

Development of a Weighted Accuracy Measure for implementation in Phon

Cynthia Core and Suresh Subramanian

The George Washington University

Introductions

- Cynthia Core
 - Assistant Professor, Department of Speech and Hearing Science, GWU
- Suresh Subramanian
 - Graduate student in Computer Engineering, GWU

Acknowledgements

Erika Hoff Department of Psychology, Florida Atlantic University

http://psy.fau.edu/~hoff/LangDevLab/
index.htm

Language Development Lab Managers Melissa Senor, Rosario Rumiche

Graduate Students Kelly Bridges, Marisol Parra, Silvia Place, FAU Kristen Dorsey, GWU

Funding Sources: Xx R03 grant number NICHD HD054427-01S1 Florida Atlantic University

Collaborators

- Erika Hoff, Florida Atlantic University
- Jim Mahshie, George Washington University
- □ Tiffany Finnegan, Gallaudet University
- FAU Language Development Lab
- GWU students

My Projects

- First Language Bilingual Acquisition
 - Focus is word learning
- Speech Perception/Production interface in young children with cochlear implants
 - Focus is speech perception

Bilingual Projects

- Data collection in Florida
- Phonological Memory and Language Learning
 - Investigated the role of phonological memory in early vocabulary development in monolingual and bilingual children
 - 56 monolingual English speaking children
 - 47 bilingual Spanish-English speaking children
 - Data at 3 times, 22-, 25-, and 30-months
 - Real word and nonword repetition in English and Spanish
- Four-year follow-up
 - Real word and nonword repetition
 - Bilingual English Spanish Assessment (Goldstein, Peña)

Ongoing...

- Environmental Correlates of Bilingual Language Development
 - Looks at the role of linguistic experience in language development family constellation, relative amount of input in each language
 - 170 bilingual children
 - Real word and nonword repetition
 - Bilingual English-Spanish Assessment
- Various spontaneous samples, 22-, 25-, 30-month, and 4-year-old bilinguals

Cochlear Implant Project

- Data collection ongoing in Washington, DC metro area
- Perception of phonetic features and production of those features
 - Consonant place, manner, voicing, vowel height, advancement, stress, syllable number, intonation
 - 40+ children with cochlear implants
 - □ 3 to 5 years
 - 2 ½ year longitudinal study (5 visits)
 - Speech production measures
 - Goldman-Fristoe Test of Articulation
 - Elicited multisyllabic words with varying stress patterns, questions, statements

Data to be analyzed

- □ 12 Real Words
 - 4 each, 1-, 2-, 3-syllable
 - From MacArthur-Bates CDI
- 12 Nonwords
 - Phonologically matched to real words for onsets/rhymes and stress patterns
- Elicited through toy naming game imitation
 - Look, his name is 'Kog" Can you say "Kog?"

Examples of Stimuli

- Dog, juice, cat, book
 - Kog, boos, dat, jook
- Pan, luz, tren, sol
 - Lan, trus, sen, pol

- Banana, telephone, lollipop, pajamas
 - Bajapop, tellina, lolemas, panaphone
- Muñeca, gallina, caballo, pelota
 - Gañeca, calota, peballo, mullina

Problems in analysis using PCC

- If a child doesn't repeat an elicited item
 - □ Score is 0
- If a child says [da:] for 'cat'
 - □ Score is 0
- □ If a child says [us] or [dus] for 'juice' those are the same
- This makes it impossible to differentiate non-repeaters from children who are actually building good phonological systems

Why quantify accuracy?

- Can answer questions of how children change in production abilities over time
- Can answer questions of how groups of children might be different
 - 'Are bilingual children as accurate in productions of English words as monolingual English speaking children?'
 - 'Does a child have a speech sound disorder?'
 - Describe severity of disorder
- Can help with item analysis
 - Might be able to inform us about variability of production within-child
- Need accuracy measures for statistical analysis for group analyses
 - Do children with small vocabularies have poor production skills relative to children with large vocabularies

Need for accuracy measures

- Manual calculations of accuracy are insufficient timeconsuming and prone to inaccuracies in calculation for large databases
- Need ways to efficiently calculate accuracy
 - Lots of computational power is required
- By child
 - Individuals or groups
- By target
 - Subsets of targets (real v. nonwords, 1 v. 3-syllables, iambs v. trochees, etc)
- By word-position onset/rhyme, coda consonants, even by features

Wishlist

- Reflect complexity of items produced
- Incorporate principles of markedness and normal development
- Variability in assigned values
- Account for all kinds of errors deletions, substitutions, additions
 - For consonants and vowels
- Useful for elicited samples and connected speech
- Validated, psychometrically sound
- Grounded in theory

What's available?

