

Learning paths in phonology Evidence from the CLPF database

Paula Fikkert Nicole Altvater-Mackensen

Introduction

- Many phenomena have been investigated in isolation
 - Acquisition of PoA
 - Acquisition of MoA
 - Acquisition of syllable structure
 - etc.
- Variation in development both in time and pathways for each of the phenomena
- But are these connected?

Outline

- Introduction
- Target language: Dutch
 - Syllables, Manner of Articulation, Sonority
- Child language: developmental paths
 - MoA, Clusters, Syllables
- Discussion and Conclusions

Different learning paths: examples

Consonant clusters

- All children start reducing clusters typically to the least sonorant consonant
 - Example: /blum/ > [bum]

Some children produce the cluster correctly (end state): /blum/ > [blum]

Different learning paths: examples

- But some children have intermediate steps
 - CG: /blum/ > [bjum] (max contrast within onset)
 - [C-Son]_{PoA}: /blum/ > /bυum/
 - L: /blum/ > [lum]
 - CvL: /blum/ > [bəlum]
- All roads lead to Rome

Questions

- Is the pathway chosen dependent on other developments?
- Do children who have PoA harmony within clusters also have more harmony otherwise in their system?
- Do children who chose a maximal contrast in onset clusters also show evidence for maximal contrasts in the development of other parts of the system?
- Do children who have L as an in-between-strategy also show more deletion as a solution for 'difficult' sound sequences?
- We have started investigating these questions related to MoA, syllable structure and word prosody, where dependency relations are likely to occur.

MoA, Sonority, syllable structure

- Sonority Sequencing Principle: P > F > N > L > G > V
- Onsets: preferably least sonorous
- Rhymes: preferably most sonorous
- Ideal syllable: CV: Plosive Vowel
- Syllable contact law:
 - C.C: some sonority distance is preferred (required in many languages) (Cson.Cobst), although Dutch also allows CVCobst.CobstV (pasta, klooster)
 - Word endings: contact law not applicable; extra position for coronal obstruents

Syllables and MoA

Target language

Manner of articulation

Dutch allows:

- Plosives (P): p b t d k
- Fricatives (F): f v s z χ
- Nasals (N): m n n
- Liquids (L): I r
- Glides (G): j υ

Syllables

- Onsets: (s)(Cobst)(L)
- Rhymes: VV, V(V)Cson, V(V)Cobst, V(V)CsonCobst
 - Nucleus: maximally two positions: VV or VCson
 - Coda: one position
 - Rhymes minimally are bipositional (*CV)
- Extrasyllabic position: in word-final position rhymes may be followed by an appendix with (one or two) coronal obstruents

Words

- The majority of words in Dutch consist of one or two syllables
- Most disyllabic words are trochaic

All data come from the CLPF Database

- Data from 12 Dutch children (6 in Groningen, 6 in Leiden)
- Aged between 1;0 and 2;0 at the start of a one-year-period of data collection

 Recordings bi-monthly at the children's homes (30-45 min)

Manner of Articulation

- Method:
- (a) Onsets in isolation
- (b) Codas in isolation
- (c) Word patterns: Selection of monosyllabic CVC- and trochaic CVCV-nouns resulted in 2122 CVC and 1030 CVCV words
- Every consonant was coded for its MoA: P (stop), F (fricative), N (nasal), L (liquid), G (glide)

Only the 'youngest' chidren:
 Elke, Jarmo, Robin, Tom, Eva and
 Noortje

Developmental paths of word onsets

Based on all word-initial onsets (including CV words) Essentially only based on stressed syllables

Markedness in onsets (MoA)

Least marked stop and least marked sonorant

where u = unmarked, m = marked

Perception

- In word learning and word comprehension tasks it seems indeed that plosives are the default (unmarked; unspecified) MoA
- A MP from unmarked stop to marked fricative is not noticed
 - boom 'tree' produced as 'voom' is not noticed (equal looking times)
- A MP from marked fricative to unmarked stop is noticed
 - vis 'fish' produced as 'bis' is noticed (shorter looking times to picture)
- Currently we are testing MP from stop to nasal and vice versa.

Perception methods

Markedness in representation (Perception)

- Explanation:
- Only marked features are present in the UR
- All features are perceived (in SR): features must be mapped onto UR
- Mismatch between perceived and stored features excludes the word for recognition.
- Mismatches only possible with marked features. Unmarked features are not present, and hence always lead to a No Mismatch.

Markedness in representation (Production)

- Only marked features are present in the UR
- Children may delete marked features, resulting in less marked productions, but do not often add features (more marked representations)
- Hence, fricatives may be produced as stops, but not vice versa.

Order of acquisition of Manner of Articulation in word offsets

- Final position: all children start with a (default) obstruent
- For some children this is the stop, but many prefer a fricative in word final position.
 - Those children show the typical error pattern: plosives produced as fricatives. They all usually produce plosives as well, but PVF is more frequent
 - Example: Elke's first recording session
 - 15 target plosives realized as fricatives (7), plosives (5), deleted (3)
 - 9 target fricatives: all realized as fricatives

Why obstruents? Against typology?

