VOICE OR VOT?

FKA: SYSTEMATIC AND INCIDENTAL SOUND ERRORS IN CHILD LANGUAGE PRODUCTIONS

Clara Levelt, Leiden University

Word forms in early child language

- □ Word forms in child language productions often deviate from their target adult forms.
- $\hfill\Box$ Deviations can be systematic or variable
- □ The big question: what is the source of these deviations in production?

Sources for deviations

- ☐ The lexical representation is incomplete
- ☐ The grammar interprets the lexical representation in an overly constrained way
- □ The phonetic encoding is flawed
- There are physical inabilities to execute the phonetic-articulatory plan
- ☐ Timing/planning problems can arise at different levels

Hypotheses

- [-representation]: default interpretations of representational gaps: systematic deviations
- [-grammar]: systematic deviation patterns, crosslinguistic variability possible, categorical deviations from target forms (also: regular correct productions!)
- □ [-phonetic]: non-categorical deviation patterns (p.e. durational aspects, timing errors)
- □ [-motor]: systematic inability to produce certain sound(combination)s.
- [-timing/planning]: variable deviations

Dutch stops

- □ Dutch is a pre-voicing language
 - voiced stops (b d): voicing lead of -4 ms
 - voiceless stops (p t): short lag VOT between 0-25 ms
- □ Table below from Kager et al. (2007)

	Voicing Lead	Short Lag VOT	Long Lag VOT
Dutch	-4 ms: b, d	0-25 ms: p, t	
German		16 ms: b, d	51 ms: p, t
English		32 ms: b, d	59 ms: p, t

Table 1: VOT in Dutch, German and English

Fikkert-Kager group results

□ Predominantly devoicing errors:

Examples of laryngeal errors in Robin's utterances

a.	douche	'shower'	tus	(1;10.21)
b.	dier	'animal'	tia	(1;10.21)
c.	beer	'bear'	pi	(1;7.13)
d.	bal	'ball'	pal	(1;7.13)
e.	baby	'baby'	pipi	(1;8.10)
f	thuis	'home'	dœvs	(1.5 10)

□ Error pattern is independent of Place of Articulation

Fikkert-Kager group results

□ Input frequency does not seem to play a role:

	Labials		Alveolars	
	p	b	t	d
types	151 (40.7%)	220 (59.3%)	104 (41.3%)	148 (58.7%)
tokens	1492 (30.9%)	3342 (69.1%)	1481 (13.6%)	9389 (86.4%)

Table 7: Distribution of voicing in child-directed speech from van de Weijer corpus

Dutch stops in acquisition

- □ Contrast that needs to be acquired:
 - phonology: [+voice] vs [-voice]
 - representation: monovalent [voice] or binary [±voice]
 - □ phonetically: -VOT vs. +VOT
- What is the source of voicing errors in Dutch (onset) stops?
 - representation (phonology)
 - initially no [voice] = default -voice
 - phonetic encoding
 - □ articulatory effort (Kager et al.)
 - initial preference for short lag VOT (in Dutch: voiceless stops)

Variability in stop-voicing

- Representational account seems to predict a categorical development:
 - □ initial devoicing, across the board
 - acquisition of [voice]: voicing, across the board for [voice] segments
- □ However: variable productions

Session	Robin.1990-03-21	Session	Robin.1990-03-2	
Inventory		Inventory		
Result format	All	Result format	All	
Result	Count	Result	Count	
b ↔ b	4	d ↔ d	6	
b ↔ p	6	d ↔ d	1	
b ↔ t	1	d ↔ t	3	

Effort today

- Get across the inkling: representation is OK but phonetic encoding needs to be worked out
- □ Data:
 - VOT measurements of longitudinal data
 - voiced and voiceless stops produced by Robin (1;5-2;5)
 - Production experiment
 - 9 two-year old Dutch children

