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Abstract—Right Hemisphere Damage (RHD) can profoundly 

impact the melodic and rhythmic qualities of speech—collectively 

known as prosody—and lead to social communication difficulties. 

This study proposes a machine learning workflow to identify 

RHD-related paralinguistic deficits from single-source audio. 

Audio signals from the NIH-funded TalkBank RHD dataset were 

denoised, voice activity filtered, and normalized, and Mel 

Frequency Cepstral Coefficients were extracted. Multiple 

supervised learning algorithms (Support Vector Machine, 

Random Forest, Logistic Regression, and k-Nearest Neighbors) 

were then trained separately and evaluated. Among these models, 

the Support Vector Machine with a radial basis function kernel 

achieved the highest accuracy of 0.79, indicating that short, 

standardized speech samples contain diagnostic cues for RHD. 

The contribution of this study is that this is the first application of 

such methods on the dataset for the objective. This approach 

highlights the feasibility of automated, non-invasive detection of 

RHD and offers a promising direction for adjunctive clinical 

assessment tools.  

Keywords— Right Hemisphere Damage, Paralinguistic, 

Apragmatism, Speech, Classification, Machine Learning 

I. INTRODUCTION 

A. Background 

The right hemisphere of the human brain plays an important 
role in the melodic and rhythmic qualities of speech—often 
referred to collectively as prosody—as well as the ability to 
grasp context and implied meaning in conversation [1], [2]. 
When someone experiences right-hemisphere brain damage 
(RHD), they may develop “aprosodia,” where speech becomes 
monotonous or intonation sounds inappropriate, and they often 
struggle to interpret emotional tone [2]. About half of 
individuals with RHD exhibit some level of these 
communication difficulties, which can include problems 
understanding non-literal language (e.g., sarcasm, humor, or 
idioms) and organizing thoughts coherently during conversation 
[1][3][4]. 

Traditional clinical tests for RHD (e.g., RHLB, MIRBI-2) 
can help identify major prosodic or discourse problems, yet they 
can be somewhat limited in scope and might miss subtle changes 

[3][4]. These tools typically rely on human scoring and 
qualitative judgments, which makes the evaluation subjective 
and potentially time-consuming. By contrast, recent advances in 
computer-based analysis of speech have shown promise in 
automatically detecting subtle cues that might indicate specific 
types of language impairments [5][6].  

B. Objective 

This study aims to create and evaluate a machine learning 
approach for identifying RHD-related speech deficits from short 
audio samples. Specifically, we focus on extracting acoustic 
features known as Mel-Frequency Cepstral Coefficients 
(MFCCs) to capture the unique spectral characteristics of speech 
in individuals with and without RHD. We then compare multiple 
supervised classifiers (Random Forest, Support Vector 
Machine, Logistic Regression, and k-Nearest Neighbors) under 
a cross-validation framework that groups samples by individual, 
ensuring robust generalization. We experimented with FastICA-
extracted features and pitch contours, but they did not yield 
promising results. 

C. Significance 

Clinical detection of RHD currently depends on subjective 

and time-consuming assessments [3][4]. Having an automated 

tool could reduce evaluation time, streamline patient 

screening, and help in early intervention planning. Previous 

studies in stroke and speech-impairment research have 

indicated that machine learning approaches can reliably detect 

subtle communication deficits when properly tuned to acoustic 

markers [5][6]. Extending these methodologies to RHD offers 

a more comprehensive and non-invasive way to track changes 

in prosody and pragmatic skills, complementing existing 

clinical tests and enhancing overall patient care. 

D. General Layout 

 The remainder of this paper is organized as follows. Section 
II discusses the previous work in this domain. Section III details 
the methods used. Section IV presents the results, including 
confusion matrices, classification reports, and ROC curves for 
the models, as well as a discussion. Section V concludes the 
paper with the limitations, and possible future work. 

2025 Intermountain Engineering, Technology and Computing (IETC)

979-8-3315-1282-8/25/$31.00 ©2025 IEEE

20
25

 In
te

rm
ou

nt
ai

n 
En

gi
ne

er
in

g,
 T

ec
hn

ol
og

y 
an

d 
C

om
pu

tin
g 

(I
ET

C
) |

 9
79

-8
-3

31
5-

12
82

-8
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IE

TC
64

45
5.

20
25

.1
10

39
38

5

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on June 26,2025 at 12:41:10 UTC from IEEE Xplore.  Restrictions apply. 