- Standardized tests of articulation
- Percent Consonants Correct (PCC)
 - and its variants (PCC-R, PCC-A, PPC)
 - (e.g., Shriberg et al., 1997)
- Phonological Mean Length of Utterance; Proportion of Whole Word Proximity
 - (Ingram & Ingram, 2001; Ingram, 2002)
- PPC Percent Phonemes Correct
 - (Dollaghan, Biber, & Campbell, 1993)
- DIY Excel

Percent Consonants Correct

- Scoring of a consonant segment is binary
 - Whether incorrect is omitted or differences in phonetic features
 - All consonants are treated equally
 - Omissions, distortions, deletions all rated equally
 - Common/uncommon substitutions/deletions counted the same
- Additions are not counted as incorrect
- Vowels aren't considered
- Word shape is not considered
- No way to differentiate noncompliance (refusal to name or repeat) from inaccurate production

PMLU and PWP

- PMLU = Phonological Mean Length of Utterance
 - Each segment produced by child gets a point
 - Up to number of segments in target word
 - Each correct consonant gets another point
 - □ 'cat' produced correctly would get 5 points
 - If child said [kati] it would still be 5 points
- PWP = Proportion of Whole Word Proximity
 - Child's PMLU/Target word PMLU
- PWC = Percent Whole Word Correctness
 - How many words in sample a child produces accurately

Limitations of PMLU/PWP

- Doesn't consider complexity of segments adjacencies or clusters, just total number of consonants and accuracy
- Does not address vowel accuracy
- PMLU doesn't track growth over time very well
 - □ (cf Taelman, 2005; Saaristo-Helin, 2009)
- PWP is better than PCC at information about word shape, but it doesn't differential common from unusual errors
- Not sure how these measures deal with distortions which are clinically relevant

The vision:

- A tool that allows us to conduct a more fine-grained analysis would allow
 - Differentiation of repeaters and non-repeaters
 - Following growth over time
 - A way to capture common v. unusual patterns
- Combine the power of Phon's powerful search abilities (e.g. to identify all aligned obstruent coda productions) with a calculator that will tell you quickly whether stops are produced more accurately than fricatives

Weighted Speech Sound Accuracy Measure - WSSA

- Adaptation of a measuredeveloped by Oller & Ramsdell (2006)
 - Designed for LIPP (Logical International Phonetics Program, Kim Oller)
- Kim Oller, Heather Ramsdell, Jonathan Preston, Mary Louise Edwards, Stephen Tobin
- Feature-based approach (grounded in phonetics/phonology)
- "Common" errors involve small penalties "Atypical" errors involve larger penalties (markedness, developmental patterns)
- Considers both consonants and vowels

Basics

- An algorithm based on two tiers
 - Word shape match and segment accuracy
- Assigns a value to a child's production based on its match to a target
- Two tiers of accuracy production
 - Global Structural Agreement Word shape match
 - Featural Agreement feature match at the segmental level
- WSSA = Global Structural Agreement x Featural Agreement
- Some principles are established for alignment
 - Matching nuclei, then consonants with minimal discrepanices and no reordering

Global Structural Agreement

- Number of aligned segments produced/total number of segments
- □ [da] / dog GSA Value .66
 - 2/3 segments produced
 - Reflects omission of final consonant
- ☐ [di] for 'kitty' GSA Value .5
 - 2/4 segments produced
 - Reflects omission of CV
- Additions are scored as 0
 - 'kog' -> [kagi] then total segments are 4 and target contained 3 segments, so GSA value is .75

