cha +d7 +sm|rel +sg|OBJ

7.10.4 Searches in Multilingual Corpora

FREQ can be used with the ïl switch to track a variety of multilingual patterns. Here is a

FREQ count of Spanish nouns (n|*) on the %mor tier with their corresponding words on

speaker tier:

freq +l +s*@s:spa +sm| n +d7 *.cha

Here is a FREQ count of all Spanish words on %mor tier:

freq +l +s*@s:spa +d7 *.cha

Here is a FREQ count of all Spanish words on speaker tier:

freq +l +s*@s:spa *.cha

To count the frequencies of words on tiers marked with the [- spa] pre-code:

freq +s"[- spa]" *.cha

To count the number of tiers with [- spa] pre-code only:

freq +s"< - spa>" *.cha

Counting only the English tiers:

freq +s"< - eng>" *.cha

The language pre-code has a space in it, so it is important that when you specify this

language pre-code that you include the space and use quotes:

+s"[- spa]" +s"[- eng]" +s"< - spa>" +s"< - eng>"

Part 2: CLAN 89

7.10.5 Building Concordances with FREQ

CLAN is not designed to build final, publishable concordances. However, you can

produce simple concordance-like output using the +d0 switch with FREQ. Here is a

fragment of the output from the use of this command. This fragment shows 8 matches

for the word ñthoseò and 3 for the word ñthrow.ò

8 those

 File "0012.cha": line 655.

 *MOT: look at those [= toys] .

 File "0012.cha": line 931.

 *MOT: donôt you touch those wires .

 File "0012.cha": line 1005.

 *MOT: you canôt play in those dra wer s .

 File "0012.cha": line 1115 .

 *MOT: those [= crayons] are (y)icky .

 File "0012.cha": line 1118.

 *MOT: those [= crayons] are (y)icky .

 File "0012.cha": line 1233.

 *MOT: you canôt eat those [= crayons] .

 File "0012.cha": line 1240.

 *MOT: no (.) y ou canôt eat those [= crayons] .

 File "0012.cha": line 1271.

 *MOT: (be)cause you're gonna [: go ing to] put those [=

crayons] in your mouth .

3 throw

 File "0012.cha": line 397.

 *MOT: can you <throw that [= football] ?> [>]

 File "0012.cha": line 702.

 *MOT: yeah (.) can we throw it [= ball] ?

 File "0012.cha": line 711.

 *MOT: can you throw that [= ball] to Mommy ?

7.10.6 Using Wildcards with FREQ

Some of the most powerful uses of FREQ involve the use of wildcards. Wildcards are

particularly useful when you want to analyze the frequencies for various codes that you

have entered in coding lines. Here is an example of the use of wildcards with codes. One

line of Hungarian data in sample2.cha has been coded on the %mor line for syntactic role

and part of speech, as described in the CHAT manual. It includes these codes: N:A|duck-

ACC, N:I|plane-ACC, N:I|grape-ALL, and N:A|baby-ALL, where the suffixes mark

accusative and illative cases and N:A and N:I indicate animate and inanimate nouns. If

you want to obtain a frequency count of all the animate nouns (N:A) that occur in this

file, use this command line:

freq +t%mor +s"N:A|*" sample2.cha

The output of this command will be:

1 n:a|baby - all

1 n:a|ball - acc

1 n:a|duck - ac c

Note that material after the +s switch is enclosed in quotation marks to guarantee that

wildcards will be correctly interpreted. For Macintosh and Windows, the quotes are the

best way of guaranteeing that a string is correctly interpreted. On Unix, only single

quotes can be used. In Unix, single quotes are necessary when the search string contains a

Part 2: CLAN 90

$, |, or > sign.

The next examples give additional search strings with asterisks and the output they will

yield when run on the sample file. Note that what may appear to be a single underline in

the second example is actually two underline characters.

String Output

* - acc 1 n:a|ball - acc

 1 n:a|duck - acc

 1 n:i|plane - acc

* - a__ 1 n:a|baby - all

 1 n:a|ball - acc

 1 n:a|duck - acc

 1 n:i|grape - all

 1 n:i|plane - acc

N:*|* - all 1 N:A|baby - all

 1 N:I|grape - all

These examples show the use of the asterisk as a wildcard. When the asterisk is used,

FREQ gives a full output of each of the specific code types that match. If you do not want

to see the specific instances of the matches, you can use the percentage wildcard, as in the

following examples:

String Output

N:A|% 3 N:A|

%- ACC 3 - ACC

%- A__ 3 - ACC

 2 - ALL

N:%|%- ACC 3 N:| - ACC

N:%|% 5 N:|

It is also possible to combine the use of the two types of wildcards, as in these examples:

String Output

N:%|* - ACC 1 N:|ball - acc

 1 N:|duck - acc

 1 N:|plane - acc

N:*|% 3 N:A|

 2 N:I|

Researchers have also made extensive use of FREQ to tabulate speech act and interac-

tional codes. Often such codes are constructed using a taxonomic hierarchy. For example,

a code like $NIA:RP:NV has a three-level hierarchy. In the INCA-A system discussed in

the chapter on speech act coding in the CHAT manual, the first level codes the

interchange type; the second level codes the speech act or illocutionary force type; and

the third level codes the nature of the communicative channel. As in the case of the

morphological example cited earlier, one could use wildcards in the +s string to analyze

at different levels. The following examples show what the different wildcards will

produce when analyzing the %spa tier. The basic command here is:

freq +s"$*" +t%spa sample.cha

String Output

$* frequencies of all the three - level

 codes in the %spa tier

$*:% frequencies of the interchange types

$%:*:% frequencies of the speech act codes

Part 2: CLAN 91

$RES:*: % frequencies of speech acts within the

 RES category

$*:sel:% frequencies of the interchange types that have SEL

 speech acts

If some of the codes have only two levels rather than the complete set of three levels, you

need to use an additional % sign in the +s switch. Thus, the switch

 +s"$%:*:%%"

will find all speech act codes, including both those with the third level coded and those

with only two levels coded.

As another example of how to use wild cards in FREQ, consider the task of counting all

the utterances from the different speakers in a file. In this case, you count the three-letter

header codes at the beginnings of utterances. To do this, you need the +y switch to make

sure FREQ sees these headers. The command is:

 freq +y +sò\ **:ò *.cha

7.10.7 FREQ for the %mor line

Searches for material on the %mor line can be difficult to compose. To help in this

regard, we have composed a variant of FREQ searches that takes advantage of the rigid

syntax of the %mor tier. To see the available options here, you can type ñfreq +smò on

the command line and you will see the following information:

+sm search for morpho - syntax

Morphosyntactic markers specify the nature of the fol lowing string

 # prefix marker

 | part - of - speech marker

 ; stem of the word marker

 - suffix marker

 & nonconcatenated morpheme marker

 = English translation for the stem marker

 @ replacement word preceding [: ...] code marker

 * error code inside [* ...] code marker,

and then optionally + or ï followed by one of these

 * find any match

 % erase any match

 string find "string"

 o erase all other elements not specified by user

 o% erase all other elements

 o~ erase postclitic element, if present

 o$ erase preclitic element, if present

 , separates alternative elements

Postclitic AND Preclitic exception:

 Find postclitics with specific Morphosyntactic marker example:

 |*,~|* OR ;*, ~;*

 Find preclitic with specific Morphosyntactic marker example:

 |*,$|* OR ;*,$;*

 * find any match

 string find "string"

For example:

 +sm;*,o%

 find all stems and erase all other markers

 +sm;*,o%,o~

 find all stems and erase all other markers including all

Part 2: CLAN 92

postclitics, if present

 +sm;*,|adv,o%

 find all stems of all "adv" and erase all other markers

 +sm;be

 find all forms of "be" verb

 +sm;*,|*,o%

 find all stems and parts - of - speech and erase other markers

 +sm;*,|*, - *,o%

 find only stems and parts - of - speech that have suffixes and erase

other markers

 +sm;*,| - *, - +*,o - %

 find all stems, parts - of - speech and distinguish th ose with suffix

and erase other markers

 - sm- * +sm;*,|*,o%

 find only stems and parts - of - speech that do not have suffixes and

erase other markers

 +sm|n,|n:*,~|poss

 find only noun words with "poss" parts - of - speech postclitic

 +sm|n,|n:* +r4

 f ind all noun words and show postclitics, if they have any

 +sm|n,|n:*,o~

 find all noun words and erase postclitics, if they have any

If you are using an include file with the +s@filename option, the format of this file is:

m;firstword

m;anotherword

etc.

In other words, the format of the include file is the same as the format of the +sm options,

minus the +s.

When using the +sm switch with FREQ, you must also include the +t%mor switch to

instruct FREQ to include searches of the %mor tier.

7.10.8 Errors for morphological codes

FREQ allows you to locate all the errors that correspond to specified morphological

codes. You can do this by using the +sm switch described in the previous section. For

example, to find all PASTs with all errors, you can use this command:

freq +u +t*CHI +sm - PAST,** +sm&PAST,** *cha

The output from this will have this form:

From file <adler01a.cha>

Speaker: *PAR:

 1 v|deliver - PAST@dᴃlivd@u*n:k

This output shows first the frequency, then the code from the %mor line and then the

error as coded on the main line. To find all PASTs with only "neg" errors, as in "word [*

neg]", you can use this command:

freq +u +t*CHI +sm - PAST,*neg +sm&PAST,*neg *cha

7.10.9 Directing the Output of FREQ

When FREQ is run on a single file, output can be directed to an output file by using the

+f option:

Part 2: CLAN 93

 freq +f sample.cha

This results in the output being sent to sample.frq.cex. If you wish, you may specify a file

extension other than .frq.cex for the output file. For example, to have the output sent to a

file with the extension .mot.cex, you would specify:

 freq +fmot sample.cha

Suppose, however, that you are using FREQ to produce output on a group of files rather

than on a single file. The following command will produce a separate output file for each

.cha file in the current directory:

 freq +f *.cha

To specify that the frequency analysis for each of these files be computed separately but

stored in a single file, you must use the redirect symbol (>) and specify the name of the

output file. For example:

 freq *.cha > freq.all

This command will maintain the separate frequency analyses for each file separately and

store them all in a single file called freq.all. If there is already material in the freq.all file,

you may want to append the new material to the end of the old material. In this case, you

should use the form:

 freq *.cha >> freq.all

Sometimes, however, researchers want to treat a whole group of files as a single data-

base. To derive a single frequency count for all the .cha files, you need to use the +u

option:

 freq +u *.cha

Again, you may use the redirect feature to specify the name of the output file, as in the

following:

 freq +u *.cha > freq.all

7.10.10 Limiting in FREQ

An important analytic technique available in clan is the process of ñlimitingò which

allows you to focus your analysis on the part of your data files that is relevant by

excluding all other sections. Limiting is based on use of the +s, +t, and +z switches.

Limiting is available in most of the clan string search programs, but cannot be done

within special purpose programs such as CHSTRING or CHECK.

1. Limiting by including or excluding dependent tiers. Limiting can be used to

select out dependent tiers. By using the +t and -t options, you can choose to include

certain dependent tiers and ignore others. For example, if you select a main speaker

tier, you will be able to choose the dependent tiers of only that speaker. Each type of

tier must be specifically selected by the user, otherwise the programs follow their

default conditions for selecting tiers.

2. Limiting by including or excluding main tiers. When the -t* option is combined

with a switch like +t*MOT, limiting first narrows the search to the utterances by

MOT and then further excludes the main lines spoken by MOT. This switch

functions in a different way from -t*CHI, which will simply exclude all of the

utterances of CHI and the associated dependent tiers.

Part 2: CLAN 94

3. Limiting by including or excluding sequential regions of lines or words. The

next level of limiting is performed when the +z option is used. At this level only the

specified data region is chosen out of all the selected tiers.

4. Limiting by string inclusion and exclusion. The +s/-s options limit the data that is

passed on to subsequent programs.

Here is an example of the combined use of the first four limiting techniques. There are

two speakers, *CHI and *MOT, in sample.cha. Suppose you want to create a frequency

count of all variations of the $ini codes found on the %spa dependent tiers of *CHI only

in the first 20 utterances. This analysis is accomplished by using this command:

freq +t*CHI +t%spa +s"$INI*" - t* +z20u sample.cha

The +t*CHI switch tells the program to select the main and dependent tiers associated

only with the speaker *CHI. The +t%spa tells the program to further narrow the selection.

It limits the analysis to the %spa dependent tiers and the *CHI main speaker tiers. The -t*

option signals the program to eliminate data found on the main speaker tier for NIC from

the analysis. The +s option tells the program to eliminate all the words that do not match

the $INI* string from the analysis. Quotes are needed for this +s switch to guarantee

correct interpretation of the asterisk. In general, it is safest to always use pairs of double

quotes with the +s switch. The +z20u option tells the program to look at only the first 20

utterances. Now the FREQ program can perform the desired analysis. This command line

will send the output to the screen only. You must use the +f option if you want it sent to a

file. By default, the header tiers are excluded from the analysis.

The +/-s switch can also be used in combination with special codes to pick out sections of

material in code-switching. For example, stretches of German language can be marked

inside a transcript of mostly English productions with this form:

*CHI: <ich meine> [@g] cow drinking.

Then the command to ignore German material would be:

freq ïsò<@g>ò *.cha

7.10.11 Creating Crosstabulations in FREQ

You are use FREQ to create Excel output with crosstabulation between variables on

dependent tiers. For example, if you have two coding tiers called %xarg and %xsem, you

can crosstabulate using these commands:

freq +d8 +t%xarg +t%xsem +d2 sample.cha

freq +d8 +t%xarg +t%xsem +c5 +d2 sample.cha

freq +d8 +t%xarg +t%xsem sample.cha

freq +d8 +t%xarg +t%xsem +c5 sample.cha

If you want to get results across all input files, then:

freq +d8 +t%xarg +t%xsem +d2 +u sample.cha

freq +d8 +t%xarg +t%xsem +c5 +d2 +u sample.cha

7.10.12 TTR for Lemmas

If you run FREQ on the data on the main speaker tier, you will get a type-token ratio that

is grounded on whole word forms, rather than lemmas. For example, ñrun,ò ñruns,ò and

ñrunningò will all be treated as separate types. If you want to treat all forms of the lemma

Part 2: CLAN 95

ñrunò as a single type, you should run the file through MOR and POST to get a disam-

biguated %mor line. Then you can run FREQ in a form such as this to get a lemma-

based TTR.

freq +sm;*,o% sample.mor.pst

Depending on the shape of your morphological forms, you may need to add some

additional +s switches to this sample command.

7.10.13 Studying Unique Words and Shared Words

With a few simple manipulations, FREQ can be used to study the extent to which words

are shared between the parents and the child. For example, we may be interested in

understanding the nature of words that are used by the child and not used by the mother

as a way of understanding the ways in which the childôs social and conceptual world is

structured by forces outside of the immediate family. To isolate shared and unique words,

you can go through three steps. To illustrate these steps, we will use the sample.cha file.

Run FREQ on the childôs and the motherôs utterances using these two commands:

 freq +d1 +t*MOT +f sample.cha

 freq +d1 +t*CHI +f sample.cha

The first command will produce a sample.frq.cex file with the motherôs words and the

second will produce a sample.fr0.cex file with the childôs words.

Next you should run FREQ on the output files:

 freq +y +o +u sample.f*

The output of these commands is a list of words with frequencies that are either 1 or 2.

All words with frequencies of 2 are shared between the two files and all words with

frequencies of 1 are unique to either the mother or the child.

7.10.14 Grammatical Complexity Analysis through FREQ

Systems such as LARSP work to compute grammatical complexity from embeddings in a

parse tree structure. However, this type of analysis must be done almost completely by

hand and eye. One can compute many of these same relations automatically by counting

the occurrences in a transcript of those grammatical relations (GRs) that mark syntactic

embeddings. The relevant GRs, as described in Part 3 of this manual, are:

CSUBJ: the finite clausal subject of another clause

COMP: the clausal complement of a verb

CPRED: a full clause that serves as the predicate nominal of verbs

CPOBJ: a full clause that serves as the object of a preposition

COBJ: a full clause that serves as the direct object

CJCT: a finite clause that attaches to a verb, adjective, or adverb

XJCT: a non-finite clause that attaches to a verb, adjective, or adverb

NJCT: the head of a complex NP with a PP attached as an adjunct of a noun. The

inclusion of this GR is optional.

CMOD: a finite clause that is a nominal modifier or complement

XMOD: a non-finite clause that is a nominal modifier or complement.

To pull all these out of a transcript or group of transcripts, one can use this command:

freq +sg|CSUBJ +sg|COMP +sg|CPRED +sg|CPOBJ +sg|COBJ +sg|C JCT +sg|XJCT

Part 2: CLAN 96

+sg|NJCT +sg|CMOD +sg|XMOD +d2 +t*PAR *.cha

The result is a stat.frq.xls file that you can open in Excel. It has everything you need to

compute the index for each of the input files, except for the number of tokens in the files.

To get that, you can run this command:

freq +t%gra +t*PAR +s% *.cha

You can then cut and paste those numbers into the first spreadsheet into a column called

TokenAllGR. Then you create another Excel column, which we can call

TokenComplexGRs, that sums all the frequencies of the various complexity GRs.

Finally, you create a third column that divides TokenComplexGR by TokenAllGR, and

that is your complexity index. Thanks to Kimberly Mueller for formulating this

procedure. Using her test files, this procedure spotted 74 embeddings. Of these two were

false alarms and there was one miss. So, overall accuracy of this procedure is at about

95% which compares favorably with results from human coders.

7.10.15 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word freq, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. FREQ has the following

unique options:

+bN This option calculates the lexical diversity of a sample using the Moving Average

Type-Token Ratio (MATTR). This index is based on a moving window that

computes TTRs for each successive window of fixed length (N). Initially, a

window length is selected (e.g., 10 words) and the TTR for words 1-10 is

estimated. Then, the TTR is estimated for words 2-11, then 3-12, and so on to the

end of the text. For the final score, the estimated TTRs are averaged.

+c find capitalized words only

+c1 find words with upper case letters in the middle only

+c2 find matches for every string specified by +s option (default: only first match is

counted)

+c3 find multi-word groups anywhere and in any order on a tier

+c4 find match only if tier consists solely of all words in multi-word group, even a

single word

+c5 when combined with +d7 option it will reverse tier's priority (default: first tier is

on top)

+c6 count only repeat segments when searching for words with ᴗ
+dCN output only words used by <, <=, =, => or > than N percent of speakers

+d Perform a particular level of data analysis. By default the output consists of all se-

lected words found in the input data file(s) and their corresponding frequencies.

The +d option can be used to change the output format. Try these commands:

 freq sample.cha +d0

 freq sample.cha +d1

 freq sample.cha +d2 +tCHI

Part 2: CLAN 97

 Each of these three commands produces a different output.