II. PREVIOUS WORK 

A. Traditional RHD Classification and Deficits 

Clinicians have developed several RHD-specific assessment 
batteries, such as the Right Hemisphere Language Battery 
(RHLB), Mini Inventory of Right Brain Injury (MIRBI-2), and 
RIC Evaluation of Communication Problems in Right 
Hemisphere Dysfunction (RICE-3) [3]. While useful, these tools 
have notable limitations. They often focus on select components 
(for example, metaphors, affective prosody) and may not 
thoroughly evaluate pragmatic communication or non-verbal 
cues (gesture, facial expression) [3]. Consequently, subtle 
deficits can be missed—the tests may not be sensitive to mild 
pragmatic impairments, and scoring of discourse/pragmatics is 
often subjective [3]. In practice, clinicians must supplement 
these batteries with qualitative observation to fully capture 
RHD-related communication issues. 

B. Broader Stroke and Leison Classification 

 Contemporary machine learning methods offer several tools 
to detect RHD-related speech profiles. A crucial step is 
extracting acoustic features that reflect prosody and voice 
characteristics. Mel-frequency cepstral coefficients (MFCCs) 
are widely used features that encapsulate the spectral shape of 
speech; they have proven effective in many voice classification 
tasks, and are useful for RHD as well [6]. 

A variety of machine learning models have been employed 
for speech-based classification, and comparisons of their 
performance can guide RHD detection efforts. For example, one 
study found that SVM outperformed other machine learning 
models with an accuracy of 0.74, even beating a convolutional 
neural network(CNN) in most metrics [7]. 

A practical strategy is to begin with interpretable models like 
SVM or logistic regression using expert-crafted features (pitch 
statistics, MFCCs, etc.), and later compare against more 
complex models. As research advances, we expect comparative 
evaluations of models on RHD speech corpora to identify which 
algorithms yield the highest diagnostic accuracy. Early 
indications from related domains show that machine learning 
can reliably detect even subtle speech impairments, so with the 
right features and model tuning, it is feasible to classify RHD 
presence or absence from an individual’s speech profile. 

III. METHODS 

A. Dataset Sources and Description 

The dataset used in this project was obtained from the NIH-
funded TalkBank Right Hemisphere Damage (RHD) database 
[8]. Our curated set consisted of 32 high-quality audio 
recordings: 16 from individuals diagnosed with RHD and 16 
from healthy control subjects. Recordings were selected to 
exclude any files containing excessive background noise or 
significant audio artifacts, such as those introduced by Zoom 
recording software, thus preserving the integrity of subsequent 
feature extraction. 

To expand the dataset, each recording, which originally 
contained multiple sentences or conversational turns, was 
segmented into individual sentence-level clips. Speech was 
divided into segments of up to 7 seconds. If a continuous 

segment exceeded this duration, it was split into consecutive 7-
second clips. Recordings with less than 7 seconds of speech 
were zero-padded to reach the full duration. This preprocessing 
step increased the number of usable audio samples from the 32 
original 45-minute interviews to a total of 1,357 segmented 
clips. 

Crucially, speaker identity was preserved as a grouping 
variable to maintain evaluation integrity. No audio segments 
from the same individual were included in both training and 
testing sets, ensuring speaker-independent evaluation even after 
data expansion. 

While this segmentation approach increased the number of 
samples, it may introduce subtle bias. For instance, if a speaker, 
particularly of one gender, spoke for a longer duration, they 
would contribute more samples to the dataset. However, because 
the RHD and control groups included comparable numbers of 
male and female speakers, and average recording durations were 
similar across individuals, any major gender imbalance was 
minimized. Potential gender-related differences in speech 
duration or acoustic characteristics may still influence the 
models, and these effects are examined in the error analysis. 

B. Audio Preprocessing 

Audio signals were collected and stored in uncompressed 
WAV format (16-bit PCM). Each file was resampled to 16 kHz 
using the Librosa library in Python [9]. Prior to feature 
extraction, the audio underwent noise reduction by applying a 
spectral subtraction algorithm (via the noisereduce package) that 
attenuates stationary background noise [10]. Voice activity 
detection (VAD) was then performed with the WebRTC VAD 
algorithm , which adaptively filters out non-speech frames [11]. 
Specifically, 30 ms frames were iteratively classified as speech 
or silence under a moderate aggressiveness setting (level=2). 
Only the segments flagged as speech were retained, thereby 
reducing the influence of silence and background interference. 

To ensure consistent duration, the extracted speech segments 
were padded or truncated to 7 s per audio file. This standardized 
input length addresses potential variability in recording 
durations and prevents bias from longer samples. Each 
waveform was then energy-normalized by dividing samples by 
the maximum absolute amplitude, capping the sample values at 
-1 to 1. 

All methods were implemented in Python 3.9, with 
dependencies managed via pip. A high-level summary of the 
preprocessing and feature-extraction pipeline is as follows: (1) 
load and resample using librosa, (2) perform noise reduction, (3) 
apply VAD, (4) pad or truncate to 7 s, and (5) normalize 
amplitude. 