Mean Featural Agreement

- Each segment receives a value for featural agreement
 - Consonants and vowels start with a value of 1 each
 - Deductions are made according to type of error
- Segment values are averaged
- This gives Mean Featural Agreement

$$MFA = .84 + 1 = 1.84/2 = .92$$

WSSA Weights: Consonants

CONSON	ANT FEATURE	Penalties
Manner	Huge Manner -uncommon errors, damaging to intelligibility	3333
(0.333)	Big Manner - Less common in phonological development	25
	Small Manner -Common errors in phonological development	1666
	Teeny Manner -minor phonetic errors	0833
Place (0.333)	Huge Place: -Uncommon, very damaging to intelligibility	333
	Big Place - Less common in phonological development	25
	Small Place - Typical errors in phonological development	1666
	Teeny Place -Phonetic errors in English, based on small changes in tongue placement.	0833
Voicing 0.333)	Huge Voicing -Uncommon	3333
·····	Small Voicing -Common	2222
	Teeny Voicing -Phonetic changes	1111

WSSA Weights: Consonants

For example: Place of articulation

Huge Place	333	Dorsal	↔	Labial Non-Glottal	
		Glottal	\leftrightarrow	Non-Giouai	
Big Place		Coronal	\leftrightarrow	Labial	
	25	Coronal	\rightarrow	Dorsal	
		Alveolar	\rightarrow	Palatal	
		Palatal	\rightarrow	Dental	
		Retroflex	\longleftrightarrow	Not Retroflex	
Small Place	1////	Linguadental	\leftrightarrow	Labiodental	
	1666	Dental	\leftrightarrow	Alveolar	
		Palatal	\rightarrow	Alveolar	
		Dorsal	\rightarrow	Coronal	
Teeny Place	0833	Bilabial	\leftrightarrow	Labiodental	
		Labialization			
		Blading			
		Tongue Advance/Retract			

WSSA Weights: Vowels

Vowel Feature	Weight		Example			
Height	Height 0.40		40	4 step height change	$/i/ \leftrightarrow [a]$ $/I/ \leftrightarrow [a]$	
		Big Height	30	3 step height change		
			20	2 step height change	/i/ ↔ [e]	
		Teeny Height	1	1 step height change	/a/ ↔ [ε]	
Advancement	0.40	Big Front	40	Front ↔Back	$/o/\leftrightarrow [e]$	
		Small Front	20	Front↔Central or	/i/↔ [ə]	
		E		Back↔Central		
Nasalization	0.1	Small Nasal	10	Not Nasal → Nasal	/a/ → [ã]	
Rounding	0.1	Small Rounding	10	Round ↔Not Round	$[c] \leftrightarrow [\Lambda]$	

Computational Example (WSSA)

Gloss	"	I	0		i	р	0	р	"
Target	/	1	а		i	а	а	р	/
Child Production	[j	а	j	i	р	а	р]

- Weighted Speech Sound Accuracy = Global structural agreement x Featural agreement
 - GSA = 1
 - MFA = .95
 - WSSA = .95
 - PCC = .40 and PWP = .63

Computational Example (WSSA)

Gloss	"	†	Φ	е	р	h	0	n	"
Target	/	†	3		f		0	n	/
Child Production	[k	ε		р		0	ŋ]

- GSA = .71
- MFA = .86
- WSSA = .6
- PCC = .25 and PWP = .55

Computational Example (WSSA)

Gloss	44	d	0	0)	"
Target	/	d	а	0)	/
Child Production	[g	а]

- GSA = .66
- MFA = .75
- WSSA = .57
- PCC = 0 and PWP = .4

Psychometric Information

- Validity
 - Correlates with existing measures of phonetic accuracy in toddlers and adolescents
 - Distinguishes productions by children with speech sound disorders and typically developing children
 - Sensitive to growth in phonetic accuracy as a child gets older
- Reliability
 - Between transcribers
 - Between different word lists

Phon implementation of WSSA

- Would work as a plug-in to Phon
- Will allow users to select participants, targets, and hopefully word position
- Implementing the measure in Phon would allow more users to validate the measure
 - Develop similar measures for other languages
 - Validate on larger groups of children

It could look like this...

Challenges

- Programming
 - Initial interface ②
 - Teaching a programmer about linguistics
- Measurement
 - How to differentiate weighting by word position
 - Consider prevocalic voicing and final devoicing
 - How to deal with stress placement errors
 - What about harmony or errors? Cluster reductions? Epenthesis? Fusion?
 - How to assess intermediate productions?
 - Allophonic variation?
 - Should consonants and vowels be weighted equally?
- Other languages Spanish

Where to go next?

- Implementing WSSA first
- Should weightings be adjustable/customizable?
- Feedback?
 - □ Utilith i
 - Adjustments?