/b/	/ n /						
/ /	/ 1	Tare	gers				
	/ /	`					
		le e					
Robin		b=b	b=p	Robin p		p=p	p=b
81189		-1.06		81189		1.68	
	boing	-3.54		100190	pappa48		-1.5
	bah2		1.29		pappa60	1.21	
221189		-1.9		240190		0.61	
71289		-5.79			paard29		
71289		-14.99			paard35	0.12	
	boom2	-1.26			pap34	0.81	
	bal	-23.68		210290	paard24	0.24	
201289		-11.26			paard25		-1.
	boom1	-17.53			paard31	0.74	
	boom2	-2.33			pet71	1.06	
	bad		0.69		pop74	0.59	
	bal	-2.24		70390	paard4	0.76	
	boing	-0.35			pappa22		-7.0
100190		-18.92			paard50		-3.0
	beer	-13.26			speen76		-1.4
	beer2		0.1		speen75		-1.9
	bad		0.47	210390			-0.2
240190		-6.22			plons44		-3.8
	bal		2.28		speen59	0.66	
	beer		1.54		pijn66	0.97	
	beer		0.56	100100	speen76		-1.0
	boom	-7.87		180490			-4.8
	boven1	-1.65			poppebuggy	0.91	
	boven2	-3.91			plukken	2.47	
	buiten		2.14		paardebloeme	0.34	
	bus		1.75		paardebloeme	2.89	

/b/ /p/ targets

- □ plot of the mean VOT values over time
 - mean VOT values are significantly different: p<.002
 - productions of /b/ seem to always have negative VOTs

/b/ targets

□ Both positive and negative values in session 070390

/b/ targets

□ Almost exclusively positive values in session 180590

Exclusively negative values from session 230790 onwards

/p/ targets

+VOT value increases, then decreases, no SD over

time

Increase occurs at the high point of b=p period.
Suggestive, but not significant at this point

/b/ /p/ targets

- □ Could /b/ and /p/ be represented differently?
 - Are the [p]s from /b/s phonetically different from the [p]s from /p/s?
 - \square Yes, in the first 8 sessions (13 p=p cases): p < .05
 - No in the next two sessions, no more b=p in last three sessions
 - Interestingly/puzzling:
 - in first 8 sessions
 - b=p mean VOT: 1.5 ms
 - p=p mean VOT: 0.79 ms
 - □ At high-point of b=p:
 - b=p mean VOT: 1.05 ms
 - p=p mean VOT: 1.7 ms

Conclusions /b/ /p/

- □ Target /b/ shows U-shaped development:
 - sessions 1-4: -VOT
 - sessions 4-9: variable VOT
 - session 10: +VOT
 - sessions 11-13: -VOT
- Means of VOT values for target /b/ and /p/ are significantly different from each other
- □ VOT values for b=p and p=p significantly different in first 8 sessions, switch in VOT at high-point of b=p.

Different representations?

/d/ /t/ targets

- □ plot of mean VOT values over time
- □ mean values differ significantly: p< .05

/d/ targets

 $\ \square$ more variability +/- VOT than /b/ in initial sessions

□ like for /b/, almost exclusively positive – but highly variable – VOT values in session 180590

/t/ targets

 \square Negative VOT values (8/25) in first 5 sessions

□ Increase in VOT value over time (significantly different first vs last sessions p<.001)

Conclusions /d/ /t/

- \square More variability in +/- VOT for /d/ throughout
- No significant difference between d=t and t=t anywhere
- No specific increase in VOT of [t] at high-point of d=t

Conclusions /d/ /t/

- \square Different representations for /d/ and /t/?
 - □ less clear, but still: different mean VOT values overall
- □ Possible account
 - /d/ targets are in 53/89 cases (60%) demonstratives, only 4/89 nouns!
 - □ +/- VOT variability can be tolerated in these items

Comparison /b//d/

- Development of /b/ and /d/ (mean VOT values) is pretty parallel!
- \Box /b/ is more "voiced" than /d/ (tolerance account)

Comparison /p/ /t/

□ Again: pretty parallel development!