+d0 When the +d0 option is used, the output provides a concordance with the

frequencies of each word, the files and line numbers where each word, and the text

in the line that matches.

+d1 This option outputs each of the words found in the input data file(s) one word per

line with no further information about frequency. Later this output could be used

as a word list file for KWAL or COMBO programs to locate the context in which

those words or codes are used.

+d2 With this option, the output is sent to a file in a form that can be opened directly in

Excel. To do this, you must include information about the speaker roles you wish

to include in the output spreadsheet.

 freq +d2 +t@ID=ò*|Target_Child|*ò *.cha

+d3 This output is essentially the same as that for +d2, but with only the statistics on

types, tokens, and the typeïtoken ratio. Word frequencies are not placed into the

output. You do not need to use the +f option with +d2 or +d3, since this is

assumed.

+d4 This switch allows you to output just the typeïtoken information.

+d5 This switch will output all words you are searching for, including those that occur

with zero frequency. This could happen, for example, if you use the +s switch to

search for a specific word and that word does not occur in the transcript. This

switch can be combined with other +d switches.

+d6 When used for searches on the main line, this switch will output matched forms

with a separate tabulation of replaced forms, errors, partial omissions, and full

forms, as in this example for ñgoingò as the target word:

 17 going

 3 going

 11 gonna [: going to]

 2 goin(g)

 1 go [: going] [* 0ing]

This switch can also be used on the %mor line in a form such as this:

 freq +d6 adler01a.cha +sm |n*,o%

will produce separate counts for all instantiations of a given part of speech, organized by

part of speech. For example, the output for n:gerund would be:

 2 n:gerund

 1 n:gerund|go - PRESP

 1 n:gerund|l ook - PRESP

+d7 This command links forms on a ñsourceò tier with their corresponding words on a

ñtargetò tier, yielding output such as this:

 12 pro|you

 8 you

 4 you're

 In this example, and by default, the first line gives the form on the %mor line as

the source tier, and the following lines give the corresponding main line or ñtargetò

words. If you add the name of a tier, such as %gra, then that becomes the source.

This switch expects that the items on the two tiers be in one-to-one

correspondence. If you want to switch the display so that the target becomes the

Part 2: CLAN 98

source, you can add the +c5 switch. You can also specify a match between two

dependent tiers, as in this example:

 freq +d7 +sm| cop +s g| ROOT +t%gra +t%mor t.cha

+d8 outputs words and frequencies of cross tabulation of one dependent tier with

another

+o Normally, the output from FREQ is sorted alphabetically. This option can be used

to sort the output in descending frequency. The +o1 level will sort to create a re-

verse concordance.

+o1 sort output by reverse concordance

+o2 sort by reverse concordance of first word; non-CHAT, preserve the whole line

+o3 By default, FREQ tabulates separate frequencies for each speaker. To see the

combined results across all speakers, use this switch.

+pS add S to word delimiters. (+p_ will break New_York into two words)

FREQ also uses several options that are shared with other commands, such as +f, +k, +l,

+y, +r, +s, +u, +x, +z, and others. For a complete list of options for a command, type the

name of the command followed by a carriage return in the Commands window.

Information regarding the additional options shared across commands can be found in the

chapter on Options.

7.10.16 Further Illustrations

Davida Fromm has created this list of further examples of the use of FREQ:

1. If you want the frequency of all words used by Participants on the %mor line in

descending order of frequency, file by file, with their part of speech label, use:

freq +t%mor +t*PAR - t* +o *.cha

If you want to merge results across files, add +u to the above command. If you want to

exclude unintelligible words and neologisms, add -sm|neo,|unk" to the above command.

2. If you want to do this on the speaker line and exclude unintelligible words and

neologisms, use:

freq +t*PAR +o - s"xx" - s"<* \ * n:uk*>" *.cha

If you want to get information about error productions, add +d6 to the above command.

If you want to send the results to a file instead of having them appear on the computer

screen, add +f to the above command.

3. If you want the frequency of all words from the %mor line in descending order, by

stems, with information on parts of speech, bound morphemes, and error codes, use:

freq +t*PAR +d6 +o +s"@r - *,o - %" *.cha

4. If you want a list and frequency count of all prefixes used by Participants in

descending order of frequency, merged across files in the folder, use:

 freq +t*PAR +o +s"@r - *,# - *,o - %" +u *.cha

If you want the %mor line printed out with that information, use +d.

5. To get a frequency count of Participant word-level errors (see the Error Coding

sheet at the website for a description of these error codes), file by file, a basic

command is:

Part 2: CLAN 99

 freq +s" \ [\ * * \]" +t*PAR *.cha

If you want to include errors that were repeated and revised, add +r6 to the above

command.

6. If you want to specify which errors you want listed and counted, you can list them

as in the following command. Remember to add +r6 to the command if you want

word-level errors within repetitions and retracings (e.g., *s:r, *s:r-rep, *s:r-ret).

freq +s" [\ * s*]" +s"[\ * p*]" +s"[\ * n*]" +s"[\ * d*]" +s"[\ * m*]"

+s"[\ * f*]" +t*PAR *.cha

7. Alternatively, you can create a CLAN cut file of all error types and use that instead.

Put the cut file in the same folder as the files you are analyzing and use:

freq +s@er ror.cut +t*PAR *.cha

Remember to add +r6 to the command if you want to include errors within repetitions

and retracings.

If you want to create a list with frequencies of each error and the CHAT transcript line

that includes that error, add +d to the above command line.

If you want a tally and list of the actual errors with the intended target word, add +d6 to

the above command line.

If you want the context (CHAT transcript line) as well, add +d to the above command

line instead of +d6.

8. If you want the data to be in a file that can be opened in Excel, use:

freq +s"[\ * s:r]" +s"[\ * s:ur]" +s"[\ * s:uk]" +s"[\ * s:per]" +s"[\ *

p:w]" +s"[\ * p:n]" +s"[\ * p:m]" +t*PAR +d2 +fS +2 *.cha

Triple click on the line with the filename at the end of the CLAN output to open the

Excel file. The Excel file itself will be in the folder you put as your working directory.

9. To get a frequency count of Participant errors at the sentence level (see the Error

Coding sheet at the website for a description of these error codes), a basic command

is:

freq +s"<+ *>" +tPAR *.cha

If you want a certain type of sentence error, for example jargon, use <+ jar> inside the

quotation marks.

10. If you want to see all error productions associated with a target word, for example,

Cinderella, use:

freq +s"<: Cinderella>" *.cha

11. To list all parts of speech that occur in the files, merged across all the files, with

their corresponding frequencies, in descending order of frequency, use:

freq +t*PAR +d5 +o +sm|*,o% +u *.cha

12. If you want to list and count the frequency of all verb forms, stems ony, merged

across files in a folder, use:

freq +t*PAR +d5 +o +s"@r - *,| - v*,| - aux,| - aux:*,| - part*,| - mod*,o - %,

| - cop*,o - %" +u *.cha

If you want file location information and each associated %mor line, use +d instead of

Part 2: CLAN 100

+d5.

If you want more information about each verb (e.g., tense) use the +d6 option instead.

If you don't want stems only, remove the o% from the command.

If you want to exclude verbs that were produced in error (coded with any of the [*

errorcodes] on the main tier), add -s*** to the above command line.

13. If you want the total number of nouns (of all types), stems only, merged across files

in a folder, use:

freq +t*PAR +d5 +o +sm|n,|n:*,o - % +u *.cha

14. If you want to count and list the nouns, stems only, merged across files, use:

freq +t*PAR +d5 +o +sm;*,|n,|n:*,o% +u *.cha

15. If you want word-level errors and other part of speech and bound morpheme info

about the noun, merged across files, use:

freq +t*PAR +d6 +o +sm;*,|n,|n:*,o% +u *.cha

16. If you want to list and count the frequency (in descending order) of all prepositions

used by the Participant merged across files in a folder, use:

freq +t*PAR +d5 +o +sm;*,|prep*,o% +u *.cha

If you want to see the lines in which they're used, use +d instead of +d5.

17. If you want to list and count the frequency (in descending order) of all adverbs used

by the Participant, by stems, merged across files in a folder, use:

freq +t*PAR +d5 +o +sm;*,|adv*,o% +u *gem.cex

18. If you want to list and count the frequency (in descending order) of all adjectives

used by the Participant, by stems, merged across files in a folder, use:

freq +t*PAR +d5 +o +sm;*,|adj*,o% +u *gem.cex

7.11 FREQMERG

If you have collected many FREQ output files and you want to merge these counts

together, you can use freqmerg to combine the outputs of several runs of the FREQ

program. For example, you could run this command:

freq sample*.cha +f

This would create sample.frq.cex and sample2.frq.cex. Then you could merge these two

counts using this command:

freqmerg *.frq.cex

The only option that is unique to freqmerg is +o, which allows you to search for a

specific word on the main speaker tier. To search for a file that contains a set of words

use the form +o@filename.

7.11.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word chip, you will see a list of all available options. Many of these will be

Part 2: CLAN 101

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. FREQMERG has no

unique options.

7.12 FREQPOS

The FREQPOS program is a minor variant of freq. What is different about FREQPOS is

the fact that it allows the user to track the frequencies of words in initial, final, and

second position in the utterance. This can be useful in studies of early child syntax. For

example, using FREQPOS on the main line, one can track the use of initial pronouns or

auxiliaries. For open class items like verbs, one can use FREQPOS to analyze codes on

the %mor line. This would allow one to study, for example, the appearance of verbs in

second position, initial position, final position, and other positions.

To illustrate the running of freqpos, let us look at the results of this simple command:

freqpos sample.cha

Here are the first six lines of the output from this command:

1 a initial = 0, final = 0, other = 1, one word = 0

1 any initial = 0, final = 0, other = 1, one word = 0

1 are initial = 0, final = 1, other = 0, one word = 0

3 chalk initial = 0, final = 3, other = 0, one word = 0

1 chalk+chalk initial = 0, final = 1, other = 0, one word = 0

1 delicious initial = 0, final = 0, other = 1, one w ord = 0

We see here that the word ñchalkò appears three times in final position, whereas the word

ñdeliciousò appears only once and that is not in either initial or final position. To study

occurrences in second position, we must use the +d switch as in:

freqpos +d sample.cha

7.12.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word freqpos, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. FREQPOS has the

following unique options:

+d Count words in either first, second, or other positions. The default is to count by

first, last, and other positions.

+g Display only selected words in the output. The string following the +g can be ei-

ther a word or a file name in the @filename notation.

-s The effect of this option for FREQPOS is different from its effects in the other

CLAN commands. Only the negative -s value of this switch applies. The effect of

using -s is to exclude certain words as a part of the syntactic context. If you want

to match a word with FREQPOS, you should use the +g switch rather than the +s

Part 2: CLAN 102

switch.

7.13 GEM

The gem program is designed to allow you to mark parts of a transcript for further

analysis. Separate header lines are used to mark the beginning and end of each interesting

passage you want included in your gem output. These header tiers may contain ñtagsò

that will affect whether a given section is selected or excluded in the output. If no tag

information is being coded, you should use the header form @bg with no colon. If you

are using tags, you must use the colon, followed by a tab. If you do not follow these rules,

check will complain.

7.13.1 Sample Runs

By default, gem looks for the beginning marker @bg without tags and the ending marker

@eg, as in this example command:

 gem sample.cha

If you want to be more selective in your retrieval of gems, you need to add code words or

tags to both the @bg: and @eg: lines. For example, you might wish to mark all cases of

verbal interchange during the activity of reading. To do this, you must place the word

ñreadingò on the @bg: line just before each reading episode, as well as on the @eg: line

just after each reading episode. Then you can use the +sreading switch to retrieve only

this type of gem, as in this example:

gem +sreading sample2.cha

Ambiguities can arise when one gem without a tag is nested within another or when two

gems without tags overlap. In these cases, the program assumes that the gem being termi-

nated by the @eg line is the one started at the last @bg line. If you have any sort of

overlap or embedding of gems, make sure that you use unique tags.

GEM can also be used to retrieve responses to specific questions or particular stimuli

used in an elicited production task. The @bg entry for this header can show the number

and description of the stimulus. Here is an example of a completed header line:

@bg: Picture 53, truck

One can then search for all the responses to picture 53 by using the +s"53" switch in

GEM.

The / symbol can be used on the @bg line to indicate that a stimulus was described out of

its order in a test composed of ordered stimuli. Also, the & symbol can be used to

indicate a second attempt to describe a stimulus, as in 1a& for the second description of

stimulus 1a, as in this example:

@bg: 1b /

*CHI: a &b ball.

@bg: 1a /

*CHI: a dog.

@bg: 1a &

*CHI: and a big ball.

Similar codes can be constructed as needed to describe the construction and ordering of

stimuli for specific research projects.

Part 2: CLAN 103

When the user is sure that there is no overlapping or nesting of gems and that the end of

one gem is marked by the beginning of the next, there is a simpler way of using GEM,

which we call lazy GEM. In this form of GEM, the beginning of each gem is marked by

@g: with one or more tags and the +n switch is used. Here is an example:

@g: reading

*CHI: nice kitty.

@g: offstage

*CHI: who that?

@g: reading

*CHI: a big ball.

@g: dinner

In this case, one can retrieve all the episodes of ñreadingò with this command:

gem +n +sreading

7.13.2 Limiting w ith GEM

GEM also serves as a tool for limiting analyses. The type of limiting that is done by GEM

is very different from that done by KWAL or COMBO. In a sense, GEM works like the

+t switches in these other programs to select segments of the file for analysis. When you

do this, you will want to use the +d and +f switches, so that the output is in CHAT format

foir analysis by further commands.

gem +sreading +d +f sample2.cha

Note also that you can use any type of code on the @bg line. For example, you might

wish to mark well-formed multi-utterance turns, teaching episodes, failures in

communications, or contingent query sequences.

7.13.3 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word gem, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. GEM has the following

unique options:

+d The +d0 level of this switch produces simple output that is in legal CHAT format.

The +d1 level of this switch adds information to the legal CHAT output regarding

file names, line numbers, and @ID codes.

+g If this switch is used, all of the tag words specified with +s switches must appear

on the @bg: header line to make a match. Without the +g switch, having just one

of the +s words present is enough for a match.

 gem +sreading +sbook +g sample2.cha

 This will retrieve all the activities involving reading of books.

+n Use @g: lines as the basis for the search. If these are used, no overlapping or nest-

ing of gems is possible and each @g must have tags. In this case, no @eg is need-

ed, but CHECK and GEM will simply assume that the gem starts at the @g and

ends with the next @g.

+s This option is used to select file segments identified by words found on the @bg:

Part 2: CLAN 104

tier. Do not use the -s switch. See the example given above for +g. To search for a

group of words found in a file, use the form +s@filename.

7.14 GEMFREQ

This program combines the basic features of FREQ and GEM. Like GEM, it analyzes

portions of the transcript that are marked off with @bg and @eg markers. For example,

gems can mark off a section of bookreading activity with @bg: bookreading and @eg:

bookreading. Once these markers are entered, you can then run GEMFREQ to retrieve a

basic FREQ-type output for each of the various gem types you have marked. For

example, you can run this command:

gemfreq +sarriving sample2.cha

and you would get the following output:

GEMFREQ +sarriving sample2.cha

Wed May 12 15:54:35 1999

GEMFREQ (04- May- 99) is conducting analyses on:

 ALL speaker tiers

 and ONLY header tiers matching: @BG:; @EG:;

**

From file <sample2.cha>

 2 tiers in gem " arriving":

 1 are

 1 fine

 1 how

 1 you

7.14.1 Unique Options

+d The d0 level of this switch produces simple output that is in legal CHAT format.

The d1 level of this switch adds information to the legal CHAT output regarding

file names, line numbers, and @ID codes.

+g If this switch is used, all the tag words specified with +s switches must appear on

the @bg: header line to make a match. Without the +g switch, having just one of

the +s words present is enough for a match.

 gem +sreading +sbook +g sample2.cha

 This will retrieve all the activities involving reading of books.

+n Use @g: lines as the basis for the search. If these are used, no overlapping or nest-

ing of gems is possible and each @g must have tags. In this case, no @eg is need-

ed, and both CHECK and GEMFREQ will simply assume that the gem starts at the

@g and ends with the next @g.

+o Search for a specific word on the main speaker tier. To search for a file of words

use the form +o@filename.

7.15 GEMLIST

The GEMLIST program provides a convenient way of viewing the distribution of gems

across a collection of files. For example, if you run GEMLIST on both sample.cha and

sample2.cha, you will get this output:

 From file <sample.cha>

Part 2: CLAN 105

 12 @BG

 3 main speaker tiers.

 21 @EG

 1 main speaker tiers.

 24 @BG

 3 main speaker tiers.

 32 @EG

From file <sample2.cha>

 18 @BG: just arriving

 2 main speaker tiers.

 21 @EG: just arriving

 22 @BG: reading magazines

 2 main speaker tiers.

 25 @EG: reading magazines

 26 @BG: reading a comic book

 2 main speaker tiers.

 29 @EG: reading a comic book

GEMLIST can also be used with files that use only the @g lazy gem markers. In that

case, the file should use nothing by @g markers and GEMLIST will treat each @g as im-

plicitly providing an @eg for the previous @g. Otherwise, the output is the same as with

@bg and @eg markers.

The only option unique to GEMLIST is +d which tells the program to display only the

data in the gems. GEMLIST also uses several options that are shared with other

commands. For a complete list of options for a command, type the name of the command

followed by a carriage return in the Commands window. Information regarding the

additional options shared across commands can be found in the chapter on Options.

7.16 IPSYN

The IPSyn Command computes the Index of Productive Syntax (Scarborough, 1990).

Computation of this index requires the presence of an accurate %mor line. Currently the

program is implemented only for English. By default, the computation uses the first 100

acceptable utterances in a file. The basic form of the command is:

ipsyn +t*CHI ïleng filename.cha

If you wish to change the treatment of a given utterance, you can use the [+ ipe] postcode

to exclude it or the [+ ip] to include it. This exclusion code will also apply to IPSyn

inside KIDEVAL. IPSyn excludes the whole utterance if it has an [+ ipe] postcode or at

least one of these symbols: xxx, yyy or www. IPSYN also excludes repeated utterances.

If an utterance has been spoken verbatim by the speaker before, then it is excluded from

analyses, unless the [+ ip] postcode is specified on that utterance. To better see what

IPSYN does, run this command on the 98.cha file in the /examples/transcripts/ne32 folder

(download from http://talkbank.org/examples.zip):

ipsyn +t*CHI +leng 98.cha

The output from this command will be 98.ipsyn.cex. Triple-click on that name in

CLANôs output window and you will see how IPSYN assigned points for each relevant

utterance in that sample. This same run of the IPSYN command will also produce the file

98.ipcore.cex. You can open that file to see which utterances were included in the IPSyn

analysis.

