Phonological development in Valley Zapotec

Joseph Paul Stemberger

University of British Columbia

July 27, 2010, Phon Workshop, St. John's

Acknowledgements

- Research supported by SSHRC (Social Science & Humanities Research Council, Canada)
 originally by a UBC Hampton Research Grant
- \Rightarrow also on the Zapotec project:
 - Felicia Lee (Florida)
 - Mario Chávez-Peón (UBC: just defended Ph.D.)
- and on other acquisition projects:
 B. May Bernhardt (UBC)

Research project

▷ First language acquisition in San Lucas Quiaviní Zapotec

- 🗞 Otomanguean language family
- ♥ Oaxaca, Mexico; 2000 speakers
 - ➤ + 2000 more in California
- ▲ a variant of Valley Zapotec
 - ✤ variants not 100% mutually intelligible
- monolinguals; some bilingualism 4;0+
 - ∞ also monolinguals age 60+

Goal of Project

- General acquisition at several levels □
 - ✤ Phonology (incl. phonetics)
 - ✤ Morphology (incl. interaction w' phonol)
 - 🔊 Syntax
- ⇔ Tasks
 - ▲ Naming (object & picture)
 - Description of video clips (verbs)
 - ♥ word-less story books (e.g., Frog)
 - 🔊 various other
 - Iimited spontaneous (below 5;0)

Participants so far

- ▷ Two-week field session each August, 5 years
 - Two "one-hour" sessions (usually), one week apart
- ▷ Age: as young as possible through 6;0
 - \clubsuit with a few older children for reference
- ⇔ So far
 - S1 children (ca. 5-10% of target group)
 - ✤ 8 children longitudinal over 5 years
 - ~130 hours of video
 - Only a few transcribed (Phon needed!)

Transcription

- ▷ Narrow phonetic transcription
 - perception-based transcription
 guided by waveform (& spectrogram)
 - ★ use only words with clearly identified lexical targets

This talk

- Quantitative examination of data for two monolingual Zapotec-learning children
 - \diamond one session each (1st session)
 - ▲ 1;11, male: Carlos
- rightarrow selected interesting topics
 - 🏶 variability in input
 - phonology-morphology interactions
 - ℜ features, clusters, feet, etc., & frequency

Preliminary

\Rightarrow Only two children

- 🗞 ¿age effects?
- € ¿effects of variability between children?
- ▷ Limited infrastructure on adult language
 - dictionary (9,000+ words) and grammar
 no source for token frequency counts
 - few detailed studies of phonetics
 Mario Chavez-Peón's Ph.D. research
 range of adult variation not fully known
 - - \succ so some "child errors" here ...

Why?

- ▷ Particular characteristics of the adult language
 - Cross-linguistically less common phenomena
 - 🔊 phonology
 - ✤ 4 voice qualities
 - stress and tone
 - consonant clusters with sonority plateaus & reversals (/mn, nd wbw, .../)
 - morphology: suppletive allomorphy of inflectional aspectual prefixes
 - Syntax: basic VSO word order

Why?

- Cross-language comparison of same or similar sound or sequence or structure
 - identify similar vs. different patterns
 - may help identify the factors responsible for particular patterns
 - \mathbf{x} by unconfounding variables
 - ✤ e.g., different adult inventories

Why? To evaluate theories.

▷ I use two:

- Solution local connectionist (interactive activation)
 - ✤ emphasizes role of processing
- Optimality Theory (OT)
 - ∞ based on local connectionist, except
 - \diamond non-quantitative constraint interaction
 - each constraint separate (no summing of difficulty/markedness)
 - constraints explicit rather than implicit in weights between units

Why local connectionist & OT?

- Both have mechanisms that can easily derive child output pronunciations on the basis of adult perceived forms
- ⇒ Both allow for detailed reasoning about causes underlying a given limitation in the output
 - OT is especially useful for identification of restrictions in output
 - \mathbf{N} due to explicitness
- All theories are useful only for reasoning, and predicting new data; all current theories are wrong in major ways (like all previous ones)

Another reason: Error-driven learning

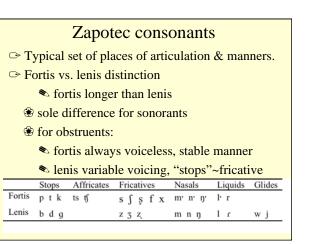
- In response to error, the system is altered to make (that same) error less likely on the next trial
 - Errors reveal that something is not working properly
 - changing the system may improve performance
- Changing the system when it's working properly, for other reasons, can cause u-shaped learning (increased error rate)

Why not usage-based & exemplar models?