C. Feature Extraction with MFCCs 

Mel-Frequency Cepstral Coefficients (MFCCs) were 

chosen as the primary acoustic features for classification, given 

their widespread use in speech processing and robust 

performance in characterizing spectral envelopes [12]. A set of 

13 MFCCs was computed for each processed audio clip using 

a 25 ms Hamming-windowed frame with a 10 ms hop. The 

MFCC computation included a discrete cosine transform 

(DCT-II) on the log-Mel spectra. To obtain a fixed-length 
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feature vector, the mean and standard deviation of each of the 

13 MFCC coefficients across all frames were concatenated, 

yielding a 26-dimensional representation per sample (13 means 

and 13 standard deviations). These feature vectors, along with 

their corresponding class labels, were exported to a CSV file 

for downstream machine learning classification. 

D. Machine Learning Classification 

This study employed a group-based cross-validation 

procedure to train and evaluate multiple machine learning 

classifiers on the extracted MFCC features. All 

implementations were performed in Python 3.9 using scikit-

learn [13]. A CSV file containing MFCC feature columns, a 

binary class label, and a file path was loaded into a Pandas 

DataFrame. Because multiple audio samples could come from 

the same patient, each file path was parsed to extract a 

“group_id,” ensuring that data from the same individual were 

never split across training and test folds. The GroupKFold class 

from scikit-learn partitioned the dataset into k disjoint folds, 

keeping all samples of a given “group_id” together [13]. All 

MFCC features were standardized via z-score normalization. 

Four classifiers were compared under the same cross-validation 

scheme: (1) Random Forest, a bagged ensemble of decision 

trees, with n_estimators=100 and random_state=42; (2) 

Support Vector Machine (RBF), an SVM with a radial basis 

function kernel; (3) Logistic Regression, a linear method for 

binary classification; and (4) k-Nearest Neighbors (KNN), a 

distance-based classifier that labels test samples by the majority 

vote of their k closest training neighbors [13]. 

E. Evaluation Metrics 

 For each fold in the GroupKFold procedure, out-of-sample 
probability estimates were obtained via cross_val_predict using 
the method="predict_proba" option. These probabilities were 
then converted into binary predictions by applying a 0.5 
threshold. The performance evaluation focused on four main 
metrics. First, a confusion matrix was constructed to show 
counts of true positives, false positives, true negatives, and false 
negatives, illustrating the distribution of correct and incorrect 
predictions. Second, a classification report was generated to 
present precision, recall, and F1-scores for each class, along with 
the overall macro- and micro-averaged scores. Third, the 
accuracy of each model was calculated as the proportion of 
correctly classified samples across all predictions. Finally, 
receiver operating characteristic (ROC) curves were plotted by 
comparing the true labels to the predicted probabilities for the 
positive class, and the area under the ROC curve    (AUC) was 
computed to quantify discriminative ability [14]. A single 
combined plot was produced to visualize and compare the ROC 
curves and AUC values of all evaluated models. Once cross-
validation was complete, the best-performing classifier (based 
on accuracy) was retrained on the entire dataset, and both the 
trained model and the feature-scaling parameters were saved 
using Joblib for future use. 

IV. RESULTS AND DISCUSSION 

A. Results 

Table 1 presents the performance of four classification 

models evaluated on the segmented speech dataset: Random 

Forest, Support Vector Machine with Radial Basis Function 

kernel (SVM RBF), Logistic Regression, and k-Nearest 

Neighbors (k-NN). Performance metrics are reported separately 

for the Control and Afflicted classes, including precision, 

recall, and F1-score. In addition, overall accuracy (Accu) and 

area under the ROC curve (AUC) are provided for each model.  

Among all models, the SVM RBF classifier achieved the 

highest performance across multiple metrics. It yielded the 

highest overall accuracy of 0.79 and the highest AUC of 0.88, 

indicating superior discriminative capability. It also 

demonstrated strong performance on class-specific metrics, 

with F1-scores of 0.80 (Control) and 0.78 (Afflicted), and the 

highest recall for the Control class (0.83). Logistic Regression 

also performed well, achieving an AUC of 0.86 and balanced 

F1-scores of 0.78 (Control) and 0.77(Afflicted). Random Forest 

and k-NN classifiers performed moderately, with overall 

accuracies of 0.74 and 0.75, and AUC values of 0.83 and 0.81, 

respectively.  

     Figures 1–4 show the confusion matrices for each model. 

The SVM RBF classifier (Fig. 1) correctly identified 568 

control and 500 afflicted samples, achieving the best balance 

between sensitivity and specificity. The Random Forest model 

(Fig. 2) had higher misclassification rates, especially among 

afflicted samples. k-NN (Fig. 3) showed moderate 

performance, while Logistic Regression (Fig. 4) achieved the 

lowest number of false negatives, aligning with its strong F1 

scores in Table 1. 