Part 2: CLAN 106

The computation of IPSyn relies on a series of rules for point assignment that are given in

files in the /CLAN/lib/ipsyn folder such as eng.cut for English or zho.cut for Chinese.

Each rule searches through the 100 acceptable utterances for a match to the strings given

in the INCLUDE line. If there is a match, then one point is assigned for that rule. In

order to assign a second point, the search must then use the information on the

DIFFERENTSTEMS line to decide how different a second match must be from the first

to be counted. Here is an example for the N6 point which searches for strings like this

one goes or my turn is next with a two-word NP before a verb or preposition:

RULENAME: N8

if

INCLUDE: $MOD ^ $N ^ $V

DIFFERENT_STEMS: >2

The notation of >2 should really be >=2, since the program interprets it as greater than or

equal to 2. Given an utterance such as my dog barks and my cat meows, this rule would

match my dog barks for the first point and my cat meows for the second point. If the

utterance were my dog barks and my dog runs, then there would not be a second point,

because there would only be one new stem. The matching strings can be anywhere in the

100 utterance sample; it is not necessary that they be in the same utterance. In this case,

the requirement that there be two or more different stems would be fulfilled, because two

of the stems are different, although one is the same. DIFFERENT_STEMS_POS sets

further conditions on the different stems. The statement DIFFERENT_STEMS_POS: 1

means that the first word in the sequence of stems must be different. This occurs in the

V3 rule, as shown here:

RULENAME: V3

if

INCLUDE: |prep ^ $NP

EXCLUDE: (lookit ^ this) + (in ^ there)+(on ^ there)

DIFFERENT_STEMS_POS: 1

if

POINT: 2

INCLUDE: (in ^ there) + (on ^ there)

This rule will assign a second point if the two strings are for the sheep and besides the

sheep, but not if the two strings are for the sheep and for a sheep.

On the INCLUDE line, the ̂ or caret indicates that the element after the caret must

directly follow the one before. The categories here ï $MOD for modifier, $N for noun,

and $V for verb ï are defined in the eng.cut file.

It is also possible to have additional restrictions placed on the assignment of the points, as

in the above example from V3, where the EXCLUDE term disallows a first point for

three specific phrases: lookit this, in there, or on there. For the second point, the two

exclusions from the first point are now allowed, as long as neither word matches stems

from the first point.

You can see how IPSyn is assigning points by looking at the results for individual words

in the *.ipsyn.cex output file. The *.ipcore.cex file shows you which utterances were

selected for the analysis.

Part 2: CLAN 107

7.16.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word ipsyn, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. IPSYN has the following

unique options:

+cN: analyse N complete unique utterances. (default: 100 utterances)

+d : do not show file and line number where points are found.

+lF: specify ipsyn rules file name F

7.17 KEYMAP

The KEYMAP program is useful for performing simple types of interactional and

contingency analyses. KEYMAP requires users to pick specific initiating or beginning

codes or ñkeysò to be tracked on a specific coding tier. If a match of the beginning code

or key is found, KEYMAP looks at all the codes on the specified coding tier in the next

utterance. This is the ñmap.ò The output reports the numbers of times a given code maps

onto a given key for different speakers.

7.17.1 Sample Runs

Here is a file fragment with a set of codes that will be tracked by KEYMAP:

*MOT: here you go.

%spa: $INI

*MOT: what do you say?

%spa: $INI

*CHI: thanks.

%spa: $RES

*MOT: you are very welcome.

%spa: $CON

If you run the KEYMAP program on this data with the $INI as the +b key symbol, the

program will report that $INI is followed once by $INI and once by $RES. The key ($INI

in the previous example) and the dependent tier code must be defined for the program.

On the coding tier, KEYMAP will look only for symbols beginning with the $ sign. All

other strings will be ignored. Keys are defined by using the +b option immediately

followed by the symbol you wish to search for. To see how KEYMAP works, try this

example:

keymap +b$INI* +t%s pa sample.cha

For Unix, this command would have to be changed to treat the metacharacters as literal,

as follows:

keymap +b \ $INI \ * +t%spa sample.cha

KEYMAP produces a table of all the speakers who used one or more of the key symbols,

and how many times each symbol was used by each speaker. Each of those speakers is

followed by the list of all the speakers who responded to the given initiating speaker, in-

Part 2: CLAN 108

cluding continuations by the initial speaker, and the list of all the response codes and their

frequency count.

7.17.2 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word keymap, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. KEYMAP has the

following unique options:

+b This is the beginning specification symbol.

+o In addition to tracking following codes, this option also tracks preceding codes.

+s This option is used to specify the code or codes beginning with the $ sign to treat

as possible continuations. For example, in the sample.cha file, you might only

want to track $CON:* codes as continuations. In this case, the command would be

as follows.

 keymap +b$* +s"$CON:*" +t%spa sample.cha

7.18 KIDEVAL

KIDEVAL is a program that provides automatic analysis of a language sample that has

been transcribed in the CHAT format. Using various components of the CLAN program,

KIDEVAL automatically computes these measures, which are entered into a spreadsheet.

The KIDEVAL spreadsheet includes columns for each measure. If the analysis operates

on multiple transcripts from the same or different children, each transcript will have

values in its own row. In addition to the raw values on these measures, KIDEVAL refers

to a large comparison database of transcripts in the CHILDES database to assign a

standard deviation score with significance levels to each raw score. By default, the

comparison is against large samples of children in the same 6-month age range.

KIDEVAL performs analyses similar to those of EVAL, but in forms that are better

suited to the analysis of child language data. It combines the various measures computed

by DSS, FREQ, MORTABLE, MLU, TIMEDUR, and VOCD into a single analytic

report. Unlike EVAL, KIDEVAL uses a configuration file that allows users to tailor

analyses for their problems and interests.

To run KIDEVAL, you can make use of CLANôs dialog facility. Use the Progs button to

select KIDEVAL and then click the Option button. You will be asked to choose the files

you wish to analyze. For example, you could navigate to the /examples/ne32 folder in

the CLAN distribution files and then choose to add all five files and click Done. You will

then see the this dialog:

Part 2: CLAN 109

If you select ñdo not compare to databaseò the dialog will change to this form:

If you select the options displayed above, CLAN will compile and use this command:

kideval @ +leng +t*CHI:

The result will be sent to an Excel file, as noted in CLANôs output window with this line:

Output file < /Applications/CLAN/examples/ne32 /14.kideval.xls>

You can triple-click on that line and it will fire up Microsoft Excel. Excel will ask you if

you really want to open the file and just say ñyesò. The output (with most columns

removed to fit on this page) will look like this:

Using a similar process for Mandarin Chinese, we can select all of the files in the Tong

corpus in Chinese and the result (with many columns removed) will be:

Here is a description of the fields that will be computed in these outputs for English:

1. Total Utts: total utterances,

Part 2: CLAN 110

2. MLU Utts: number of utterances, as used for computing MLU,

3. MLU Words: MLU in words,

4. MLU Morphemes: MLU in morphemes,

5. MLU 100 Utts: MLU of the first 100 child utterances in morphemes,

6. MLU 100 Words: MLU of the first 100 child utterances in words,

7. MLU 100 Morphemes: MLU of the first 100 child utterances in morphemes,

8. FREQ types: total word types, as used for computing FREQ

9. FREQ tokens: total word tokens,

10. FREQ TTR: type/token ratio,

11. NDW 100: number of different words in the first 100 words in the sample,

12. VOCD score: KIDEVAL will warn if the sample is too small to compute VOCD,

13. Verbs/Utt: verbs per utterance. This can be less than 1.0 for young children,

14. TD Words: total number of words for each speaker, as used for TIMEDUR

15. TD Utts: total number of utterances for each speaker (no exclusionary criteria),

16. TD Time: total duration in seconds of utterances for each speaker,

17. TD Words/Time: words per second,

18. TD Utts/Time: utterances per second,

19. Word Errors: number of words involved in errors,

20. Utt Errors: number of utterances involved in errors,

21. Retracing [//]: number of retracings,

22. Repetition [/]: number of repetitions,

23. DSS Utterances: number of DSS-eligible utterances,

24. DSS: Developmental Sentence Score,

25. IPSyn Utterances: number of utterances eligible for IPSyn analysis,

26. IPSyn Total

27. MOR words: the number of words according to the %mor tier

28. The frequencies of each of Brownôs 14 grammatical morphemes, which are:

a. -PRESP the present participle -ing, as in swimming.

b. in the preposition in, as in the cheese is in the bag.

c. on the preposition on, as in put it on.

d. -PL the regular plural, as in dogs.

e. &PAST the irregular past, as in fell.

f. ~poss the possessive clitic, as in Johnôs

g. cop the uncontractible copula as in Is Meg nice? Meg is.

h. det:art the determiner, as in the ball.

i. -PAST the regular past, as in jumped.

j. -3S the regular third person singular present, as in runs.

k. &3S the irregular third person singular present, as in does or has.

l. aux the uncontractible auxiliary, as in Is John running? Yes he is.

m. ~cop the contracted cliticized copula, as in Megôs tall.

n. ~aux the contracted cliticized auxiliary, as in Johnôs going.

For some of these categories, there are a number of possible morphemes in the category.

So, det:art can be either a, an, or the; aux can be any of the forms of the verbs to be, to

have, or to get; and cop can be any of the forms of the verbs to be and to become, and

certain uses of look, seem, and stay.

If the transcript does not contain sufficient number of utterances for a given index, N/A

Part 2: CLAN 111

(not applicable) is inserted. For example, for #5 above, if there are fewer than 100 child

utterances, MLU 100 Utts would have N/A. Similarly, for DSS (#24), fewer than 50

eligible utterances would be reported as N/A, and IPSyn is also N/A if there are fewer

than 100 utterances. For the MLU computation, sentences marked by [+ mlue] are

excluded from the analysis. For the DSS computation, sentences marked by [+ dsse] are

excluded. For the IPSyn computation sentences marked by [+ ipe] are excluded.

If a transcript does not have time values entered, then columns 15-18 will not be

meaningful. Also, if the language does not yet have a language-specific version of DSS

or IPSyn, then columns 23-26 cannot be computed.

So far, we have described the use of KIDEVAL without selection of a comparison

database. Currently, comparison databases are only available for English. Moreover, this

method for using KIDEVAL is still under development and the results should not yet be

used for serious diagnostic purposes. We hope to have this system ready for diagnostic

use later in 2017.

Before beginning a comparison database analysis, you should select ñGet KIDEVAL

Databaseò from CLANôs File menu. It will download to the user library preference folder

on your computer. If you use the KIDEVAL dialog to select a comparison database, the

dialog will change to this form:

Now, the dialogs will be creating this CLAN command:

kideval @ +LinkAge +leng +t*CHI: +dfp~"2;6 - 2;11|female"

Comparisons usually involve comparing a single transcript with the overal comparison

database. For example, if we compare the barry.cha file in the CLAN examples folder

with the English database, we will get this output (with many columns removed):

In this output, the asterisks in row 4 indicate that this sample differs significantly from

the comparison group on several measures.

It is possible to control the operation of KIDEVAL by editing the script files for

individual languages that are stored in the /lib/kideval folder. To use one of these files,

just add its name to the +l switch, as in +lfranew.cut. If you use the switch +leng or

Part 2: CLAN 112

+lfra, then the program relies on a built-in script file, instead of your user-defined file.

Within the script file, each line defines a type of search string. For example, this line

searches for all instances of masculine singular marking in French:

+&m,&sg +&m , - SG " m- sg "

Items separated by a comma are treated as AND; items separated by a space are treated as

OR. To include combinations of morphemes in a KIDEVAL spreadsheet, you must run a

separate FREQ program, such as this one that looks for adj+noun or noun+adj

combinations in French:

freq +sm"|adj |n" +sm"|n |adj" +d2 *.ch a

This command will create an Excel output structured like that for KIDEVAL and you

may wish to cut and paste the relevant columns from that output into your overall

KIDEVAL spreadsheet.

The corpora that are used for the English-NA KIDEVAL comparison databases are

Bates/Free20 Bates/Free28 Bernstein/Children

Bliss Bloom70 Bloom73

Braunwald Brown Clark

Demetras1 Demetras2 Feldman

Gathercole Gleason/Father Gleason/Mother

Hall Higginson HSLLD/HV1/TP

HSLLD/HV2/TP HSLLD/HV3/TP MacWhinney

McCune NewEngland Post

Providence Sachs Snow

Suppes Tardif Valian

VanHouten VanKleeck Warren

Weist

The corpora used for Mandarin are Tong and Zhou1. All French corpora are used for

French.

7.18.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word kideval, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. KIDEVAL has the

following unique options:

+bS: add S characters to the morpheme delimiters list (default: -#~+)

-bS: remove S characters from the morphemes list (-b: empty morphemes list)

+d : debug

+g: gem tier should contain all words specified by +gS

-g: look for gems in database only

Part 2: CLAN 113

+gS: select gems which are labeled by label S

+lF: specify language script file F

+n: gem is terminated by the next @G (default: automatic detection)

-n: gem is defined by @BG and @EG (default: automatic detection)

+o4: output raw values instead of percentage values

7.19 KWAL

The KWAL program outputs utterances that match certain user-specified search words.

The program also allows the user to view the context in which any given keyword is

used. To specify the search words, use the +s option, which allows you to search for

either a single word or a whole group of words stored in a file. It is possible to specify as

many +s options on the command line as you like.

Like COMBO, the KWAL program works not on lines, but on ñclusters.ò A cluster is a

combination of the main tier and the selected dependent tiers relating to that line. Each

cluster is searched independently for the given keyword. The program lists all keywords

that are found in a cluster tier. A simple example of the use of KWAL is:

kwal +schalk sample.cha

The output of this command tells you the file name and the absolute line number of the

cluster containing the key word. It then prints out the matching cluster.

7.19.1 Tier Selection in KWAL

Sometimes you may want to create new files in which some of the tiers in your original

files are systematically deleted. For example, you may wish to drop out certain coding

tiers that interfere with the readability of your transcript, or you may wish to drop out a

tier that will be later recomputed by a program. For example, to drop out the %mor tier

for all speakers, except CHI, you can use this command:

kwal +t*chi +t%mor +o@ +o* - o%mor +d +f t.cha

The two +t switches work as a matched pair to preserve the %mor tier for CHI. The first

+o@ switch will preserve the header tiers. The second and third +o switches work as a

pair to exclude the %mor lines in the other speakers. However, the -o%mor switch keeps

all of the dependent tiers except for %mor. The +t switch is used for selecting parts of

the transcript that may also be searched using the +s option. The +o switch, on the other

hand, only has an impact on the shape of the output. The +d switch specifies that the

output should be in CHAT format and the +f switch sends the output to a file. In this

case, there is no need to use the +s switch. Try out variations on this command with the

sample files to make sure you understand how it works.

Main lines can be excluded from the analysis using the -t* switch. However, this exclu-

sion affects only the search process, not the form of the output. It will guarantee that no

matches are found on the main line, but the main line will be included in the output. If

you want to exclude certain main lines from your output, you can use the -o switch, as in:

kwal +t*CHI +t%spa - o* sample.cha

You can also do limiting and selection by combining FLO and KWAL :

kwal +t*CHI +t%sp a +s"$*SEL*" - t* sample.cha +d +f

flo *.kwal.cex

Part 2: CLAN 114

To search for a keyword on the *MOT main speaker tiers and the %spa dependent tiers of

that speaker only, include +t*MOT +t%spa on the command line, as in this command.

kwal +s"$INI:*" +t%spa +t*MOT sample.cha

If you wish to study only material in repetitions, you can use KWAL in this form:

kwal +sò+[//]ò *.cha +d3 +d

7.19.2 KWAL with signs and speech

When participants are using mostly nonspeech items coded on the %sin dependent tiers

but a few speech items on the main tier (coded as 0 items), then it is sometimes

interesting to track utterances in which speech is either combined or not combined with

gesture. The +c switch can help in this analysis by selecting out utterances that have a

small number of words on the main line, but extensive coding on the %sin line. Here are

some sample command sequences for this type of work:

1. Gesture only (at least one g: on the %sin tier, no words on the main tier and no s: on

the %sin tier).

kwal *.cha +t%sin +c0 - ss:* +d +fno - s

kwal *.no - s.cex +t%sin +sg:* +d +fgesture_only

2. Speech only (included at least one word on the main tier, but no g: or s: on the %sin

tier):

kwal *.cha +t%sin +c1 - ss:* - sg:* +d +fspeech_only

3. Sign only (included at least one s: on the %sin tier, but no words on the main line

and no g: on the %sin tier):

kwal *.cha +t%sin +c0 - sg:* +d +fno - g

kwal *.no - g.cex +t%sin +ss:* +d +fsign_only

4. Gesture + speech only (included at least one g: on the %sin tier and at least one

word on the main tier, but no s: on the %sin tier):

kwal *.cha +t%sin +c1 - ss:* +d +fno - s

kwal *.no - s.cex +t%sin +sg:* +d +fgesture+speech

5. Gesture + sign only (included at least one g: and one s: on the %sin tier but no

words on the main tier):

kwal *.cha +t%sin +c0 +ss:* +d +fsign_only

kwal *.sign_only.cex +t%sin +sg:* +d +fgesture+sign_only

6. Gesture + speech + sign (included at least one g: and one s: on the %sin tier and at

least one word on the main tier):

kwal *.cha +t%sin +c1 +ss:* +d +fsign_only

kwal *.sign_only.cex +t%sin +sg:* +d +fgesture+speech+sign

7.19.3 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word kwal, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

Part 2: CLAN 115

In addition, many of the programs have some unique options. KWAL has the following

unique options:

+a Sort the output alphabetically. Choosing this option can slow down processing

significantly.

+d Normally, KWAL outputs the location of the tier where the match occurs. When

the +d switch is turned on you can in these formats:

+d : outputs legal CHAT format

+d1: outputs legal CHAT format plus file names and line numbers

+d2: outputs file names once per file only

+d3: outputs ONLY matched items

+d30: outputs ONLY matched items without any defaults removed.

 The +d30 and the +d3 switches can be combined.