- ▷ Don't account for basic child phonology.
- ▷ Assume: output closely based on perceived forms
 ❀ If hear *cat* [k^hæ:t]
 - ♥ predicted output [k^hæ:t]
 - \circledast ACTUAL for many very young children: [da:]
- \Rightarrow PROBLEMS:
 - \circledast can't derive from stored or generalization over inputs
 - \circledast must assume that phonological development is
 - outside the learning mechanisms of the system
 - \circledast error-driven learning not allowed

Frequency is important

- ⇔ type vs. token
- rightarrow level of element:
 - ∞ word, syllable, phoneme, feature, ...
 - ✎ contingent frequencies (e.g. /te/, /tu/, ...)
 - ★ neighborhood density (friends, enemies)
- rightarrow role of morphologically complex words
- rightarrow speech to child vs. speech by child
 - ♥ if error-driven learning
 - \diamond = exposure vs. number of learning trials

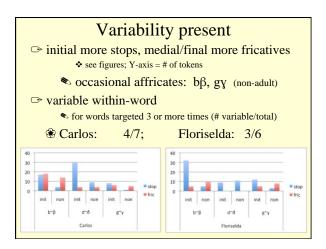

But frequency isn't everything

- G different initial states preadapt to different outputs
- ▷ complexity effects
- ⇒ error-driven learning effects
- ⇔ expect many differences even across adults
- ▷ look for effects that reflect frequency and for those that don't

Subperceptual differences incomplete neutralization covert contrast

Claimed to show that no deletion/substitution
 because traces of target

- ▷ Predicted by connectionist models (processing)
 - I fully gradient output
 - Second competing outputs never at zero amplitude
 - errors predicted to be lower amplitude than targets, so competitors have greater effect
- performance in the real world, not competence
 Whorf: meaning of "empty"; operational def.

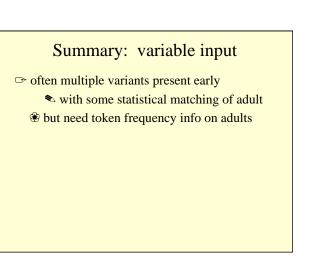

SLQZ monophthongs

- ∞ type frequency: 85% of stressed vowels
- ∞ all both stressed and unstressed
 - minimal reduction in unstressed
 - ➤ but shorter (cue to stress)
 - variation in input (stress; voice quality)
 - ▶ [i~I], [e~ε], [u~υ], [i~Λ]
 - \triangleright some adult words may be nonvariable
- ★ /i/ especially low-frequency
 - except in clitics (final unstressed)

Matching variability in input

- ⇔ Adult lenis "stop" varies with fricative
 - * b/ \dot{b} ~ β , d/ \dot{d} ~ð, g/g~ γ /x
 - exact statistics unknown
 - stops > 50% in word-initial \$
 - ♥ fricatives > 50% in medial & final
 - All words vary
 - 👟 as far as we know
- ⇒ Any variant matches adult; "correct".
- ⇒ When are all variants present?

Vowel variability


- ▷ Both "tense" and "lax" allophones present in both children
 - ℜ esp. matching adult tendencies
 - ❀ but particular words variable to some degree> as in adult speech
 - Solution Floriselda /njis/: $[i] > [i] > [\epsilon]$

Diphthongization □ adult before /nj/: /a/ → /ai/ ■ /ma?anj/ 'animal' [ma?ainj]~[ma?anj] □ both children produce both variants

- № 38% of tokens with diphthong
 ⇒ but also overgeneralize occasionally
 - Floriselda:
 - ✤ /ko'n:e?xwe?e/ 'bunny' [tɛ'nɛuk^weç]

❀ Carlos:

 /¹tʃaŋgo/ 'monkey' [dæoŋ] (unassimilated loanword)

phonology-morphology interactions

- \hookrightarrow common for e.g. English-learning children
 - Constraints on phonological output also on morphologically complex forms
 - ♠ no initial unstressed syllables (he went)
 - 🔊 no codas (played)
 - \mathfrak{B} competing outputs in different forms
 - stop vs. tap (*sit, sitting*)
 - different vowels (*fall, fell*)
 - \bullet overgeneralization of base elements
 - ✤ si[t]ing, falled

Zapotec rimes: V & C length C Vowel & consonant length is predictable to but moraic V short before (long) fortis C V long before (short) lenis C but in Sw, fortis C also short

	obstruent	sonorant	obstruent	sonorant
Final stressed	VC: V?-stop	VC:	V:C	V:C
Medial in Sw	VCV opaque	VC:V	V:CV	V:CV