     Fig. 5 shows the ROC curves for all models. SVM RBF 

achieved the highest AUC (0.88), indicating the best overall 

discriminative performance. Logistic Regression followed 

closely (AUC = 0.86), while Random Forest and k-NN had 

lower AUCs of 0.83 and 0.81, respectively, consistent with 

their performance in Table 1. 

 
Table 1. Model Performance 

Model 

Name 

Classification Metrics 

Control Afflicted Accu AUC 

Prec Rec F1 Prec Rec F1 

Random 

Forest 

0.73 0.76 0.74 0.74 0.715 0.73 0.74 0.83 

SVM 

RBF 

0.77 0.83 0.8 0.81 0.74 0.78 0.79 0.88 

Logistic 

Regression 

0.77 0.79 0.78 0.78 0.76 0.77 0.77 0.86 

k-Nearest 

Neighbors 

0.74 0.77 0.76 0.76 0.73 0.74 0.75 0.81 
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Fig. 1. SVM_RBF Confusion Matrix 

 
Fig. 2. Random Forest Confusion Matrix 

 
Fig. 3. KNN Confusion Matrix 

 
Fig. 4. Logistic Regression Confusion Matrix 

 

 
Fig. 5. ROC Curve 

 

B. Discussion 

     In this study, we demonstrated the feasibility of using 

MFCC extracted features and machine learning to detect right 

hemisphere damage (RHD) from paralinguistic speech 

characteristics. Using a consistent preprocessing pipeline and 

group-based cross-validation, we evaluated four classifiers. 

The Support Vector Machine (SVM) with an RBF kernel 

achieved the highest accuracy (~79%) and AUC (0.88), 

indicating MFCCs effectively capture acoustic markers of 

RHD. The observed accuracy (~74–79%) notably surpasses 

random chance (~50%), suggesting meaningful discrimination 

between RHD and non-RHD speech. 

     Precision and recall were balanced for both classes, 

indicating no significant bias toward healthy controls. For 

instance, SVM showed a recall of 0.74 and precision of 0.81 for 

the RHD class. Logistic Regression offered slightly higher 

recall (0.76) but lower precision, providing options for clinical 

scenarios based on acceptable false-negative or false-positive 

rates. 

     Our error analysis, stratified by gender (the only available 

demographic), revealed consistent performance across male 

(~80%) and female (~78%) speakers, with no systematic gender 

bias in classification errors. Maintaining gender balance during 

training likely encouraged the learning of gender-invariant 

features. Still, subtle gender-related acoustic differences, such 

as pitch, might influence model decisions. Future research 

should explicitly assess gender as a potential confounder or 

incorporate pitch-related features. 

     Clinically, these findings highlight the potential of a 

lightweight machine learning workflow as an adjunct tool for 

identifying individuals at risk for RHD-related communication 

impairments. Such automated screening, analyzing brief speech 

samples, could quickly flag patients who warrant detailed 

clinical assessments. This technology is intended as supportive 

decision-making assistance, objectively quantifying acoustic 

deviations and reinforcing clinical judgment rather than 

replacing expert evaluations. 

V. LIMITATIONS AND FUTURE WORK 

     Despite these positive outcomes, several limitations must be 

acknowledged. First, our dataset included a relatively small 
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number of unique speakers (32), limiting model 

generalizability and the diversity of captured speech 

characteristics. Expanding the dataset with additional 

individuals and more varied speech samples per speaker is 

essential for broader representation. Second, our analysis 

mainly focused on paralinguistic features (MFCCs) and did not 

explicitly capture other potentially informative linguistic or 

contextual cues relevant to RHD symptomatology. Notably, our 

preliminary attempts to incorporate pitch contours and features 

extracted via FastICA were not promising, possibly due to 

methodological issues or data limitations. Thus, future studies 

should revisit these prosodic features—such as pitch range, 

intensity variation, and rhythmic patterns—with refined 

extraction methods. Lastly, despite careful preprocessing steps 

(noise reduction, VAD, normalization), residual variability 

from recording conditions or microphone differences could still 

affect classification results. 

    Looking ahead, future research should prioritize dataset 

expansion by including additional samples from the broader 

TalkBank RHDBank corpus, covering diverse speakers and 

varied linguistic tasks. Further exploration of advanced feature 

extraction methods, particularly revisiting explicit prosodic 

cues and refining techniques like pitch contours or FastICA, 

may provide more comprehensive speech representations. 

Additionally, employing deep learning architectures (e.g., 

convolutional or recurrent neural networks) could potentially 

enhance performance given sufficient data. Pairing these 

models with explainability techniques—such as identifying 

critical frequency bands or prosodic elements indicative of 

RHD—will be crucial for clinical application. Pursuing these 

avenues promises improved diagnostic accuracy, greater 

clinical utility, and deeper insights into how paralinguistic 

signals reflect right hemisphere dysfunction. 
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