+d99: convert "word [x 2]" to "word [/] word" and so on

+d4: outputs for Excel

+d40: outputs for Excel, repeating the same tier for every keyword match

+d7: compares items across dependent tiers, as in this example:

 kwal +d7 +s@|-cop +sROOT +t%gra +t%mor t.cha

+/-nS Include or exclude all utterances from speaker S when they occur immediately af-

ter a match of a specified +s search string. For example, if you want to exclude all

child utterances that follow questions, you can use this command

 kwal +t*CHI +s"?" -nCHI *.cha

+o The +t switch is used to control the addition or deletion of particular tiers or lines

from the input and the output to KWAL . In some cases, you may want to include a

tier in the output that is not being included in the input. This typically happens

when you want to match a string in only one dependent tier, such as the %mor tier,

but you want all tiers to be included in the output. To do this you would use a

command of the following shape:

 kwal +t%mor +s"*ACC" +o% sample2.cha

 In yet another type of situation, you may want to include tiers in the KWAL output

that are not normally included. For example, if you want to see output with the

ages of the children in a group of files you can use this command:

 kwal +o@ID -t* *.cha

+w It is possible to instruct the program to enlarge the context in which the keyword

was found. The +w and -w options let you specify how many clusters after and

before the target cluster are to be included in the output. These options must be

immediately followed by a number. Consider this example:

 kwal +schalk +w3 -w3 sample.cha

 When the keyword chalk is found, the cluster containing the keyword and the three

clusters above (-w3) and below (+w3) will be shown in the output.

+xCNinclude only utterances which are C (>, <, =) than N items (w, c, m), "+x=0w" for

zero words

+xS specify items to include in above count (Example: +xxxx +xyyy)

-xS specify items to exclude from above count

Part 2: CLAN 116

7.20 MAXWD

This program locates, measures, and prints either the longest word or the longest utter-

ance in a file. It can also be used to locate all the utterances that have a certain number of

words or greater.

When searching for the longest word, the MAXWD output consists of: the word, its

length in characters, the line number on which it was found, and the name of the file

where it was found. When searching for the longest utterance with the +g option, the

output consists of: the utterance itself, the total length of the utterance, the line number on

which the utterance begins, and the file name where it was found. By default, MAXWD

only analyzes data found on the main speaker tiers. The +t option allows for the data

found on the header and dependent tiers to be analyzed as well. The following command

will locate the longest word in sample.cha.

maxwd sampl e.cha

You can also use MAXWD to track all the words or utterances of a certain length. For

example, the following command will locate all the utterances with only one word in

them:

maxwd - x1 +g2 sample.cha

Alternatively, you may want to use MAXWD to filter out all utterances below or above a

certain length. For example, you can use this command to output only sentences with

four or more words in them:

maxwd +x4 +g2 +d1 +o%

7.20.1 Unique Options

+a If you have elected to use the +c switch, you can use the +a switch to further fine-

tune the output so that only one instance of each length type is included. Here is a

sample command:

 maxwd +c8 +a +xw sample.cha

+b You can use this switch to either include or exclude particular morpheme delim-

iters. By default, the morpheme delimiters #, ~, and - are understood to delimit

separate morphemes. You can force MAXWD to ignore all three of these by using

the -b#-~ form of this switch. You can use the +b switch to add additional delim-

iters to the list.

+c This option is used to produce a given number of longest items. The following

command will print the seven longest words in sample.cha.

 maxwd +c7 sample.cha

If you want to print out all the utterances above a certain length, you can use this KWAL

command

 kwal +x4w sample.cha

+d The +d level of this switch produces output with one line for the length level and

the next line for the word. The +d1 level produces output with only the longest

words, one per line, in order, and in legal CHAT format.

+g This switch forces MAXWD to compute not word lengths but utterance lengths. It

Part 2: CLAN 117

singles out the sentence that has the largest number of words or morphemes and

prints that in the output. The way of computing the length of the utterance is de-

termined by the number following the +g option. If the number is 1 then the length

is in number of morphemes per utterance. If the number is 2 then the length is in

number of words per utterance. And if the number is 3 then the length is in the

number of characters per utterance. For example, if you want to compute the MLU

and MLT of five longest utterances in words of the *MOT, you would use the

following command:

 maxwd +g2 +c5 +d 1 +t*MOT +o%mor sample.cha

 Then you would run the output through MLU. The +g2 option specifies that the

utterance length will be counted in terms of numbers of words. The +c5 option

specifies that only the five longest utterances should be sent to the output. The +d1

option specifies that individual words, one per line, should be sent to the output.

The +o%mor includes data from the %mor line in the output sent to MLU.

+o The +o switch is used to force the inclusion of a tier in the output. To do this you

would use a command of the following shape:

 maxwd +c2 +j +o%mor sample2.cha

7.20.2 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word maxwd, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. MAXWD has the

following unique options:

+a : consider ONLY unique length utterances/words

+cN: display N longest utterances/words

+gN: look for longest utterance instead of longest word

 1 - number of morph; 2 - number of word; 3 - number of chars

7.21 MLT

The MLT program computes the mean number of utterances in a turn, the mean number

of words per utterance, and the mean number of words per turn. A turn is defined as a

sequence of utterances spoken by a single speaker. Overlaps are ignored in this

computation. Instead, the program simply looks for sequences of repeated speaker ID

codes at the beginning of the main line. While the same speaker is talking, then each

utterance is a part of the current turn. These computations are provided for each speaker

separately. Note that none of these ratios involve morphemes on the %mor line. If you

want to analyze morphemes per utterances, you should use the MLU program.

Part 2: CLAN 118

7.21.1 MLT d efaults

The exact nature of the MLT calculation depends both on what the program includes and

what it excludes. By default, all utterances and words are included with these default

exceptions:

1. MLT excludes material followed by [/], [//] , [///], [/?], and [/-]. This can be changed

by using the +r6 switch or by adding any of these switches: +s+"</>" +s+"<//>"

2. The following strings are also excluded as words: 0* &* +* -* $*. Here the asterisk

indicates any material following the first symbol until a delimiter.

3. The symbols xxx, yyy, and www are also excluded from the word count by default,

but the utterances in which they appear are not. If you wish to also exclude these

utterances, use the switches ïsxxx, -syyy, and ïswww.

4. Utterances with no words are included, although they can be excluded using the +a

switch.

To exclude utterances with a specific postcode, such as [+ bch], use -s"[+ bch]".

Similarly, you can use +s to include lines that would otherwise be excluded. Pairs of

utterances that use the +, and +. continuation codes are counted as single utterances. If a

potential turn is composed only of utterances that are being excluded with the ïs option,

then the whole turn also disappears and the surrounding two turns become a single turn.

In addition, you can use the +g option to exclude any utterance composed exclusively of

a certain set of words. Because MLTôs exclusions are not as extreme as those for MLU,

there are often more utterances included in MLT than in MLU.

7.21.2 Breaking Up Turns

Sometimes speakers will end a turn and no one takes over the floor. After a pause, the

initial speaker may then start up a new turn. To code this as two turns rather than one,

you can insert a ñdummyò code for an imaginary speaker called XXX, as in this example

from Rivero, Gràcia, and Fernández-Viader (1998):

*FAT: ma::.

%act : he touches the girlôs throat

*FAT: say mo::m.

@EndTurn

*FAT: whatôs that?

%gpx: he points to a picture that is on the floor

*FAT: whatôs that?

Using the @EndTurn marker, this sequence would be counted as two turns, rather than as

just one.

7.21.3 Sample Runs

The following example demonstrates a common use of the MLT program:

 mlt sample.cha

7.21.4 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word mlt , you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

Part 2: CLAN 119

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. MLT has the following

unique options:

+a This switch causes all utterances to be counted, even if they have no words. If you

add ñtò to make +at, you will only count empty utterances if they have the [+ trn]

postcode.

+cS Look for unit marker S. If you want to count phrases or narrative units instead of

sentences, you can add markers such as [c] to make this segmentation of your

transcript into additional units. Compare these two commands:

 mlt sample.cha

 mlt +c[c] sample.cha

+d You can use this switch, together with the @ID specification to output data in a

format that can be opened in Excel, as in this command:

 mlt +d +t@ID=ò*|Target_Child*ò sample.cha

The output of this command would be something like this:

 eng samp sample 0110 CHI 6 6 8 1.333 1.000 1.333

This output gives 11 fields in this order: language, corpus, file, age, participant id,

number of utterances, number of turns, number of words, words/turn, utterances/

turn, and words/utterance. The first five of these fields come from the @ID field.

The next six are computed for a given participant for a particular file. To run this

type of analysis you must have an @ID header for each participant you wish to

track. Alternatively, you can use the +t switch in the form +t*CHI. In this case, all

the *CHI lines will be examined in the corpus. However, if you have different

names for children across different files, you need to use the @ID fields.

+d1 This level of the +d switch outputs data in another systematic format, with data for

each speaker on a single line. However, this form is less adapted to input to a

statistical program than the output for the basic +d switch. Also this switch works

with the +u switch, whereas the basic +d switch does not. Here is an example of

this output:

 *CHI: 6 6 8 1.333 1.000 1.333

 *MOT: 8 7 43 6.143 1.143 5.375

+g You can use the +g option to exclude utterances composed entirely of certain

words. For example, you might wish to exclude utterances composed only of hi,

bye, or both these words together. To do this, you should place the words to be

excluded in a file, each word on a separate line. The option should be immediately

followed by the file name, i.e. there should not be a space between the +g option

and the name of this file. If the file name is omitted, the program displays an error

message: ñNo file name for the +g option specified!ò

+s This option is used to specify a word string that specifies which utterances should

be included. This switch selects whole utterances for inclusion, not individual

words, because MLT is an utterance-oriented program.

Part 2: CLAN 120

7.22 MLU

The MLU program computes the mean length of utterance, which is the ratio of

morphemes to utterances. By default, this program runs from a %mor line and uses that

line to compute the mean length of utterance (MLU) in morphemes. However, if you do

not have a %mor line in your transcript, you need to add the ït%mor switch to use it from

the main line. In that case, you will be computing MLU in words, not morphemes.

The predecessor of the current MLU measure was the ñmean length of responseò or MLR

devised by Nice (1925). The MLR corresponds to what we now call MLUw or mean

length of utterance in Words. Brown (1973) emphasized the value of thinking of MLU in

terms of morphemes, rather than words. Brown was particularly interested in the ways in

which the acquisition of grammatical morphemes reflected syntactic growth and he

believed that MLUm or mean length of utterance in morphemes would reflect this growth

more accurately than MLUw. Brown described language growth through six stages of

development for which MLU values ranged from 1.75 to 4.5. Subsequent research (Klee,

Schaffer, May, Membrino, & Mougey, 1989) showed that MLU is correlated with age

until about 48 months. Rondal, Ghiotto, Bredart, and Bachelet (1987) found that MLU is

highly correlated with increases in grammatical complexity between MLU of 1 and 3.

However, after MLU of 3.0, the measure was not well correlated with syntactic growth,

as measured by LARSP. A parallel study by Blake, Quartaro, and Onorati (1970) with a

larger subject group found that MLU was correlated with LARSP until MLU 4.5. Even

better correlations between MLU and grammatical complexity have been reported when

the IPSyn is used to measure grammatical complexity (Scarborough, Rescorla, Tager-

Flusberg, Fowler, & Sudhalter, 1991).

Brown (1973, p. 54) presented the following set of rules for the computation (by hand) of

MLU:

1. Start with the second page of the transcription unless that page involves a recitation

of some kind. In this latter case, start with the first recitation free stretch. Count the

first 100 utterances satisfying the following rules.

2. Only fully transcribed utterances are used; none with blanks. Portions of utterances,

entered in parentheses to indicate doubtful transcription, are used.

3. Include all exact utterance repetitions (marked with a plus sign in records).

Stuttering is marked as repeated efforts at a single word; count the word once in the

most complete form produced. In the few cases where a word is produced for

emphasis or the like (no, no, no) count each occurrence.

4. Do not count such fullers as mm or oh, but do count no, yeah, and hi.

5. All compound words (two or more free morphemes), propernames, and riualized

reduplications count as single words. Examples: birthday, rakety-booom, choo-

choo, quack-quack, night-night, pocketbook, seesaw. Justification is that there is no

evidence that the constitutent morphemes functions as such for these children.

6. Count as one morpheme all irregular pasts of the verb (got, did, went, saw).

Justification is that there is no evidence that the child relates these to present forms.

7. Count as one morpheme all diminutives (doggie, mommie) because these children at

least to do not seem to use the suffix productively. Diminutives are the standard

forms used by the child.

8. Count as separate morphemes all auxiliaries (is, have, will, can, must, would). Also

Part 2: CLAN 121

all catenatives: gonna, wanna, hafta. These latter counted as single morphemes

rather than as gong to or want to because evidence is that they function so for the

children. Count as separate morphemes all inflections, for example, possessive [s],

plural [s], third person singular [s], regular past [d], and progressive [ing].

9. The range count follows the above rules but is always calculated for the total

transcription rather than for 100 utterances.

Because researchers often want to continue to follow these rules, it is important to

understand how to implement this system in CLAN. Here is a detailed description,

corresponding to Brownôs nine points.

1. Brown recommended using 100 utterances. He also suggested that these should be

taken from the second page of the transcript. In effect, this means that roughly the

first 25 utterances should be skipped. The switch that would achieve this effect in

the MLU program is: +z25u-125u. This is the form of the command used for MLU-

100 in the KIDEVAL program.

2. The symbols xxx, yyy, and www are also excluded by default, as are the utterances

in which they appear. If you wish to include the xxx forms and the utterances that

contain them, then use the +sxxx option. The forms yyy and www are always

excluded and cannot be included. Utterances with no words are excluded from the

utterance count.

3. If you mark repetitions and retraces using the CHAT codes of [/], [//] , [///], [/?], and

[/-], the repeated material will be excluded from the computation automatically.

This can be changed by using the +r6 switch or by adding any of these switches:

+s+"</>" +s+"<//>".

4. If you want forms to be treated as nonwords, you can precede them with the marker

&, as in &mm. Alternatively, you can add the switch ïsmm to exclude this form or

you can have a list of forms to exclude. The following strings are also excluded by

default: uh um 0* &* +* -* $* where the asterisk indicates any material following

the exclusion symbol. If the utterance consists of only excludable material, the

whole utterance will be ignored. In addition, suffixes, prefixes, or parts of

compounds beginning with a zero are automatically excluded and there is no way to

modify this exclusion. Brown recommends excluding mm and uh by default. This is

done by marking them as &-mm and &-uh.

5. You can use +s to include lines that would otherwise be excluded. For example,

you may want to use +sò[+ trn]ò to force inclusion of lines marked with [+ trn]. You

can also use the -sxxx switch to change the exclusionary behavior of MLU. In this

case, the program stops excluding sentences that have xxx from the count, but still

excludes the specific string ñxxxò. You can also use the special form marker @a to

force treatment of an incomprehensible string as a word. This can happen when the

sentential and situational context is so clear that you know that the form was a word.

For example, the form xxx@a will appear on the %mor line as w|xxx and the form

xxx@a$n will appear on the %mor line as n|xxx. In the place of the ñnò you could

place any part of speech code such as ñvò or ñadjò. This is because the @a is

translated through the code ñwò as a generic ñwordò and the part of speech code

after the $ sign is translated as the part of the speech of the incomprehensible word.

These codes also apply to yyy, yyy@a, and yyy@a$n.

6. When MLU is computed from the %mor line, the compound marker is excluded as

Part 2: CLAN 122

a morpheme delimiter, so this restriction is automatic. If you compute MLU from

the main line, then you need to add ïb+ to your command to exclude the plus as a

morpheme delimiter.

7. The ampersand (&) marker for irregular morphology is not treated as a morpheme

delimiter, so this restriction is automatic.

8. By default, diminutives are treated as real morphemes. In view of the evidence for

the productivity of the diminutive, it is difficult to understand why Brown thought

they were not productive.

9. The treatment of hafta as one morpheme is automatic unless the form is replaced by

[: have to]. The choice between these codes is left to the transcriber.

It is also possible to exclude utterances by using postcodes. By default, MLU excludes

utterances marked with the specific postcode [+ mlue]. This works both for MLU as a

separate program and for MLU as a part of KIDEVAL. It is also possible to make further

exclusions for MLU as a separate program by using some other postcode such as [+ exc]

in the form of -s"[+ exc]". However, this non-default marking will not get picked up by

KIDEVAL.

The use of postcodes for exclusion needs to be considered carefully. Brown suggested

that all sentences with unclear material be excluded. Brown wants exact repetitions to be

included and does not exclude imitations. However, other researchers recommend also

excluding imitation, self-repetitions, and single-word answers to questions.

The program considers the following three symbols to be morpheme delimiters: - # ~

MOR analyses distinguish between these delimiters and the ampersand (&) symbol that

indicates fusion. As a result, morphemes that are fused with the stem will not be included

in the MLU count. If you want to change this list, you should use the +b option

described below. For Brown, compounds and irregular forms were monomorphemic.

This means that + and & should not be treated as morpheme delimiters for an analysis

that follows his guidelines. The program considers the following three symbols to be

utterance delimiters: . ! ? as well as the various complex symbols such as +... which end

with one of these three marks.

The computation of MLU depends on the correct morphemicization of words. The best

way to do this is to use the MOR and POST programs to construct a morphemic analysis

on the %mor line. This is relatively easy to do for English and other languages for which

good MOR grammars and POST disambiguation databases exist. However, if you are

working in a language that does not yet have a good MOR grammar, this process would

take more time. Even in English, to save time, you may wish to consider using MLU to

compute MLUw (mean length of utterance in words), rather than MLU. Malakoff,

Mayes, Schottenfeld, and Howell (1999) found that MLU correlates with MLUw at .97

for English. Aguado (1988) found a correlation of .99 for Spanish, and Hickey (1991)

found a correlation of .99 for Irish. If you wish to compute MLUw instead of MLU, you

can simply refrain from dividing words into morphemes on the main line. If you wish to

divide them, you can use the +b switch to tell MLU to ignore your separators.

7.22.1 Exclude files for MLU and MLT

Researchers often wish to conduct MLU analyses on subsets of their data. This can be

done using commands such as:

Part 2: CLAN 123

kwal +t*C HI +t%add +s"mot" sample.cha +d +f

This command looks at only those utterances spoken by the child to the mother as ad-

dressee. You can then run MLU on the output of the KWAL command.

The inclusion of certain utterance types leads to an underestimate of MLU. However,

there is no clear consensus concerning which sentence forms should be included or

excluded in an MLU calculation. The MLU program uses postcodes to accommodate

differing approaches to MLU calculations. To exclude sentences with postcodes, the -s

exclude switch can be used in conjunction with a file of postcodes to be excluded. The

exclude file should be a list of the postcodes that you are interested in excluding from the

analysis. For example, the sample.cha file is postcoded for the presence of responses to

imitations [+ I], yes/ no questions [+ Q], and vocatives [+ V].