- □ Significantly different VOT values final sessions (p<.002)
 - "Leiden" accent
 - tekenen (to draw) 🔊
 - kas'teel (castle) .
 - thuis (home)

Tentative conclusion

- □ There seems to be a representational difference between voiced and voiceless stops
 - voiced stops show parallel development
 - voiceless stops show different parallel development
- □ Initial negative VOTs for /b/ /d/ targets imply that articulation is not the problem,
- Phonetic encoding of phonological difference has to be figured out

VOT experiment: rationale

- □ If phonological representation is OK...
 - voiced stops have a [voice] representation
- □ but phonetic encoding is iffy...
- maybe, better performance with voiced consonants can be provoked in children's productions

Base-Berk & Golderick 2009 study

- Looked at influence of neighborhood density on production of VOT in adults
- Experiment 2: participant A has to tell participant B to click on one of three words that appear on screen:

Condition			
Context Condition	cod	god	yell
No Context Condition	cod	lamp	yell
No Competitor Condition	cop	lamp	yell

□ English: longer VOTs were expected

Results experiment 2

- VOT of words with minimal pair neighbors is significantly longer
- □ VOT increases even more if competitor is presented in context condition: context > no context > no competitor (82.5) (77.4) (72.4)

Increase seems very small...

- □ VOT increases with the same proportion across the three different places of articulation:
 - 68.9 ms versus 65.7 for /p/
 - \blacksquare 84.3 ms versus 80.3 ms for /t/
 - \square 95.5 ms versus 90.6 ms for /k/

Method

- □ Picture naming experiment, presented in PPT
- \Box 6 different minimal pairs /b/-/p/=b+ condition
- \Box 3 different minimal pairs /d/-/t/(x2) = d+ condition
- \Box 6 /b/ + 3 /d/ (x2) "no competitor" words
- □ context condition (b+)
- □ no-context condition (b-)
- practice session with individual pictures
- □ 9 two-year old children (4F, 5M)
- □ digital recording, files stored in PHON
- □ VOT analysis in PRAAT

Results

- \square 35 b+/d+ productions
- □ 29 b-/d- productions
- □ No significant difference between b+ and b- VOT values (b+ mean VOT -0.59, b- mean VOT -0.38)
- □ Significant difference between d+ and d- VOT values (p<.05, d+ mean VOT -1.33, d- mean VOT 3.2)

Discussion

- □ Why different outcomes for /b/ and /d/?
 - measured all productions of /b/ and /p/ targets:
 - significant VOT difference
 - measured all productions of /d/ and /t/ targets
 - no significant VOT difference!

Conclusions experiment

- ☐ If significant VOT difference between target voiced and voiceless plosives is present:
 - no significant VOT improvement can be provoked for target voiced plosives
- □ If no significant VOT difference is present:
 - VOT improvement can be provoked
- Implication: [voice] must be present in representation (in both situations)
 - otherwise no improvement/non significant difference would be expected

General conclusions

- □ Both sets of data seem to show the same thing:
 - different behavior of labial vs coronal plosives
 - possibly because initial /d/ words are more tolerant of VOT variability
 - an inkling that the phonological representation is ok: [voice] is present in the representation
 - significant VOT differences throughout developmental period, between (target) voiced and voiceless plosives, despite their being "incorrect" and/or variable, in Robin's case
 - significant VOT difference present OR significant VOT improvement possible, in experiment
- □ Source of voicing errors = phonetic encoding

THANK YOU!!

- and
 - Yvan!
 - □ The rest of the PHON team
 - the participating kids and their parents
 - □ the students who did the production experiment:
 - Andrea Spruijt, Conny van Paridon, Thijs Nielen
 - my PhD students, for discussions, coffee & tea
 - Marijn van 't Veer, Margarita Gulian, Kathrin Linke, Sita ter Haar
 - the funding agency