Formal analysis

- ▷ S feet must be bimoraic
 - ♥ bimoraic V or moraic C

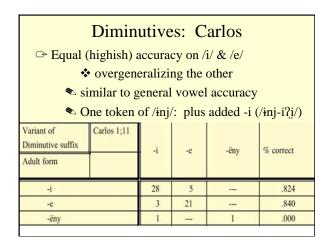
 \hookrightarrow Sw feet

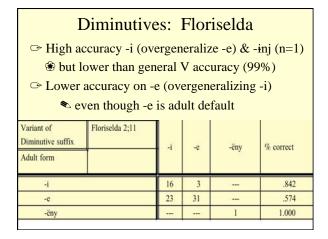
- \sim always same base morpheme as S
 - plus diminutive suffix or subject pronoun clitic
- \circledast vowel has same number of moras as in S
 - but bimoraic syllable not phonologically required in Sw
 - $\boldsymbol{\diamond}$ and so short non-moraic fortis obstruent

Length in final stressed

- ⇔ Carlos: all vowels short; pattern not acquired
 - ♥ 0% long before lenis
 - S 8% long before fortis
 - \circledast fortis consonants also usually short
- ⇒ Floriselda: partially acquired
 - ▲ 46% long before lenis
 - 8% long before fortis
 - Fortis C often long or [?] before stop (40%)

Length in stressed Sw: Carlos


- ▷ Carlos: all vowels short; pattern not acquired
 - ▲ 12% long before lenis
 - 17% long before fortis
 - fortis consonants rarely long or with [?](6%)


Length in stressed Sw: Floriselda

▷ Floriselda: partially acquired

- Short before short fortis
 - but 24% long before short fortis
- Tortis C often long or with [?] (51%)
- ➡ adult short V + short fortis unusual/opaque
 - ✤ 75% "regularized" to VC:V or V:CV

Diminutive suffix: -e?e				
⇔ Very frequent in child speech				
▲ 20-30% of all word tokens				
→ Adult: phonologically conditioned alternations				
♦ /i?i/ after palatal consonants				
plus epenthetic /j/ after ending in /i/				
✤ assimilate [+high]				
▲ /inj/ after other vowels (suppletive)				
✓ /e?e/ elsewhere				
> plus epenthetic /w/ after ending in /u/				
⇔ Child must learn conditioning				

alternations: summary

- ⇔ significant error rates
- ightarrow predictable length
 - \circledast overgeneralization of characteristics of base form
 - vergeneralization of V:CV output pattern
 not by 2:0
- → diminutive alternations
 - ¿Floriselda doesn't treat as assimilation?
 vorgeneralizes /i/-variant

Consonant features

- ▷ cross-linguistic comparison of some challenging sounds
 - ❀ challenging in Zapotec?
 - types of substitutions

Liquids: /lrr/

- \hookrightarrow challenging sounds cross-linguistically
- rightarrow neither child had the tap or trill
 - ❀ both had [1] in medial & final only

ightarrow initial

- variably [j] for all 3 (never [w])
- Floriselda also deleted some tokens (or [?])
- \circledast both showed some nasal harmony for /l/
- both sometimes had a uvular approximant
 not in adult Zapotec

Liquids: /lrr/

□> medial, final: [1] usually correct

- Carlos some medial /l:/ as [ð, ?], final as
 [n]
- \circledast Carlos /r/ as [1], or deleted, or harmony
- ❀ Floriselda one medial /r/ as [j]
- Floriselda final clusters /rj, l:j/ as [q^h, k, k^h]

⇒ similar to other reports

❀ tap as [1] reasonable

why uvular approximant?

- $rac{}$ may be uvular constriction in /l/, /r/
 - ✤ cross-linguistically; no data for SLQZ
 - even in light [1]
 - In for /r/, possibly tongue shape to facilitate finicky airflow for trill
- □> [j] if match [Coronal], [𝔅] if match [Dorsal]
 ▲ but [𝔅] would preserve uvular gesture, and child doesn't substitute
- doubtful if uvular constriction in adult [r]
 a puzzle

Velar Fronting

Common in English & German
 perhaps less common in Slavic languages

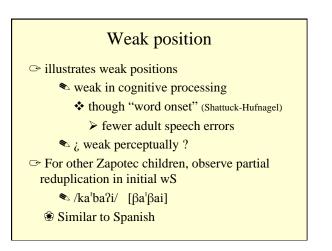
- Beckman & Edwards argued shouldn't happen in Japanese, where /k/ is more frequent than /t/
 - ✤ but has been reported for very young Japanese children
- ▷ Zapotec: / k, g / more frequent than / t, d/
 - 🗞 labial stops / p b / are intermediate
 - \circledast especially in initial unstressed syllables