For the first MLU pass through the transcript, you can calculate the childôs MLU on the

entire transcript by typing:

 mlu +t*CHI +t%mor sample.cha

For the second pass through the transcript you can calculate the childôs MLU following

the criteria of Scarborough (1990). These criteria require excluding the following: rou-

tines [+ R], book reading [+ "], fillers [+ F], imitations [+ I], self-repetitions [+ SR],

isolated onomatopoeic sounds [+ O], vocalizations [+ V], and partially unintelligible

utterances [+ PI]. To accomplish this, an exclude file must be made which contains all

these postcodes. Of course, for the little sample file, there are only a few examples of

these coding types. Nonetheless, you can test this analysis using the Scarborough criteria

by creating a file called ñscmluò with the relevant codes in angle brackets. Although

postcodes are contained in square brackets in CHAT files, they are contained in angle

brackets in files used by CLAN. The scmlu file would look something like this:

[+ R]

[+ "]

[+ V]

[+ I]

Once you have created this file, you then use the following command:

mlu +t*CHI - s@scmlu sample.cha

For the third pass through the transcript you can calculate the childôs MLU using a still

more restrictive set of criteria, also specified in angle brackets in postcodes and in a sepa-

rate file. This set also excludes one word answers to yes/no questions [$Q] in the file of

words to be excluded. You can calculate the childôs MLU using these criteria by typing:

mlu +t*CHI - s@resmlu sample.cha

In general, exclusion of these various limited types of utterances tends to increase the

childôs MLU.

7.22.2 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word mlu, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

Part 2: CLAN 124

In addition, many of the programs have some unique options. MLU has the following

unique options:

+b You can use this switch to either include or exclude certain morpheme delimiters.

By default, the morpheme delimiters ~, #, and - are understood to delimit separate

morphemes. You can force MLU to ignore all three of these by using the -b#-~

switch. You can use the +b switch to add additional delimiters to the list.

+cS Look for unit marker S. If you want to count phrases or narrative units instead of

sentences, you can add markers such as [c] to make this segmentation of your

transcript into additional units. Compare these two commands:

 mlu sample.cha

 mlu +c[c] sample.cha

+d You can use this switch, together with the ID specification to output data for

Excel, as in this command:

 mlu +d +tCHI sample.cha

The output of this command should be:

en|sample|CHI|1;10.4|female|||Target_Child|| 5 7 1.400 0.490

This output gives the @ID field, the number of utterances, number of morphemes,

morphemes/utterances, and the standard deviation of the MLU. To run this type of

analysis, you must have an @ID header for each participant you wish to track. You

can use the +t switch in the form +tCHI to examine a whole collection of fil es. In

this case, all the *CHI lines will be examined in the corpus.

+d1 This level of the +d switch outputs data in another systematic format, with data for

each speaker on a single line. However, this form is less adapted to input to a

statistical program than the output for the basic +d switch. Also, this switch works

with the +u switch, whereas the basic +d switch do es not. Here is an example of

this output:

 *CHI: 5 7 1.400 0.490

 *MOT: 8 47 5.875 2.891

+g You can use the +g option to exclude utterances composed entirely of certain

words from the MLT analysis. For example, you might wish to exclude utterances

composed only of hi or bye. To do this, you should place the words to be excluded

in a file, each word on a separate line. The option should be immediately followed

by the file name. There should not be a space between the +g option and the name

of this file. If the file name is omitted, the program displays an error message: ñNo

file name for the +g option specified!ò

+s This option is used to specify a word to be used from an input file. This option

should be immediately followed by the word itself. To search for a group of words

stored in a file, use the form +s@filename. The -s switch excludes certain words

from the analysis. This is a reasonable thing to do. The +s switch bases the analysis

only on certain words. It is more difficult to see why anyone would want to

conduct such an analysis. However, the +s switch also has another use. One can

use the +s switch to remove certain strings from automatic exclusion by MLU. The

program automatically excludes xxx, 0, uh, and words beginning with & from the

MLU count. This can be changed by using this command:

 mlu +s+uh +s+xxx +s0* +s&* file.cha

Part 2: CLAN 125

MLU also uses several options that are shared with other commands. For a complete list

of options for a command, type the name of the command followed by a carriage return

in the Commands window. Information regarding the additional options shared across

commands can be found in the chapter on Options.

7.23 MODREP

The MODREP program matches words on one tier with corresponding words on another

tier. It works only on tiers where every word on tier A matches one word on tier B. When

such a one-to-one correspondence exists, MODREP will output the frequency of all

matches. Consider the following sample file distributed with CLAN as modrep.cha:

@Begin

@Participants: CHI Child

*CHI: I want more.

%pho: aI wan mo

%mod: aI want mor

*CHI: want more bananas.

%pho: wa mo nAnA

%mod: want mor bAn&nAz

*CHI: want more bananas.

%pho: wa mo nAnA

%mod: want mor bAn&nAz

*MOT: you excluded [//] excluded [/] xxx yyy www

 &d do?

%pho: yu du

%mod: yu du

@End

You can run the following command on this file to create a model-and-replica analysis

for the childôs speech:

 modrep +b*chi +c%pho +k modre p.cha

The output of MODREP in this case should be as follows:

From file <modrep.cha>

 1 I

 1 aI

 2 bananas

 2 nAnA

 3 more

 3 mo

 3 want

 1 wan

 2 wa

This output tells us that want was replicated in two different ways, and that more was

replicated in only one way twice. Only the childôs speech is included in this analysis and

the %mod line is ignored. Note that you must include the +k switch in this command to

guarantee that the analysis of the %pho line is case-sensitive. By default, all CLAN

commands except for FREQ, FREQMERGE, MORTABLE, PHONFREQ, RELY,

TIMEDUR, and VOCD are case-insensitive.

Part 2: CLAN 126

7.23.1 Exclusions and Inclusions

By default, MODREP ignores certain strings on the model tier and the main tier. These

include xxx, yyy, www, material preceded by an ampersand, and material preceding the

retracing markers [/] and [//]. To illustrate these exclusions, try this command:

 modrep +b* +c%pho +k modrep.cha

The output of this command will look like this:

MODREP +b* +c%PHO +k modrep.cha

Thu May 13 13:03:26 1999

MODREP (04- May- 99) is conducting analyses on:

 ALL speaker main tiers

 and those speakers' ONLY dependent tiers matching: %PHO;

**

From file <m odrep.cha>

Model line:

you zzz do ?

is longer than Rep line:

yu du

In File "modrep.cha" in tier cluster around line 13.

If you want to include some of the excluded strings, you can add the +q option. For ex-

ample, you could type:

 modrep +b* +c%pho +k modr ep.cha +qwww

However, adding the www would destroy the one-to-one match between the model line

and the replica line. When this happens, CLAN will complain and then die. Give this a

try to see how it works. It is also possible to exclude additional strings using the +q

switch. For example, you could exclude all words beginning with ñzò using this

command:

 modrep +b* +c%pho +k modrep.cha - qz*

However, because there are no words beginning with ñzò in the file, this will not change

the match between the model and the replica.

If the main line has no speech and only a 0, MODREP will effectively copy this zero as

many times as in needed to match up with the number of units on the %mod tier that is

being used to match up with the main line.

7.23.2 Using a %mod Line

A more precise way of using MODREP is to construct a %mod line to match the %pho

line. In modrep.cha, a %mod line has been included. When this is done the following

type of command can be used:

modrep +b%mod +c%pho +k modrep.cha

This command will compare the %mod and %pho lines for both the mother and the child

in the sample file. Note that it is also possible to trace pronunciations of individual target

words by using the +o switch as in this command for tracing words beginning with /m/:

 modrep +b%mod +c%pho +k +om* modrep.cha

7.23.3 MODREP for the %mor line

Because words on the main line stand in a one-to-one relation with words on the %mor

Part 2: CLAN 127

line, MODREP can also be used to match codes on the %mor tier to words on the main

line. For example, if you want to find all the words on the main line that match words on

the %mor line with an accusative suffix in the motherôs speech in sample2.cha, you can

use this command:

 modrep +b%mor +c*MOT +o"*ACC" sample2.cha

The output of this command is:

From file <sample2.cha>

 1 n:a |ball - acc

 1 labda't

 1 n:a|duck - acc

 1 kacsa't

 1 n:i|plane - acc

 1 repu"lo"ge'pet

If you want to conduct an even more careful selection of codes on the %mor line, you can

make combined use of MODREP and COMBO. For example, if you want to find all the

words matching accusatives that follow verbs, you first select these utterances by running

COMBO with the +d switch and the correct +s switch and then analyze the output using

the MODREP command we used earlier.

combo +s"v:*^*^ n:* - acc" +t%mor sample2.cha +d +f

modrep +b%mor +c*MOT +o"*acc" sample2.cmb.cex

The output of this program is the same as in the previous example. However, in a large

input file, the addition of the COMBO filter can make the search much more restrictive

and powerful.

7.23.4 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word modrep, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. MODREP has the

following unique options:

+a sort output by descending frequency

+b This switch is used to set the model tier name. There is no default setting. The

model tier can also be set to the main line, using +b* or +b*chi.

+c You can use this switch to change the name of the replica tier. There is no default

setting.

+n This switch limits the shape of the output from the replica tier in MODREP to

some string or file of strings. For example, you can cut down the replica tier output

to only those strings ending in ñ-ing.ò If you want to track a series of strings or

words, you can put them in a file and use the @filename form for the switch.

+o This switch limits the shape of the output for the model tier in MODREP to some

string or file of strings. For example, you can cut down the model tier output to

only those strings ending in ñ-ingò or with accusative suffixes, and so forth. If you

want to track a series of strings or words, you can put them in a file and use the

Part 2: CLAN 128

@filename form for the switch.

+s The +s switch allows you to include particular symbols such as xxx or &* that are

excluded by default. The -s switch allows you to make further exclusions of par-

ticular strings. If you want to include or exclude a series of strings or words, you

can put them in a file and use the @filename form for the switch.

MODREP also uses several options that are shared with other commands. For a complete

list of options for a command, type the name of the command followed by a carriage

return in the Commands window. Information regarding the additional options shared

across commands can be found in the chapter on Options.

7.24 MORTABLE

MORTABLE uses the %mor line to create a frequency table of parts of speech and

affixes in a format that can be opened directly in Excel. The command line needs to

include the script file which is in the CLAN/lib/mortable folder, for example:

mortable +t*PAR +leng *.cha

Columns M-AF provide the percentage of each part-of-speech ð e.g., adjectives, adverb,

auxiliaries, conjunctions. The script for these percentage calculations uses an ñORò

format, so that the data in each column is mutually exclusive. Columns AE-AS provide

the percentages of each affix. These are calculated in a non-exclusive fashion.

If you want the actual count of the items found instead of percentages, add +o4 to the

command line. If you want MORTABLE to automatically calculate cumulative totals of

parts-of-speech, you can make modifications to the eng.cut file found in

CLAN/lib/mortable. Here is an example of how to do this.

AND

+|v,|v:* "% v,v:*"

If you wanted a cumulative total of all pronouns (including pro:indef, pro:per, pro:wh,

pro:refl, pro:poss, and pro), you could enter the following into the script file under the

AND section and you would see a column in your spreadsheet called ñpro-totalò:

+|pro,|pro:* "pro - total"

For cases where target replacements are in the transcript next to error productions with

missing morphemes (e.g., he is kick [: kicking] [* m:0ing] the ball), the EVAL and

MORTABLE programs will reflect the speaker's morphological production (e.g., v|kick)

and not count anything that was not produced (e.g., part|kick-PRESP). For cases where

target replacements are in the transcript next to error productions for superfluous

morphemes (e.g., there is one birds [: bird] [* m:+s] in the tree), the EVAL and

MORTABLE programs will not count the superfluous morphemes (e.g., n|bird-PL)

because they were not used correctly.

7.25 PHONFREQ

The PHONFREQ program tabulates all of the segments on the %pho line. For example,

using PHONFREQ with no further options on modrep.cha will produce this output:

Part 2: CLAN 129

 2 A initial = 0, final = 1, other = 1

 1 I initial = 0, final = 1, other = 0

 3 a initial = 1, final = 1, other = 1

 2 m initial = 2, final = 0, other = 0

 3 n initial = 1, final = 1, other = 1

 2 o initial = 0, final = 2, other = 0

 2 w initial = 2, final = 0, other = 0

This output tells you that there were two occurrences of the segment /A/, once in final

position and once in other or medial position.

If you create a file called alphabet file and place it in your working directory, you can

further specify that certain digraphs should be treated as single segments. This is

important if you need to look at diphthongs or other digraphs in UNIBET. In the strings

in the alphabet file, the asterisk character can be used to indicate any single character. For

example, the string *: would indicate any sound followed by a colon. If you have three

instances of a:, three of e:, and three of o:, the output will list each of these three

separately, rather than summing them together as nine instances of something followed

by a colon. Because the asterisk is not used in either UNIBET or PHONASCII, it should

never be necessary to specify a search for a literal asterisk in your alphabet file. A sample

alphabet file for English is distributed with CLAN. PHONFREQ will warn you that it

does not find an alphabet file. You can ignore this warning if you are convinced that you

do not need a special alphabet file.

If you want to construct a complete substitution matrix for phonological analysis, you

need to add a %mod line in your transcript to indicate the target phonology. Then you can

run PHONFREQ twice, first on the %pho line and then on the %mod line. To run on the

%mod line, you need to add the +t%mod switch.

If you want to specify a set of digraphs that should be treated as single phonemes or

segments, you can put them in a file called alphabet.cut. Each combination should be en-

tered by itself on a single line. PHONFREQ will look for the alphabet file in either the

working directory or the library directory. If it finds no alphabet.cut file, each letter will

be treated as a single segment. Within the alphabet file, you can also specify trigraphs

that should override particular digraphs. In that case, the longer string that should

override the shorter string should occur earlier in the alphabet file.

7.25.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word phonfreq, you will see a list of all available options. Many of these

will be options shared with other programs. For information on these, the best approach

is to go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. PHONFREQ has the

following unique options:

+b By default, PHONFREQ analyzes the %pho tier. If you want to analyze another

tier, you can use the +b switch to specify the desired tier. Remember that you

might still need to use the +t switch along with the +b switch as in this command:

 phonfreq +b* +t*C HI modrep.cha

Part 2: CLAN 130

+d If you use this switch, the actual words that were matched will be written to the

output. Each occurrence is written out.

+t You should use the +b switch to change the identity of the tier being analyzed. The

+t switch is used to change the identity of the speaker being analyzed. For

example, if you want to analyze the main lines for speaker CHI, you would use this

command:

 phonfreq +b* +t*CHI modrep.cha

PHONFREQ also uses several options that are shared with other commands. For a com-

plete list of options for a command, type the name of the command followed by a

carriage return in the Commands window. Information regarding the additional options

shared across commands can be found in the chapter on Options.

The lexicon could be much smaller if more rules were written to handle derivational

morphology. These would handle prefixes such as ñnon#ò and derivational suffixes such

as ñ-al.ò The grammar still needs to be fine-tuned to catch common over-regularizations,

although it will never be able to capture all possible morphological errors. Furthermore,

attempts to capture over regularizations may introduce bogus analyses of good forms,

such as ñseedò = ñ*see-PAST.ò Other areas for which more rules need to be written

include diminutives, and words like ñoh+my+goodness,ò which should automatically be

treated as communicators.

7.26 RELY

This program has two functions: (1) to check reliability and (2) to combine codes into a

single file.

First, we will consider the function of checking reliability. When you are entering a series

of codes into files using the Coder Mode, you will often want to compute the reliability

of your coding system by having two or more people code a single file or group of files.

To do this, you can give each coder the original file, get them to enter a %cod or %spa

line and then use the RELY program to spot matches and mismatches. To create an

example, you could copy the sample.cha file in CLANôs /examples folder to a file called

samplea.cha file and change one code in the samplea.cha file. In samplea.cha, change the

code for the first utterance from ñ$INI:sel:inò to ñ$INI:sel:goneò. Then enter the com-

mand:

rely sample.cha samplea.cha

The output in sample.rely.cex file will report the coding disagreements and you can

triple-click on the lines that give the line numbers and they will open to the point of the

mismatch in each file. If you add +t%spa to this command, you will get a fuller report.

Counterintuitively, if you only care about mismatches on the %spa line, you can leave out

the +t%spa switch.

By default, RELY examines all main and dependent tiers. If you want the program to

ignore any differences in the main line, header line, or other dependent tiers that may

have been introduced by the second coder, you can add the +c switch. Then, you can use

the +t switch to pick out a line or speaker to include, while ignoring all the others. If the

command is:

rely +c sample.cha samplea.cha +t%spa

Part 2: CLAN 131

then the program will only report mismatches on the %spa tier. If you further add a

+t*CHI switch, it will only report mismatches for the child. However, if you use the +c

switch with no additional +t inclusions, then rely will not report any mismatches at all.

In the sample.rely.cex output, you can triple-click on lines with the line numbers given

and CLAN will open to that place in the original file.

The second function of the RELY program is to allow multiple coders to add a series of

dependent tiers to a master file. The master file is the first one given in the command line.

The lines of the master file should remain untouched and the coder of the second file

should only be adding information on a single additional dependent tier. This function is

accessed through the +a switch, which tells the program the name of the coding line

(given by the +t switch) from the secondary file that is to be added to the master file, as in

rely +a +t%spa +t@ sample.cha samplea.cha

If, by mistake, some changes were made to the other coding lines, the output will ignore

the mismatches, keeping what is in the master file only. In order to get a full file merger,

you need to add the +t@ switch to include the header tiers.

It is important to understand the detailed workings of comparison with the +a switch.

When used with +a and +t%cod, RELY looks at the first speaker tier in master and coder

files and, if they match, then it looks for the dependent tier in coder file that was specified

with +t%cod option. If it finds a %cod tier in coder file, then it looks in the master file

under the corresponding speaker tier to see if the master file already has a %cod tier. If it

does (and it really shouldnôt), then the error message "** Duplicate tier found around

lines:" is given and user has to choose which of those tier, the master file tier or the coder

file tier should be added to master file. If master file does not already have %cod tier,

then the %cod tier from coder file is add to all the other dependent tiers in the master file

under the corresponding speaker tier.

RELY +a will also report an error, if it finds some other dependent tier, such as %com in

the coder file that is not in the master. In that case, it will report a message "**

Unmatched tiers found around lines:" to inform user that there are tiers in the coder file

that are not in master file and which have not been specified by the user to be added with

+t%com option. This message is just an FYI.

RELY +a will only add tiers from coder file that are missing from master file and are

specified with +t option. At the same time, it will report if there are some other tiers in

coder file that were not specified with +t option that are also missing from master file. In

other words, the coder file has to be a subset of master file with only extra tiers that users

would want to add to master file. But, possibly not all those tiers are supposed to be

added and that is what the +t option is for.

If you want to conduct multiple runs with RELY, looking at different speakers and

different coding lines using the +c and +t switches, then you may also want to use the +2

switch to create differently named files from each run of RELY. RELY can also compute

Cohenôs Kappa and percentage agreement using the +d switch.

7.26.1 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

Part 2: CLAN 132

type just the word rely, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. RELY has the following

unique options:

+a Add tiers from second file to the master file.

+b Include media bullets in string comparison between first and master files, and

show differences if there are any.