- All children first have obstruents, and only later nasals
- Universality? Many languages have restrictions as to what can occur in postvocalic position. Usually, if a language allows obstruents, it also allows sonorants, but not vice versa.
- Why obstruents acquired early for Dutch?
 - Very frequent in CVC words.
 - Difference between consonants in branching nucleus (always sonorants), and consonants in codas (can be both)
 - Codas are acquired first
 - Branching nuclei are acquired later (with VL contrasts)

Rhyme structure

CVC Word patterns

- Predominantly PVF words in the early stages for PVF targets and PVP targets.
 Markedness? No MoA contrast yet: obstruents are plosive in onsets and fricatives in codas (complementary distribution; allophones): OVO
- At this stage unfaithful manners are observed: target nasals and liquids may be produced as obstruents. Later unfaithfulness becomes rare
- Some children have a subsequent stage in which the two C's of the word have the same MoA: one MoA per word for Consonants
 - Example: Elke's second stage: FVF > NVN > PVP
- Subsequently, different MoA features appear in her words: PVF and PVP: Faithful productions of both stops and fricatives.
- Some children introduce MoA contrast first in initial position; others in final position (Noortje en Robin)

Some children start introducing contrasts in offsets

Initial position remains fixed; final position varies

Noortje and Robin

C1=C2	C2=stop	C2=fricative	C2=nasal	
C1=stop	PVP	PVF	PVN	
C1=fricative	FVP	FVF	FVN	
C1=nasal	NVP	NVF	NVN	

Some children start introducing contrasts in onsets

• Final position remains fixed; initial position varies

C1=C2	C2=stop	C2=fricative	C2=nasal	
C1=stop	PVP	PVF	PVN	
C1=fricative	FVP	FVF	FVN	
C1=nasal	NVP	NVF	NVN	

Order of acquisition of MoA

- Most children acquire MoA contrast in initial position before they acquire the contrast in final position
- Noortje and Robin introduce the contrast in final position.

Onset Clusters

- Two types
- Clusters obeying the sonority sequencing hierarchy (Obstruent -Sonorant)
- Clusters disobeying the sonority sequencing hierarchy (s-Obstruent)

Onset clusters (1): Obstruent - Sonorant

dr oo m

• Dutch allows the following onset clusters:

c1	р	b	t	d	k	f	V	S	Z	X
m								X		
n					X			X		
[X	X			X	X	X	X		X
r	X	X	X	X	X	X	X			X
υ			X	X	X				X	
j										

Onset clusters (2): /s/+obstruent

Generalizations

- /s/ plus voiceless stop
- If stop can be followed by a sonorant, this can be combined with /s/
- /k/ is replaced by $/\chi$ / (historical change)
- √sxl/ is not allowed

Some data (Robin): Obstruent-Sonorant

- plukken 'pick'
- [pykə] (1;10.20)
 - [pœkə] (2;03.21)
- slapen 'sleep'
 - [patə] (1;7.26)
 - [sapə] (2;04.28)

- brood 'bread'
 - [pot] (1;08.09)
 - [bot] (2;03.21)

Some data (Robin): /s/-Obstruent

- schoen 'shoe'
 - [pum] (1;7.12)
 - [sɔnə] (1;10.06)
- stoel 'chair'
 - [tu] (1;08.09)
 - [stu] (2;03.21)

- speeltuin 'playground'
 - [pitœyn] (1;11.06)
 - [speltœyn] (2;03.21)

Complex offsets

- Two types
- Sonorant-Obstruent
 - hand, eend, etc.
- Obstruent-Obstruent
 - kast, dicht, etc.

Offset clusters

- Two possible acquisition orders:
- - NC > CC
 - Robin, Noortje, Catootje, Tirza and Eva
- - CC > NC
 - Leonie, Tom, Jarmo and Elke
- Here, there seems to be a lot of variation. Why?

Rhymes

- Some children allow all sonorants to occur in nucleus: for example Jarmo.
 - Compensatory lengthening: If liquid is deleted, the vowel is often lengthened or diphthongized
 - Sonorants are acquired late, and are dependent on vowel length acquisition
- But some children do not, such as Robin: nasals seem part of coda (not nucleus).
 Robin acquires nasals early in coda position
- Also word medial N.C clusters are acquired early by Robin
- These children seem to end up with different syllable structures

Coda clusters

Robin and Noortje acquire 'coda' clusters earlier than onset clusters

 Leonie, Tom, Jarmo and Elke acquire onset clusters (CL-) before 'coda' clustera Frequency?

Correlations?

- Is it the case that children who introduce MoA in initial position have initial clusters before final clusters?
- And do children who introduce contrast in final position have final clusters first?
- Preliminary analysis suggests this, but exact analysis depends on
 - whether you take all child's production into account (including unfaithful productions)
 - focus on first faithful realizations

Noortje and Robin

- Add MoA contrast in word-final position first
- Have final clusters before initial clusters

They also:

- Have N-Obstruent before Obstruent-obstruent clusters in final position
- Have s-Obstruent clusters before Obstruent-Liquid-clusters
- What do these facts have in common? Are they related?

???

Beyond CV

- Noortje and Robin seem to build on a stable, more or less fixed CV pattern to which new structure is added
- CV + C, where MoA contrast are introduced in the final C
 - Giving rise to a onset-nucleus-coda syllable
- When final clusters are introduced, the peripheral consonant is in the appendix
- After the final appendix has been acquired, this seems to trigger the development of word initial s + CV cluster: where the appendix is at the word beginning

Discussion

- In general, the following generalization holds: if a child has sC- clusters then s/he also has final consonant clusters
- What do sC-clusters and final consonant clusters have in common?
 - extrasyllabic position: knowledge of extrasyllabic position enhances the acquisition of sC-clusters
 - sC- and CL- acquisition not related
 - CL- acquisition not related to final cluster acquisition
- Correlation with morphology? Too few cases in database
- Correlation with initial unstressed syllables? Not clear

Many questions:

- How can we exploit longitudinal databases/Phonbank to find correlations among different phenomena?
- How many data/children do we need to discover possible learning paths?
- Or do we use the database to build hypotheses and test them experimentally?

Thank you!