Velar Fronting

- rightarrow Carlos: no fronting of / k, g /
 - \mathfrak{B} but some of / x, \mathfrak{y} /, which are less frequent
- ▷ Floriselda: some fronting
 - (stop only) 22% of /g/ in stressed syllables (stop only)
 - 100% of /k/ in initial stressed syllables
 * /ka'ba?i/ [ta'βai] (not assimilation)
 - 100% Labial Backing of / p, b / to [t, d] in initial unstressed syllables

Effects of morphology

- ▷ Freq. of velars even greater proportion in initial weak
 - \circledast esp. if count in progressive *ca*-
- ⇒ ¿should frequency of prefixes affect acquisition in single-morpheme wS?
 - Characteristics of single-morpheme forms affects morphology often.
 - Does the opposite happen? Have we observed this? Have we looked for it?


How to measure frequency

○ Anterior coronals are the most frequent place of articulation: high feature type frequency

measured across all 11 phonemes

- 44% of C's in onset of stressed syllables
 velars only 24%
- The but phoneme frequency of stops lower
- → Maybe: effect of feature frequency

 not contingent on co-occurring features, CV sequences, or position in word

Vowel accuracy in initial unstressed

- ⇔ Floriselda
 - resemblance to adult diminutive allomorphy
 - /a/ assimilates to following palatal consonant or front vowel: 14/19

 \clubsuit becoming [i/1] or [e/ $\!\epsilon$]

 ∞ infrequently happens elsewhere: 2/21

❀ /o/ is absent (before palatal, front V)
 ☆ always realized as [e] or [ɛ]

Weak position

○ Fronting and raising of /o a/ seems to be assimilation to [-back] or [Coronal,-ant]

¿error on relatively low-frequency targets?
[+low] .384, [Labial] .082

higher-freq default [+back] (.575) assimilates to lower-freq [-back]?

Developmental progression

\Rightarrow Vowel accuracy

- ✤ deletion of syllable
- > Carlos: /pe'lo?t/ → [pot]~[?ot]
- $\boldsymbol{\bigstar}$ lower accuracy of vowel features
- \clubsuit monophthongization of diphthongs

 $\circledast S > Sw > wS$

- **∞** *note*: wS = 44% of adult word types
 - ✤ not counting inflected verbs

➤ adds many wS, no Sw

ℜ Sw only diminutives, subject pronoun clitics

Trochaic vs. iambic

⇒ Adult phonology is equivocal

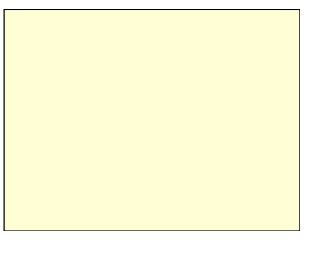
- wS in all single-morpheme disyllables suggests iambic
- Thávez-Peón: Sw works better
 - Short-V short-fortis pattern (/'bekwe?e/)
 - ★ if (w)S, leads to monomoraic foot [be]
- ❀ alternative in OT: coercible Sw

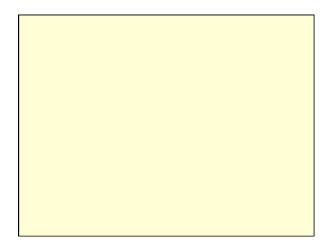
explanations

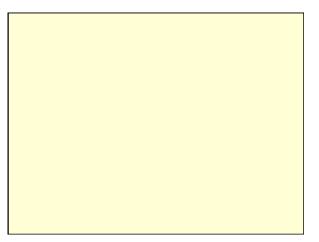
⇒ high token frequency of Sw

- ✤ but maybe only 50% more frequent
- high type frequency only if count verb +subject-pronoun-clitic as a "unit"
- earlier mastery of Sw
- ⇒ trochaic bias
 - ❀ innate, or
 - eriving from innate biases in perceptual processing

Conclusions about Zapotec


▷ variable input: children show multiple variants early


- rightarrow phonology-morphology interactions
 - Predictable V-C length acquired later
 - ♥ overgeneralize final-C characteristics to Sw
 - \sim overgeneralize long V before short C
 - $\boldsymbol{\circledast}$ diminutive allomorphy errors
 - cluster reduction & weak syllable deletion eliminate overt aspectual prefix marking


Conclusions about Zapotec

- \hookrightarrow Frequency effects all over
 - but lots of things counter to what expect by frequency
 - 🔊 modal voice quality
 - \sim V differences between children
 - ❀ feature frequency vs. phoneme frequency velar fronting
- ⇔ cross-linguistic similarities (liquids)
 - ❀ and differences (¿initial cluster reduction?)

X:tyoozënn yùad!