+c Only check data on tiers selected with +t.

+d Compute percentage agreement. By default, this is based only on the main line.

To compute percentage agreement on a dependent tier, such as %cod, you should

add the ït* switch to exclude the main line and then use +t%cod to include just

this dependent tier.

+dN Compute Cohenôs kappa coefficient, where N is the number of categories.

+m Merge files and place error flags inside output file.

+u Compute Kappa across all pairs of files specified (default: individual pairs)

RELY also uses several options that are shared with other commands. For a complete list

of options for a command, type the name of the command followed by a carriage return

in the Commands window. Information regarding the additional options shared across

commands can be found in the chapter on Options.

7.27 SCRIPT

The SCRIPT command is useful if fixed scripts are used in clinical research. It will

compare a participantôs performance to that of the model. To run SCRIPT, you must first

prepare a Model Script and a Participantôs Script.

7.27.1 The Model Script

1. Transcribe the model script in CHAT format. It is not necessary to have a media

file or do any linking on this model script. If sample duration is important,

however, include @ Time Duration as a header.

2. Run CHECK (using Esc-L) to verify that CHAT format is accurate and run mor +xl

*.cha to make sure the words in the file are all recognizable. Run MOR, POST, and

CHECK. Put this file in your CLAN lib folder in the folder with the Participantôs

files you will be comparing to it.

7.27.2 The Participantôs Script

Transcribe the Participantôs script production in CHAT format and link it to the media.

The analysis compares the model and Participant transcript on a line-by-line basis, so it is

necessary for the Participant transcript lines to match those of the model.

1. If the Participant skips a line of script, enter 0 for that line (*PAR: 0.).

2. If the Participant makes comments (e.g., ñI donôt knowò, ñoh noò) in the middle of

an utterance, put those words inside angle brackets with [//] afterward so they will

not be counted as extra words in the analysis.

Part 2: CLAN 133

3. Error productions that are followed by target replacements must be judged to be

either: 1) close approximations of the target; or 2) not close approximations.

CLAN will include close approximation errors as correct matches to the target word

when the SCRIPT command is run in its default mode. This can be easily modified,

if such an analysis is not desired (see Variations below).

4. If most listeners would be able to figure out what the person meant, the error should

be considered a close approximation and should be followed by the target

replacement word like this: error [: target]. Usually this means the error production

is a close semantic synonym (gifts for giftware), a lexical error (e.g., have for had),

or a production with 1 or 2 phonemic errors (e.g., /ᴅώeᾎᴅ/ for aphasia. If in doubt,

assume it is not a close approximation.

5. If an error is judged not to be a close approximation and most listeners would be

unable to know what the speaker meant (e.g., May for March, say for attend,

reading for write), transcribe the error word with the target replacement like this:

error [:: target].

Once the transcription is complete, run CHECK (using Esc-L) to verify that CHAT

format is accurate and run mor +xl *.cha to make sure the words in the file are all

recognizable. Run MOR, POST, and CHECK.

7.27.3 Running SCRIPT

Once you have prepared the two scripts, this command will compare a model script file

(which we will call model.cha) to a participantôs script file (which we will call

participant.cha):

script +t*PAR +smodel.cha participant.cha

The output will include an .xls file and a .cex file.

The .xls file provides the following information for both the model script and the

Participantôs script production: TIMDUR and # words produced. It provides the

following information on the Participantôs script only: # words correct, % words correct,

words omitted, % words omitted, # words added, # recognizable errors, #

unrecognizable errors, # utterances with xxx, # utterances with 0. Unrecognizable errors

are those transcribed as xxx or coded as unknown neologistic or semantic errors ([* n:uk]

and [* s:uk]. (See the chapter on Error Coding in the CHAT manual.) All other errors

include target replacements and are considered recognizable.

The .cex file provides the following information for the Participantôs script production:

list of omitted words (with part of speech and bound morpheme), list of added words, and

list of errors (error production, intended word if known, error code and frequency info).

7.27.4 Variations

If you want to produce output for all of the CHAT files in a folder you would use this

command:

script +t*PAR +smodel.cha *.cha +u

The +u switch will list the results for each CHAT file in 1 .cex file and 1 .xls file file

instead of individual .cex and .xls files.

The default mode for this command is to INCLUDE target replacements for errors judged

Part 2: CLAN 134

to be close approximations (lake [: like] [* p:w]) and EXCLUDE revisions and retracings

(anything coded with [/] or [//]). Both of those defaults can be changed by adding

switches to the command line:

+r5 EXCLUDES target replacements

+r6 INCLUDES repetitions and revisions

7.27.5 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word maxwd, you will see a list of all available options. Many of these will

be options shared with other programs. For information on these, the best approach is to

go to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. MAXWD has the

following unique options:

+e : count error codes in retraces or repeats. (default: don't count)

+sF: specify template script file F

7.28 TIMEDUR

The TIMEDUR program computes the duration of the pauses between speakers and the

duration of overlaps. This program requires sound bullets at the ends of utterances or

lines created through sonic CHAT. The data is output in a form that is intended for export

to a spreadsheet program. Columns labeled with the speakerôs ID indicate the length of

the utterance. Columns labeled with two speaker IDôs, such as FAT-ROS, indicate the

length of the pause between the end of the utterance of the first speaker and the beginning

of the utterance of the next speaker. Negative values in these columns indicate overlaps.

The basic output format of TIMEDUR gives a profile of durations for all speakers

through the whole file. For a more succinct summary of durations for a given speaker,

use a command with the +t switch, such as:

timedur +d1 +d +t*PAR *.cha

This command creates a summary of time durations across files for just PAR. In effect, it

treats the +u switch as the default.

+d outputs default results in SPREADSHEET format

+d1 outputs ratio of words and utterances over time duration

+d10 outputs above, +d1, results in SPREADSHEET format

7.29 VOCD

The VOCD command was written by Gerard McKee of the Department of Computer

Science, The University of Reading. The research project supporting this work was

funded by grants from the Research Endowment Trust Fund of The University of

Reading and the Economic and Social Research Council (Grant no R000221995) to D. D.

Malvern and B. J. Richards, School of Education, The University of Reading, Bulmershe

Court, Reading, England RG6 1HY. The complete description of VOCD can be found

Part 2: CLAN 135

in: Malvern, D., Richards, B., Chipere, N., & Purán, P. (2004). Lexical diversity and

language development. New York: Palgrave Macmillan.

Measurements of vocabulary diversity are frequently needed in child language research

and other clinical and linguistic fields. In the past, measures were based on the ratio of

different words (Types) to the total number of words (Tokens), known as the typeïtoken

Ratio (TTR). Unfortunately, such measures, including mathematical transformations of

the TTR such as Root TTR, are functions of the number of tokens in the transcript or

language sample ð samples containing larger numbers of tokens give lower values for

TTR and vice versa (Richards & Malvern, 1997a). This problem has distorted research

findings (Richards & Malvern, 1997b). Previous attempts to overcome the problem, for

example by standardizing the number of tokens to be analyzed from each child, have

failed to ensure that measures are comparable across researchers who use different

baselines of tokens, and inevitably waste data in reducing analyses to the size of the

smallest sample.

The approach taken in the VOCD program is based on an analysis of the probability of

new vocabulary being introduced into longer and longer samples of speech or writing.

This probability yields a mathematical model of how TTR varies with token size. By

comparing the mathematical model with empirical data in a transcript, VOCD provides a

new measure of vocabulary diversity called D. The measure has three advantages: it is

not a function of the number of words in the sample; it uses all the data available; and it

is more informative, because it represents how the TTR varies over a range of token size.

The measure is based on the TTR versus token curve calculated from data for the

transcript as a whole, rather than a particular TTR value on it.

D has been shown to be superior to previous measures in both avoiding the inherent flaw

in raw TTR with varying sample sizes and in discriminating across a wide range of

language learners and users (Malvern, Richards, Chupere, Purán, 2004; Richards &

Malvern, 1998).

7.29.1 Origin of the Measure

TTRs inevitably decline with increasing sample size. Consequently, any single value of

TTR lacks reliability as it will depend on the length in words of the language sample

used. A graph of TTR against tokens (N) for a transcript will lie in a curve beginning at

the point (1,1) and falling with a negative gradient that becomes progressively less steep

(see Malvern & Richards, 1997a). All language samples will follow this trend, but

transcripts from speakers or writers with high vocabulary diversity will produce curves

that lie above those with low diversity. The fact that TTR falls in a predictable way as the

token size increases provides the basis for our approach to finding a valid and reliable

measure. The method builds on previous theoretical analyses, notably by Brainerd (1982)

and in particular Sichel (1986), which model the TTR versus token curve mathematically

so that the characteristics of the curve for a transcript yields a valid measure of

vocabulary diversity.

Various probabilistic models were developed and investigated to arrive at a model

containing only one parameter which increases with increasing diversity and falls into a

range suitable for discriminating among the range of transcripts found in various lan-

guage studies. The model chosen is derived from a simplification of Sichelôs (1986)

Part 2: CLAN 136

typeï token characteristic curve and is in the form an equation containing the parameter

D. This equation yields a family of curves with the same general and appropriate shape,

with different values for the parameter D distinguishing different members of this family

(see Malvern & Richards, 1997). In the model, D itself is used directly as an index of

lexical diversity.

To calculate D from a transcript, the VOCD program first plots the empirical TTR versus

tokens curve for the speaker. It derives each point on the curve from an average of 100

trials on subsamples of words of the token size for that point. The subsamples are made

up of words randomly chosen (without replacement) from throughout the transcript. The

program then finds the best fit between the theoretical model and the empirical data by a

curve-fitting procedure which adjusts the value of the parameter (D) in the equation until

a match is obtained between the actual curve for the transcript and the closest member of

the family of curves represented by the mathematical model. This value of the parameter

for best fit is the index of lexical diversity. High values of D reflect a high level of lexical

diversity and lower diversity produces lower values of D.

The validity of D has been the subject of extensive investigation (Malvern & Richards,

1997; Richards & Malvern, 1997a; Richards & Malvern, 1998; Malvern, Richards,

Chupere, Purán, 2004) on samples of child language, children with SLI, children learning

French as a foreign language, adult learners of English as a second language, and

academic writing. In these validation trials, the empirical TTR versus token curves for a

total of 162 transcripts from five corpora covering ages from 24 months to adult, two

languages and a variety of settings, all fitted the model. The model produced consistent

values for D which, unlike TTR and even Mean Segmental TTR (MSTTR) (see Richards

& Malvern, 1997a: pp. 35-38), correlated well with other well validated measures of

language. These five corpora also provide useful indications of the scale for D.

7.29.2 Calculation of D

In calculating D, VOCD uses random sampling of tokens in plotting the curve of TTR

against increasing token size for the transcript under investigation. Random sampling has

two advantages over sequential sampling. Firstly, it matches the assumptions underlying

the probabilistic model. Secondly, it avoids the problem of the curve being distorted by

the clustering of the same vocabulary items at points in the transcript.

In practice, each empirical point on the curve is calculated from averaging the TTRs of

100 trials on subsamples consisting of the number of tokens for that point, drawn at

random from throughout the transcripts. This default number was found by

experimentation and balanced the wish to have as many trials as possible with the desire

for the program to run reasonably quickly. The run time has not been reduced at the

expense of reliability, however, as it was found that taking 100 trials for each point on the

curve produced consistency in the values output for D without unacceptable delays.

Which part of the curve is used to calculate D is crucial. First, to have subsamples to

average for the final point on the curve, the final value of N (the number of tokens in a

subsample) cannot be as large as the transcript itself. Moreover, transcripts vary hugely in

total token count. Second, the equation approximates Sichelôs (1986) model and applies

with greater accuracy at lower numbers of tokens. In an extensive set of trials, D has been

calculated over different parts of the curve to find a portion for which the approximation

Part 2: CLAN 137

held good and averaging worked well. Based on these trials, the default is for the curve to

be drawn and fitted for N=35 to N=50 tokens in steps of 1 token. Each of these points is

calculated from averaging 100 subsamples, each drawn from the whole of the transcript.

Although only a relatively small part of the curve is fitted, it uses all the information

available in the transcript. This also has the advantage of calculating D from a standard

part of the curve for all transcripts regardless of their total size, further providing for

reliable comparisons between subjects and between the work of different researchers.

The procedure depends on finding the best fit between the empirical and theoretically

derived curves by the least square difference method. Extensive testing confirmed that

the best fit procedure was valid and was reliably finding a unique minimum at the least

square difference.

As the points on the curve are averages of random samples, a slightly different value of D

is to be expected each time the program is run. Tests showed that with the defaults

chosen these differences are relatively small, but consistency was improved by VOCD

calculating D three times by default and giving the average value as output.

7.29.3 Sample Size

By default, the software plots the TTR versus token curve from 35 tokens to 50 tokens.

Each point on the curve is produced by random sampling without replacement. VOCD

therefore requires a minimum of 50 tokens to operate. However, the fact that the software

will satisfactorily output a value of D from a sample as small as 50 tokens does not guar-

antee that values obtained from such small samples will be reliable. It should also be

noted that random sampling without replacement causes the software to run noticeably

more slowly when samples approach this minimum level.

7.29.4 VOCD Running and Output

To illustrate the functioning of VOCD, we can use a command that examines the childôs

output in the file 68.cha in the /transcripts/ne32 folder in the CLAN examples distri-

bution. By default, VOCD runs off of the %mor line. This is also true for the form of

VOCD that runs in KIDEVAL. This is necessary, because the %mor line provides the

base form of each word or lemma, which is the best way to compute lexical diversity.

Also, the %mor line excludes repetitions. The command for doing this is:

vocd +t*CHI +sm;*,o% 68 .cha

To also exclude affixes and neologisms (unintelligible words are already excluded from

this analysis), use:

vocd +t*CHI +sm;*,o% - sm|neo +f *.ch a

 The output of this analysis has four parts:

1. A sequential list of utterances by the speaker selected shows the tokens that will be

retained for analysis.

2. Three tables that each show the number of tokens for each point on the curve,

average TTR and the standard deviation for each point, and the value of D obtained

from the equation for each point. Three such tables appear, one for each time the

program takes random samples and carries out the curve-fitting.

3. At the foot of each of the three tables is the average of the Ds obtained from the

Part 2: CLAN 138

equation and their standard deviation, the value for D that provided the best fit, and

the residuals.

4. Finally, a results summary repeats the command line and file name and the type and

token information for the lexical items retained for analysis, as well as giving the

three optimum values of D and their average.

For the command given above, the last of the three tables and the results summary are:

tokens samples ttr st.dev D

 35 100 0.7846 0.059 50.003

 36 100 0.7739 0.055 47.677

 37 100 0.7786 0.057 50.673

 38 100 0.7626 0.063 46.554

 39 100 0.7700 0.057 50.268

 40 100 0.7550 0.056 46.533

 41 100 0.7590 0 .064 49.011

 42 100 0.7626 0.055 51.450

 43 100 0.7521 0.057 49.056

 44 100 0.7423 0.052 47.032

 45 100 0.7442 0.053 48.722

 46 100 0.7391 0.059 48.167

 47 100 0.7 334 0.052 47.413

 48 100 0.7304 0.053 47.496

 49 100 0.7224 0.060 46.072

 50 100 0.7268 0.058 48.338

D: average = 48.404; std dev. = 1.541

D_optimum <48.34; min least sq val = 0.000>

VOCD RESULTS SUMMARY

====================

 Types,Tokens,TTR: <121,388,0.311856>

 D_optimum values: <49.61, 47.22, 48.34>

 D_optimum average: 48.39

7.29.5 Unique Options

The best way to see a complete list of options for a command is to type the name of the

command followed by a carriage return in the Commands window. For example, if you

type just the word vocd, you will see a list of all available options. Many of these will be

options shared with other programs. For information on these, the best approach is to go

to the chapter 8 in this manual which describes all these shared options.

In addition, many of the programs have some unique options. VOCD has the following

unique options:

+d outputs a list of utterances processed and number of types, tokens and TTR,

but does not calculate D.

+d1: outputs only VOCD results summary on one line

+d2: outputs only type/token information

+d3: outputs only type/token information in Excel format

+b various methods for controlling sampling

+b0: D_optimum - use split half; even.

+b1: D_optimum - use split half; odd.

+bsN: D_optimum - size N of starting sample (default 35)

Part 2: CLAN 139

+blN: D_optimum - size N of largest sample (default 50)

+biN: D_optimum - size N of increments (default 1)

+bnN: D_optimum - the N number of samples (default 100)

+br: D_optimum - random sampling with replacement (default: noreplacement)

+be: D_optimum - use sequential sampling

+g Calls up the limiting relative diversity (LRD) sub-routine to compare the relative

diversity of two different word classes, the numerator and the denominator, coded on the

%mor tier. This procedure extracts the words to be included from the %mor tier where

the word classes are coded. The speaker, the %mor tier and the file name are specified in

the usual way, plus the +g switch to invoke the subroutine. The following would compare

verb and noun diversity and limit the analysis to word stems:

vocd +t*CHI +t%mor +gn"m|v,;*,o%" +gd"m|n,;*,o %" filename

The first word class entered will be the numerator and the second will

be the denominator.

+gnS: compute "limiting type-type ratio" S=NUMERATOR

-gnS: compute "limiting type-type ratio" S=NUMERATOR

+gdS: compute "limiting type-type ratio" S=DENOMINATOR

-gdS: compute "limiting type-type ratio" S=DENOMINATOR

VOCD also uses several options that are shared with other commands. For a complete list

of options for a command, type the name of the command followed by a carriage return

in the Commands window. Information regarding the additional options shared across

commands can be found in the chapter on Options.

7.30 WDLEN

The WDLEN program tabulates the lengths of words, utterances, and turns. The basic

command is:

wdlen sample.cha

The output from running this on the sample.cha file will be as displayed here:

Number of words of each length in characters

lengths : 1 2 3 4 5 6 7 8 9 Mean

*CHI: 0 0 0 4 4 0 0 0 0 4.50

*MOT: 2 4 11 11 11 0 0 0 2 4.00

Number of utterances of each of these lengths in words

lengths : 1 2 3 4 5 6 7 8 9 10 Mean

*CHI: 3 1 1 0 0 0 0 0 0 0 1.60

*MOT: 0 1 1 1 2 2 0 0 0 1 3.77

Number of single turns of each of these lengths in utterances

lengths : 1 2 Mean

*CHI: 0 0 0.00

*MOT: 0 1 2.00

Number of single turns of each of these lengths in words

l engths : 1 2 3 4 5 6 7 8 9 10 11 Mean

*CHI: 0 0 0 0 0 0 0 0 0 0 0 0.00

Part 2: CLAN 140

*MOT: 0 0 0 0 0 0 0 0 0 0 1 11.00

Number of words of each of these mor pheme lengths

lengths : 1 2 Mean

*CHI: 7 1 1.12

*MOT: 35 7 1.16

Number of utterances of ea ch of these lengths in morpheme

lengths : 1 2 3 4 5 6 7 8 9 10 11 12

Mean

*CHI: 3 0 2 0 0 0 0 0 0 0 0 0

1.80

*MOT: 0 0 2 0 1 2 2 0 0 0 0 1

4.46

The first four analyses are computed from the main line. For these, the default value of

the +r5 switch is shifted to ñno replacementò so that word length is judged from the

actual surface word produced. Also, the default treatment of forms with omitted material

uses +r3, rather than the usual +r1. Only alphanumeric characters are counted and the

forms xxx, yyy, and www are excluded, as are forms beginning with & or 0 and any

material in comments. The last two analyses are computed from the %mor line. There,

the forms with xxx, yyy, or www are also excluded.

 The command allows for a maximum of 100 letters per word and 100 words or

morphemes per utterance. If you input exceeds these limits, you will receive an error

message. The only option unique to WDLEN is +d that allows you to output the results in

a format that can be opened directly from Excel. Information regarding the additional

options shared across commands can be found in the chapter on Options.

Part 2: CLAN 141

8 Options
This chapter describes the various options or switches that are shared across the CLAN

analysis commands. To see a list of options for a given program such as KWAL, type

kwal followed by a carriage return in the Commands window. You will see a list of

available options in the CLAN Output window.

Each option begins with a + or a -. There is always a space before the + or -. Multiple

options can be used and they can occur in any order. For example, the command:

 kwal +f +t*MOT sample.cha

runs a KWAL analysis on sample.cha. The selection of the +f option sends the output

from this analysis into a new file called sample.kwa.cex. The +t*MOT option confines

the analysis to only the lines spoken by the mother. The +f and +t switches can be placed

in either order.

8.1 +F Option

This option allows you to send output to a file rather than to the screen. By default, nearly

all the programs send the results of the analyses directly to the screen. You can, however,

request that your results be inserted into a file. This is accomplished by inserting the +f

option into the command line. The advantage of sending the programôs results to a file is

that you can go over the analysis more carefully, because you have a file to which you

can later refer.

The -f switch is used for sending output to the screen. For most programs, -f is the default

and you do not need to enter it. You only need to use the -f switch when you want the

output to go to the screen for CHSTRING, FLO, and SALTIN. The advantage of sending

the analysis to the screen (also called standard output) is that the results are immediate

and your directory is less cluttered with nonessential files. This is ideal for quick

temporary analysis.

The string specified with the +f option is used to replace the default file name extension

assigned to the output file name by each program. For example, the command

 freq +f sample.cha

would create an output file sample.frq.cex. If you want to control the shape of the

extension name on the file, you can place up to three letters after the +f switch, as in the

command

 freq +fmot sample.cha

which would create an output file sample.mot.cex. If the string argument is longer than

three characters, it will be truncated. For example, the command

 freq +fmother sample.cha

would also create an output file sample.mot.cex.

On the Macintosh, you can use the third option under the File menu to set the directory

for your output files. On Windows, you can achieve the same effect by using the +f

switch with an argument, as in:

+fc: This will send the output files to your working directory on c:.

Part 2: CLAN 142

+f".res" This sets the extension for your output files.

+f"c:.res" This sends the output files to c: and assigns the extension .res.

When you are running a command on several files and use the +f switch, the output will

go into several files ï one for each of the input files. If what you want is a combined anal-

ysis that treats all the input files as one large file, then you should use the +u switch. If

you want all the output to go into a single file for which you provide the name, then use

the > character at the end of the command along with an additional file name. The >

option can not be combined with +f.

8.2 +K Option

This option controls case-sensitivity. A case-sensitive program is one that makes a dis-

tinction between uppercase and lowercase letters. Many of the CLAN commands are

case-sensitive by default. If you type the name of each command, you will see a usage

page indicating the default setting for the +k switch. Use of the +k option overrides the

default state whatever that might be. For instance, suppose you are searching for the

auxiliary verb ñmayò in a text. If you searched for the word ñmayò in a case-sensitive

program, you would obtain all the occurrences of the word ñmayò in lower case only.

You would not obtain any occurrences of ñMAYò or ñMay.ò Searches performed for the

word ñmayò using the +k option produce the words ñmay,ò ñMAY,ò and ñMayò as

output.

8.3 +L Option

The +l option is used to provide language tags for every word in a bilingual corpus. Use

of this switch does not actually change the file; rather these tags are represented in

computer memory for the files and are used to provide full identification of the output of

programs such as FREQ or KWAL. For examples of the operation of the +l switch in the

context of the FREQ program, see the section of the FREQ program description that

examines searches in bilingual corpora.

An additional variation on the +l switch is +l1 which serves to insert a language precode

such as [- spa] for every utterance, including those that are unmarked without the use of

this switch. If this switch is used, then it is possible to trace between language code-

switching on the whole utterance level using commands such as the two following, where

the first one tracks changes from French to Spanish and the second tracks changes from

Spanish to French:

combo +b2 - l1 +s" \ **:^[- fra]^*^ \ **:^[- spa]" *.cha

combo +b2 - l1 +s" \ **:^[- spa]^*^ \ **:^[- fra]" *.cha

8.4 +P Option

This switch is used to change the way in which CLAN processes certain word-internal

symbols. Specifically, the programs typically consider compounds such as black+bird to

be single words. However, if you add the switch +p+, then the plus symbol will be

treated as a word delimiter. This means that a program like FREQ or MLU would treat

black+bird as two separate words. Another character that you may wish to treat as a

Part 2: CLAN 143

word separator is the underscore. If you use the switch +p_, then New_York would be

treated as two words.

8.5 +R Option

This option deals with the treatment of material in parentheses.

+r1 Removing Parentheses. Omitted parts of words can be marked by parentheses,

as in ñ(be)causeò with the first syllable omitted. The +r1 option removes the parentheses

and leaves the rest of the word as is.

+r2 Leaving Parentheses. This option leaves the word with parentheses.

+r3 Removing Material in Parentheses. This option removes all the omitted part.

Here is an example of the use of the first three +r options and their resulting outputs, if

the input word is ñget(s)ò:

 Option Output

 "no option" gets

 "+r1" gets

 "+r2" get(s)

 "+r3" get

+r4 Removing Prosodic Symbols in Words. By default, symbols such as #, /, and :

are ignored when they occur inside words. Use this switch if you want to include them in

your searches. If you do not use this switch, the strings cat and ca:t are regarded as the

same. If you use this switch, they are seen as different. The use of these prosodic marker

symbols is discussed in the CHAT manual.

+r5 Text Replacement. By default, material in the form [: text] replaces the

material preceding it in the string search programs. The exception to this rule is for the

WDLEN program. If you do not want this replacement, use this switch.

+r6 Retraced Material. By default, material in retracings is included in searches

and counts. The exceptions are the EVAL, FREQ, MLT, MLU, and MODREP programs,

for which retracings are excluded by default. The +r6 switch is used to change these

default behaviors.

+r7 Do not remove prosodic symbols (/~^:) in words

+r8: Combine %mor tier items with replacement word [: é] and error code [* é] if

any from speaker tier.

8.6 +S Option

This option allows you to search for a certain string. The +s option allows you to specify

the keyword you desire to find. You do this by putting the word in quotes directly after

the +s switch, as in +s"dog" to search for the word ñdog.ò You can also use the +s switch

to specify a file containing words to be searched. You do this by putting the file name

after +s@, as in +s@adverbs, which will search for the words in a file called adverbs.cut.

If you want to use +s to look for the literal character @, you need to precede it with a

backslash as in +s"\@".

Part 2: CLAN 144

By default, the programs will only search for matches to the +s string on the main line. If

you want to include a search on other tiers, you need to add them with the +t switch.

Also by default, unless you explicitly include the square brackets in your search string,

the search will ignore any material that is enclosed in square brackets.

It is possible to specify as many +s options on the command line as you like. If you have

several +s options specified, the longest ones will be applied first. Use of the +s option

will override the default list. For example, the command

 freq +s"word" data.cut

will search through the file data.cut looking for ñword.ò

The +s/-s switch can be used with five types of material: (1) words, (2) codes or

postcodes in square brackets, (3) text in angle brackets associated with codes within

square brackets, (4) whole utterances associated with certain postcodes, and (5) particular

postcodes themselves. Moreover, the switch can be used to include, exclude, or add

information. The effect of the switch for the five different types across the three

functions is described in the following three tables:

Search Strings for Inclusion of Five Types of Material

Material Switch Results

word +s"dog" find only the word ñdogò

[code] +s"[//]" find only this code itself

<text>[code] +s"<//>" find only text marked by this code

utterance +s"[+ imi] "

+s"[- eng]"

find only text marked with this postcode

or precode

postcode +s"<+ imi>"

+sò<- eng>ò

find only this postcode or precode itself

Search Strings for Exclusion of Four Types of Material

Material Switch Results

word -s"dog" find all words except the word ñdogò

<text>[code] -s"<//>" find all text except text marked by this

code

utterance -s"[+ imi]" find all utterances except utterances

marked with this postcode

Search Strings for Addition of Material excluded by default

Material Switch Results

word +s+xxx add ñxxxò

[code] +s+"[//]" find all text, plus this code

utterance +s+"[+ bch]" find all utterances, including those

Part 2: CLAN 145

marked with the [+ bch] postcode

postcode +s+"<+ imi>" find all text, including this postcode itself

You can use either single or double quotation marks. However, for Unix and CLAN

commands on the web interface, you need to use single quotation marks. When your

search string does not include any metacharacters or delimiters, you can omit the

quotation marks altogether.

Multiple +s strings are matched as exclusive orôs. If a string matches one +s string, it

cannot match the other. The most specific matches are processed first. For example, if

your command is

freq +s$gf% +s$gf:a +t%cod

and your text has these codes

$gf $gf:a $gf:b $gf:c

your output will be

$gf 3

$gf :a 1

Because $gf:a matches specifically to the +s$gf:a, it is excluded from matching +s$gf%.

One can also use the +s switch to remove certain strings from automatic exclusion. For

example, the MLU program automatically excludes xxx, 0, uh, and words beginning with

& from the MLU count. This can be changed by using this command:

mlu +s+uh +s+xxx +s+0* +s+&* file.cha

8.7 +T Option

This option allows you to include or exclude tiers. In CHAT formatted files, there exist

three tier code types: main speaker tiers (denoted by *), speaker-dependent tiers (denoted

by %), and header tiers (denoted by @). The speaker-dependent tiers are attached to

speaker tiers. If, for example, you request to analyze the speaker *MOT and all the %cod

dependent tiers, the programs will analyze all the *MOT main tiers and only the %cod

dependent tiers associated with that speaker.

The +t option allows you to specify which main speaker tiers, their dependent tiers, and

header tiers should be included in the analysis. All other tiers, found in the given file, will

be ignored by the program. For example, the command:

freq +t*CHI +t%spa +t%mor +t"@Group of Mot" sample.cha

tells FREQ to look at only the *CHI main speaker tiers, their %spa and %mor dependent

tiers, and @Situation header tiers. When tiers are included, the analysis will be done on

only those specified tiers.

The -t option allows you to specify which main speaker tiers, their dependent tiers, and

header tiers should be excluded from the analysis. All other tiers found in the given file

should be included in the analysis, unless specified otherwise by default. The command:

freq - t*CHI - t%spa - t%mor - t@"Group of Mot" sampl e.cha

tells FREQ to exclude all the *CHI main speaker tiers together with all their dependent

Part 2: CLAN 146

tiers, the %spa and %mor dependent tiers on all other speakers, and all @Situation header

tiers from the analysis. All remaining tiers will be included in the analysis.

When the transcriber has decided to use complex combinations of codes for speaker IDs

such as *CHI-MOT for ñchild addressing mother,ò it is possible to use the +t switch with

the # symbol as a wildcard, as in these commands:

freq +t*CHI - MOT sample.c ha

freq +t*# - MOT sample.cha

freq +t*CHI - # sample.cha

When tiers are included, the analysis will be done on only those specified tiers. When

tiers are excluded, however, the analysis is done on tiers other than those specified.

Failure to exclude all unnecessary tiers will cause the programs to produce distorted

results. Therefore, it is safer to include tiers in analyses than to exclude them, because it

is often difficult to be aware of all the tiers present in any given data file.

If only a tier-type symbol (*, %, @) is specified following the +t/-t options, the programs

will include all tiers of that symbol type in the analysis. Using the option +t@ is

important when using KWAL for limiting (see the description of the KWAL program),

because it makes sure that the header information is not lost.

The programs search sequentially, starting from the left of the tier code descriptor, for

exactly what the user has specified. This means that a match can occur wherever what has

been specified has been found. If you specify *M on the command line after the option,

the program will successfully match all speaker tiers that start with *M, such as *MAR,

*MIK, *MOT, and so forth. For full clarity, it is best to specify the full tier name after the

+t/-t options, including the : character. For example, to ensure that only the *MOT

speaker tiers are included in the analysis, use the +t*MOT: notation.

As an alternative to specifying speaker names through letter codes, you can use the form:

 +t@id=idcode

In this form, the ñidcodeò is any character string that matches the type of string that has

been declared at the top of each file using the @ID header tier.

All of the programs include the main speaker tiers by default and exclude all of the de-

pendent tiers, unless a +t% switch is used.

8.8 +U Option

This option merges the output of searches on specified files together. By default, when

the user has specified a series of files on the command line, the analysis is performed on

each individual file. The program then provides separate output for each data file. If the

command line uses the +u option, the program combines the data found in all the

specified files into one set and outputs that set as a whole. For most commands, the

switch merges all data for a given speaker across files. The commands that do this are:

CHAINS, CHIP, COOCCUR, DIST, DSS, FREQ, FREQPOS, GEM, GEMFREQ,

IPSYN, KEYMAP, MAXWD, MLT, MLU, MODREP, PHONFREQ, and WDLEN.

There are several other commands for which there is a merged output, but that output

separates data from different input files. These commands are COMBO, EVAL,

KIDEVAL, KWAL, MORTABLE, TIMEDUR, and VOCD. If too many files are

selected, CLAN may eventually be unable to complete this merger.

Part 2: CLAN 147

8.9 +V Option

This switch gives you the date when the current version of CLAN was compiled.

8.10 +W Option

This option controls the printing of additional sentences before and after a matched sen-

tence. This option can be used with either KWAL or COMBO. These programs are used

to display tiers that contain keywords or regular expressions as chosen by the user. By

default, KWAL and COMBO combine the user-chosen main and dependent tiers into

ñclusters.ò Each cluster includes the main tier and its dependent tiers. (See the +u option

for further information on clusters.)

The -w option followed by a positive integer causes the program to display that number

of clusters before each cluster of interest. The +w option followed by a positive integer

causes the program to display that number of clusters after each cluster of interest. For

example, if you wanted the KWAL program to produce a context larger than a single

cluster, you could include the -w3 and +w2 options in the command line. The program

would then output three clusters above and two clusters below each cluster of interest.

8.11 +X Option

This option is available in most of the analysis programs. It allows you to control the

type and number of items in utterances being selected for analysis.

+xCNT: C (condition) can be greater than >, less than <, or equal = (>, <, =)

 N (number) is the number of items to be included

 T (type) is the type of item which can be words (w), characters (c), or

morphemes (m). If ñmò is used, there must be a %mor line.

+x<10c means to include all utterances with less than 10 characters

+x=0w means to include all utterances with zero words

+xS: include certain items in above count (Example: +xxxx +xyyy)

-xS: exclude certain items from above count

In the MOR and CHIP programs, +x has a different meaning.

8.12 +Y Option

This option allows you to work on non-CHAT files. Most of the programs are designed to

work best on CHAT formatted data files. However, the +y option allows the user to use

these programs on non-CHAT files. It also permits certain special operations on CHAT

files. The program considers each line of a non-CHAT file to be one tier. There are two

values of the +y switch. The +y value works on lines and the +y1 value works on

utterances as delimited by periods, question marks, and exclamation marks. Some

programs do not allow the use of the +y option at all. Workers interested in using CLAN

with nonconversational data may wish to first convert their files to CHAT format using

the TEXTIN program to avoid having to avoid use of the +y option.

 If you want to search for information in specific headers, you may need to use the +y

option. For example, if you want to count the number of utterances by CHI in a file, you

can use this command:

Part 2: CLAN 148

freq +s" \ *CHI" *.cha +u +y

8.13 +Z Option

This option allows the user to select any range of words, utterances, or speaker turns to be

analyzed. The range specifications should immediately follow the option. For example:

+z10w analyze the first ten words only.

+z10u analyze the first ten utterances only.

+z10t analyze the first ten speaker turns only.

+z10w-20w analyze 11 words starting with the 10th word.

+z10u-20u analyze 11 utterances starting with the 10th utterance.

+z10t-20t analyze 11 speaker turns starting with the 10th turn.

+z10w- analyze from the tenth word to the end of file.

+z10u- analyze from the tenth utterance to the end of file.

+z10t- analyze from the tenth speaker turn to the end of file.

If the +z option is used together with the +t option to select utterances from a certain

speaker, then the counting will be based only on the utterances of that speaker. For

example, this command:

mlu +z50u +t*CHI 0611.cha

will compute the MLU for the first 50 utterances produced by the child. If the +z option

is used together with the +s option, the counting will be dependent on the working of the

+s option and the results will seldom be as expected. To avoid this problem, you should

first use KWAL with +z to extract the utterances you want and then run MLU on that

output.

kwal +d +z50u +t*CHI sample.cha

kwal +sMommy sample.kwa.cex

If the +z switch specifies more items than exist in the file, the program will analyze only

the existing items. If the turn or utterance happens to be empty, because it consists of spe-

cial symbols or words that have been selected to be excluded, then this utterance or turn

is not counted.

The usual reason for selecting a fixed number of utterances is to derive samples that are

comparable across sessions or across children. Often researchers have found that samples

of 50 utterances provide almost as much information as samples of 100 utterances.

Reducing the number of utterances being transcribed is important for clinicians who have

been assigned a heavy case load.

You can also use postcodes to further control the process of inclusion or exclusion.

8.14 Metacharacters for Searching

Metacharacters are special characters used to describe other characters or groups of

characters. Certain metacharacters may be used to modify search strings used by the +s/-s

switch. However, to use metacharacters in the CHSTRING program a special switch

must be set. The CLAN metacharacters are:

* Any number of characters matched

Part 2: CLAN 149

% Any number of characters matched and removed

%% As above plus remove previous character

_ Any single character matched

\ Quote character

Suppose you would like to be able to find all occurrences of the word ñcatò in a file. This

includes the plural form ñcats,ò the possessives ñcat's,ò ñcatsô'ò and the contraction

ñcatôsò. Using a metacharacter (in this case, the asterisk) would help you to find all of

these without having to go through and individually specify each one. By inserting the

string cat* into the include file or specifying it with +s option, all these forms would be

found. Metacharacters can be placed anywhere in the word.

The * character is a wildcard character; it will find any character or group of continuous

characters that correspond to its placement in the word. For example, if b*s were

specified, the program would match words like ñbeads,ò ñbats,ò ñbat's,ò ñballs,ò ñbeds,ò

ñbreaks,ò and so forth.

The % character allows the program to match characters in the same way as the *

symbol. Unlike the * symbol, however, all the characters matched by the % will be

ignored in terms of the way of which the output is generated. In other words, the output

will treat ñbeatò and ñbatò as two occurrences of the same string, if the search string is

b%t. Unless the % symbol is used with programs that produce a list of words matched by

given keywords, the effect of the % symbol will be the same as the effect of the *

symbol.

When the percentage symbol is immediately followed by a second percentage symbol,

the effect of the metacharacter changes slightly. The result of such a search would be that

the % symbol will be removed along with any one character preceding the matched

string. Without adding the additional % character, a punctuation symbol preceding the

wildcard string will not be matched ane will be ignored.

The underline character _ is like the * character except that it is used to specify any single

character in a word. For example, the string b_d will match words like ñbad,ò ñbed,ò

ñbud,ò ñbid,ò and so forth. For detailed examples of the use of the percentage, underline,

and asterisk symbols, see the section special characters.

The quote character (\) is used to indicate the quotation of one of the characters being

used as metacharacters. Suppose that you wanted to search for the actual symbol (*) in a

text. Because the (*) symbol is used to represent any character, it must be quoted by in-

serting the (\) symbol before the (*) symbol in the search string to represent the actual (*)

character, as in ñstring*string.ò To search for the actual character (\), it must be quoted

also. For example, ñstring\\stringò will match ñstringò followed by ñ\ò and then followed

by a second ñstring.ò

Part 2: CLAN 150

9 Utility Commands
The various utility commands are used primarily for fixing and reformatting older files to

bring them into accord with the current CHAT format or for reformatting data for use

with other programs. Several of these programs are used to convert transcripts from

CHAT format to the formats required by other programs including: Praat (praat.org),

Phon (phonbank.talkbank.org), ELAN (tla.mpi.nl/tools/elan), CoNLL, ANVIL (anvil-

software.org), EXMARaLDA (exmaralda.org), LIPP (ihsys.com), SALT

(saltsoftware.com), LENA (lenafoundation.org), Transcriber (trans.sourceforge.net), and

ANNIS (corpus-tools.org/ANNIS).

Command Function

ANVIL2CHAT converts ANVIL files to CHAT format.

BATCH runs a series of commands in batch mode.

CHAT2ANVIL converts CHAT files to ANVIL format.

CHAT2CA converts CA/CHAT to purer CA for display only.

CHAT2CONNL converts CHAT to CONNL format.

CHAT2ELAN converts CHAT to ELAN format.

CHAT2PRAAT converts CHAT to Praat format.

CHAT2SRT creates SRT files for captions on video.

CHAT2XMAR converts CHAT to EXMARaLDA format.

CHSTRING changes words and characters in CHAT files.

CMDI creates CMDI metadata files.

COMBINE combines multiple files that coded participants separately.

COMBTIER combines extra commentary lines.

COMPOUND converts word pairs to compounds.

CONNL2CHAT converts CONNL format to CHAT.

CP2UTF converts ASCII files to Unicode files.

DATACLEAN updates the format of older CHAT files.

DATES uses the date and birthdate of the child to compute age.

DELIM inserts periods when final delimiters are missing.

ELAN2CHAT converts ELAN files to CHAT.

FIXBULLETS repairs bullets and reformats old style bullets.

FIXIT breaks up tiers with multiple utterances.

FIXLANG changes language codes to the 3-letter ISO standard.

FIXMP3S fixes bullets to MP3 media in older CHAT files.

FLO reformats the file in simplified form.

Part 2: CLAN 151

INDENT aligns the overlap marks in CA files.

INFO lists all available CLAN commands.

JOINITEMS reformats Japanese particles as suffixes.

LAB2CHAT converts Wavesurfer format to CHAT.

LENA2CHAT converts LENA ITS files to CHAT format.

LIPP2CHAT converts LIPP files to CHAT.

LONGTIER removes carriage returns to make long lines.

LOWCASE converts uppercase to lowercase throughout a file.

OLAC creates XML index files for the OLAC database.

ORT converts HKU Chinese characters.

PRAAT2CHAT converts PRAAT files to CHAT.

QUOTES moves quoted material to its own tier.

REN(AME) renames a series of files.

REPEAT inserts postcodes to mark repeated utterances.

RETRACE inserts retrace markers.

RTFIN converts RTF format to CHAT.

SALTIN converts SALT files to CHAT format.

SILENCE converts utterances marked with keywords to silence.

SPREADSHEET rotates table by turning columns into row and vice versa.

SUBTITLES converts subtitled text files to CHAT text files.

SYNCODING --

TEXTIN converts straight text to CHAT format.

TIERORDER rearranges dependent tiers into a consistent order.

TRIM removes individual coding tiers.

TRNFIX compares the %trn and %mor lines.

UNIQ sorts lexicon files and removes duplicates.

USEDLEX creates a subset of lex files using only words in a corpus.

9.1 ANVIL2CHAT

This program converts an ANVIL file to a CHAT file. For conversion in the opposite

direction, you can use CHAT2ANVIL.

9.2 BATCH

You can place a group of commands into a text file which you then execute as a batch.

The word batch should be followed by the name of a file in your working directory, such

Part 2: CLAN 152

as commands.bat. Each line of that file is then executed as a CLAN command.

9.3 CHAT2ANVIL

This program converts an CHAT file to ANVIL format.

9.4 CHAT2CA

The CHAT2CA program will convert a CHAT file to a format that is closer to standard

CA (Conversation Analysis) format. This is a one-way conversion, since we cannot

convert back to CHAT from CA. Therefore, this conversion should only be done when

you have finished creating your file in CHAT or when you want to show you work in

more standard CA format. The conversion changes some of the non-standard symbols to

their standard equivalent. For example, the speedup and slowdown are marked by inward

and outward pointing arrows.

9.5 CHAT2CONLL

This program creates CoNLL formatted files from the information on the CHAT %mor

and %gra tiers. It keeps the actual names for parts of speech and GRs given on those

lines. CHAT2CONLL requires that you select a form for the specific dependency parser

you will use, as in +cMa for the MALT parser. To create a CoNNL training column in

your output, you should have a %grt tier in the input and then you should add +t%grt to

the command.

9.6 CHAT2ELAN

This program converts a CHAT file to the ELAN format for gestural analysis. For

conversion in the opposite direction, use ELAN2CHAT. You can download the ELAN

program from http://www.mpi.nl/tools/elan.html. The conversion of CHAT files to

ELAN is fairly straightforward. You just run this command in the CLAN Commands

window:

chat2elan +emp4 *.cha

The +e switch is used to specify the media file type, which could be mp4, mov, wav, or

mp3. CHAT main tiers appear in ELAN with the speaker name, such as *BET which

becomes ñBETò. Dependent tiers, which are called ñchild tiersò in ELAN, are then

coded as owned by a speaker, as in gpx@BET for the %gpx tier linked to the BET

speaker.

9.7 CHAT2PRAAT

This program converts a CHAT file to the Praat format. When running this, you need to

add the file type of the audio using the +e switch as in +emp3.

9.8 CHAT2SRT

This program converts a CHAT file to SRT format for captioning video. The use of this

program is described in a screencast available from http://talkbank.org/screencasts. On

http://www.mpi.nl/tools/elan.html

Part 2: CLAN 153

the Mac, you will need to purchase Subtitle Writer for $4.99 from the App Store.

1. Run this command: chat2srt shoes.cha to produce shoes.srt

2. Open Subtitle Writer.

3. Click Add and add shoes.srt

4. Select the language as English.

5. Click Import Movie and select shoes.mp4

6. Click Save Subtitled Video

7. Open and play the resultant captioned movie.

If you want to use the English gloss in the %glo line in a file instead of the main line for

the captions, then use this command: chat2srt +t%glo shoes.cha to produce the .srt file.

9.9 CHAT2XMAR

This program converts a CHAT file to the EXMARaLDA format for Partitur analysis.

For conversion in the opposite direction, use XMAR2CHAT. You can download the

EXMARaLDA program from http://www1.uni-hamburg.de/exmaralda/.

9.10 CHSTRING

This program changes one string to another string in an ASCII text file. CHSTRING is

useful when you want to correct spelling, change subjectsô names to preserve anonymity,

update codes, or make other uniform changes to a transcript. This changing of strings can

also be done on a single file using a text editor. However, CHSTRING is much faster and

allows you to make a whole series of uniform changes in a single pass over many files.

By default, CHSTRING is word-oriented, as opposed to string-oriented. This means that

the program treats the as the single unique word the, rather than as the string of the letters

ñtò, ñhò, and ñeò. If you want to search by strings, you need to add the +w option. If you

do, then searching for the with CHSTRING will result in retrieving words such as other,

bathe, and there. In string-oriented mode, adding spaces can help you to limit your

search. Knowing this will help you to specify the changes that need to be made on words.

Also, by default, CHSTRING works only on the text in the main line and not on the

dependent tiers or the headers.

When working with CHSTRING, it is useful to remember the functions of the various

metacharacters, as described in the metacharacters section. For example, the following

search string allows you to add a plus mark for compounding between ñteddyò and ñbearò

even when these are separated by a newline, since the underscore character matches any

one character including space and newline. You need two versions here, since the first

with only one space character works within the line and the second works when ñteddyò

is at the end of the line followed by first a carriage return and then a tab:

 +s"teddy_bear" "teddy+bearò +s"teddy__bear" "teddy+bear"

Unique Options

+b Work only on material that is to the right of the colon which follows the tier ID.

+c Often, many changes need to be made in data. You can do this by using a text ed-

itor to create an ASCII text file containing a list of words to be changed and what

they should be changed to. This file should conform to this format:

Part 2: CLAN 154

 "oldstring" "newstring"

 You must use the quotation marks to surround the two strings. The default name

for the file listing the changes is changes.cut. If you donôt specify a file name at the

+c option, the program searches for changes.cut. If you want to another file, the

name of that file name should follow the +c. For example, if your file is called

mywords.cut, then the option takes the form +cmywords.cut.

 To test out the operation of CHSTRING with +c, try creating the following file

called changes.cut:

 "the" "wonderful"

 "eat" "quark"

 Then try running this file on the sample.cha file with the command:

 chstring +c sample.cha

 Check over the results to see if they are correct. If you need to include the double

quotation symbol in your search string, use a pair of single quote marks around the

search and replacement strings in your include file. Also, note that you can include

Unicode symbols in your search string.

+d This option turns off several CHSTRING clean-up actions. It turns off deletion of

blank lines, removal of blank spaces, removal of empty dependent tiers,

replacement of spaces after headers with a tab, and wrapping of long lines. All it

allows is the replacement of individual strings.

+l Work only on material that is to the left of the colon which follows the tier ID. For

example, if you want to add an ñxô to the %syn to make it %xsyn, you would use

this command:

 chstring +s"%mor:" "%xmor:" +t% +l *.cha

+q CHAT requires that a three letter speaker code, such as *MOT:, be followed by a

tab. Often, this space is filled by three spaces instead. Although this is undetectable

visually, the computer recognizes tabs and spaces as separate entities. The +q

option brings the file into conformance with CHAT by replacing the spaces with a

tab. It also reorganizes lines to wrap systematically at 80 characters.

+s Sometimes you need to change just one word, or string, in a file(s). These strings

can be put directly on the command line following the +s option. For example, if

you wanted to mark all usages of the word gumma in a file as child-based forms,

the option would look like this:

 +s"gumma" "gumma@c"

+w Do string-oriented search and replacement, instead of word-oriented search and

replacement. CAUTION: Used incorrectly, the +w switch can lead to serious

losses of important data. Consider what happens when changing all occurrences of

ñyesò to ñyeah.ò If you use this command with the +w switch included,

 chstring +w +s"yes" "yeah" myfile.cha

 every single occurrence of the sequence of letters y-e-s will be changed. This

includes words, such as ñyesterday,ò ñeyes,ò and ñpolyester,ò which would become

ñyeahterday,ò ñeyeah,ò and ñpolyeahter,ò respectively. However, if you omit the

+w switch, you will not have these problems. Alternatively, you can surround the

strings with spaces, as in this example:

 chstring +w +s" yes " " yeah " myfile.cha

Part 2: CLAN 155

+x If you want to treat the asterisk (*), the underline (_), and the backslash (\) as the

literal characters, instead of metacharacters, you must add this switch.

CHSTRING can also be used to remove the bullets in CHAT files that link to media,

using this command:

chstring +cbullets.cut * .cha

CHSTRING also uses several options that are shared with other commands. For a com-

plete list of options for a command, type the name of the command followed by a

carriage return in the Commands window. Information regarding the additional options

shared across commands can be found in the chapter on Options.

9.11 CMDI

This program runs over the CHILDES and TalkBank databases to produce a complete

metadata inventory in CMDI format.

9.12 COMBINE

This program combines multiple files that coded participants separately into a single file

based on the time codes.

9.13 COMBTIER

COMBTIER corrects a problem that typically arises when transcribers create several

%com lines. It combines two %com lines into one by removing the second header and

moving the material after it into the tier for the first %com.

9.14 COMPOUND

This program changes pairs of words to compounds, to guarantee more uniformity in

morphological and lexical analysis. It requires that the user create a file of potential com-

pound words in a format with each compound on a separate line, as in this example.

night+night

Chatty+baby

oh+boy

Whenever the program finds ñnight nightò in the text, whether it be written as

ñnight+nightò, ñnight nightò or ñnight-night,ò it will be changed to ñnight+nightò.

9.15 CONLL2CHAT

This program takes a file in CONLL format and outputs a CHAT file with %mor and

%syn lines, using the translations given in the 0pos.cut, 0mor.cut, and 0gr.cut files. The

+c switch allows the user to state the customization required for certain flavors of the

overall CoNLL format, as in +cpr for the PROIEL format. As in the case of the

CHAT2CONLL program, you need to consider things:

1. The 0pos.cut, 0mor.cut, and 0gr.cut files have a series of lines with the target

CONLL code followed by a tab and then the source CHAT code. The shape of

these files will change depending on the nature of your language and system.

Part 2: CLAN 156

2. The 0pos.cut file lists the parts of speech to be translated.

3. The 0mor.cut file includes the grammatical features used on the %mor line, such

as &sg for singular or ïPAST for past.

4. CHAT2CONLL requires that you select a form for the specific dependency parser

you will use, as in +cMa for the Malt parser.

5. You must include the %mor and %gra tiers, as in this command:

chat2conll +t%mor +t%gra +cMa test.cha

If the +j option is used, then CONLL2CHAT will try to open a CHAT file, whose name

is derived from the input *.conll file name and CONLL2CHAT will try to add or replace

data in CHAT file with data from input *.conll file

9.16 CP2UTF

CP2UTF converts code page ASCII files and UTF-16 into UTF-8 Unicode files. If there

is an @Font tier in the file, the program uses this to guess the original encoding. If not, it

may be necessary to add the +o switch to specify the original language, as in +opcct for

Chinese traditional characters on the PC. If the file already has a @UTF8 header, the

program will not run, unless you add the +d switch and you are sure that the line in

question is not already in UTF. The +c switch uses the unicode.cut file in

CLAN/lib/fixes directory to effect translation of ASCII to Unicode for IPA symbols,

depending on the nature of the ASCII IPA being used. For example, the +c3 switch

produces a translation from IPAPhon. The +t@u switch forces the IPA translation to

affect main line forms in the text@u format.

+b : add BOM symbol to the output files

+cN: specify column number (3-7) (default: 4, IPATimes)

+d: convert ONLY tiers specified with +t option

+d1: remove bullets from data file

+d2: add BOM encoding information at the beginning of a CHAT file to help

applications, such as NVivo or MS-Word, to read it better

+oS: specify code page. Please type "+o?" for full listing of codes

 utf16 - Unicode UTF-16 data file

 macl - Mac Latin (German, Spanish ...)

 pcl - PC Latin (German, Spanish ...)

9.17 DATACLEAN

DATACLEAN is used to rearrange and modify old style header tiers and line identifiers.

1. If @Languages tier is found, it is moved to the position right after @Begin.

2. If @Participants tier is found, it is moved to the position right after @Languages.

3. If the tier name has a space character after ':', then it is replaced with tab. If the tier

name doesn't have a following tab, then it is added. If there is any character after the

tab following a speaker name, such as another tab or space, then it is removed.

4. Tabs in the middle of tiers are replaced with spaces.

5. If utterance delimiters, such as +..., are not separated from the previous word with a

space, then a space is inserted.

Part 2: CLAN 157

6. if [...] is not preceded or followed by space, then space is added.

7. Replaces #long with ###.

8. The string "..." is replaced with "+...".

9.18 DATES

The DATES program takes two time values and computes the third. It can take the

childôs age and the current date and compute the childôs date of birth. It can take the date

of birth and the current date to compute the childôs age. Or it can take the childôs age and

the date of birth to compute the current date. For example, if you type:

 dates +a 2; 03. 01 +b 12 - jan - 1962

you should get the following output:

@Age of Child: 2; 03. 01

@Birth of Child: 12 - JAN- 1962

@Date: 13 - APR- 1964

You can also use the date format of MM/DD/YY, as in this version of the command:

dates +b 08/31/63 +d 07/30/64

If your files have the child's age in the @ID header, and if you know the child's date of

birth, but do not have the @Date field, you can create a set of new files with the @Date

information, using this version of the command:

dates +bCHI 08/31/63 *.cha

Unique Options

+a Following this switch, after an intervening space, you can provide the childôs age

in CHAT format.

+b Following this switch, after an intervening space, you can provide the childôs birth

date in day-month-year format.

+d Following this switch, after an intervening space, you can provide the current date

or the date of the file you are analyzing in day-month-year format.

DATES uses several options that are shared with other commands. For a complete list of

options for a command, type the name of the command followed by a carriage return in

the Commands window. Information regarding the additional options shared across

commands can be found in the chapter on Options.

9.19 DELIM

DELIM inserts a period at the end of every main line if it does not currently have one.

9.20 ELAN2CHAT

This program converts ELAN files to CHAT files. Use CHAT2ELAN for conversion in

the opposite direction. The command is just: ELAN2CHAT filename.cha. If your file

began in CHAT, then the tiers probably already have names that will pass on without

problems during the conversion. However, if your file was produced originally in ELAN,

it may be necessary to rename the tiers to CHAT format before running elan2chat. There

are basically two different pathways for conversion of ELAN to CHAT.

