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Abstract 

Individuals with left-hemisphere damage (LHD), right-hemisphere damage (RHD), dementia, 
mild cognitive impairment (MCI), traumatic brain injury (TBI), and healthy controls are 
characterized by overlapping clinical profiles affecting communication and social interaction. 
Language provides a rich, non-invasive window into neurological health, yet objective and 
scalable methods to automatically differentiate between conditions with are lacking. This method 
aims to develop comprehensive neurolinguistic measures of these conditions, develop a machine 
learning multiclass screening and language assessment model (NeuroScreen) and offer a large 
comparative database of measures for other studies to build upon. We combined one of the largest 
databases, comprising 291 linguistic biomarkers calculated from speech samples produced by 
1,394 participants: 536 individuals with aphasia secondary to LHD, 193 individuals with dementia, 
107 individuals with MCI, 38 individuals with RHD, 58 individuals with TBI, and 498 Healthy 
Controls. Employing natural language processing (NLP) via the Open Brain AI platform 
(http://openbrainai.com), we extracted multiple linguistic features from the speech samples, 
including readability, lexical richness, phonology, morphology, syntax, and semantics. A Deep 
Neural Network architecture (DNN) classifies these conditions from linguistic features with high 
accuracy (up to 91%). A linear mixed-effects model approach was employed to determine the 
biomarkers of the neurological conditions, revealing distinct, quantitative neurolinguistic 
properties: LHD and TBI show widespread deficits in syntax and phonology; MCI is characterized 
by fine-grained simplification; patients with dementia present with specific lexico-semantic 
impairments; and RHD shows the most preserved profile. Ultimately, the outcomes provide an 
automatic detection and classification model of key neurological conditions affecting language, 
along with a novel set of validated neurological markers for facilitating differential diagnosis, 
remote monitoring, and personalized neurological care.  
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1 Introduction 

Language is a distinctively human cognitive system that enables individuals to communicate, share 
information, and socialize. It includes a complex interplay of spoken, written, and signed 
modalities, drawing on multiple linguistic subsystems, including phonology (the sound structure 
of words), morphology (the internal structure of words), syntax (rules governing sentence 
structure), semantics (meaning), and pragmatics (the social use of language) (Hornstein et al., 
2005; Levinson, 1983). Even simple tasks, such as ordering a meal, rely on the integration of these 
linguistic processes. Language is not only central to social participation but is also tightly linked 
to broader cognitive functions, including memory, attention, and executive functioning (Krakauer 
& Carmichael, 2017; Poeppel et al., 2008). Consequently, when language is disrupted due to 
neurological conditions such as left hemisphere damage (LHD), right hemisphere damage (LHD), 
dementia, mild cognitive impairment (MCI), or traumatic brain injury (TBI), the consequences 
extend beyond isolated cognitive deficits to independence, social participation, and overall quality 
of life. Yet, despite the critical role of language in human functioning, assessing and monitoring 
language functioning in clinical practice and properly treating it remains challenging. 

The distinct underlying pathologies of LHD, RHD, dementia, MCI, and TBI produce unique 
behavioral profiles by differentially affecting receptive and expressive language (Goodglass & 
Kaplan, 1979; Lezak, 1995) (Table 1). These can serve as early linguistic markers that characterize 
these patients (Obler et al., 1991). Neurological research has shown that LHD primarily impacts 
language and other cognitive functions (Fridriksson et al., 2018; Hillis et al., 2018; Sebastian et 
al., 2018). Right hemisphere stroke can impair spatial awareness, emotions, and nonverbal and 
pragmatic communication (Joanette et al., 2015; Minga et al., 2023; Riès et al., 2016; Stockbridge, 
Sheppard, et al., 2021; Turkeltaub, 2015). Both LHD and RHD can language deficits, but the 
specific nature of these deficits differs (Caplan, 1987; Goodglass, 1993; Patel et al., 2018; Sidtis 
& Yang, 2017). MCI, an early cognitive decline, is typically amnestic in nature (affecting 
memory), but also typically impacts language and other critical cognitive domains, such as 
attention, and executive functions (Kim et al., 2024; Lyketsos et al., 2002; Nordlund et al., 2005; 
Park et al., 2011; Petersen et al., 1999; Petersen et al., 2001). Dementia is a progressive 
deterioration of the brain health due to neurodegeneration, affecting multiple cognitive domains, 
such as memory, language, attention, and movement (Faroqi-Shah et al., 2020; Mesulam, 1982; 
Tsapkini et al., 2018). TBI is a heterogeneous disorder, resulting in open or closed head trauma by 
an external force, such as a blow to the head, a fall, a car accident, and a penetrating injury. It can 
range from mild (e.g., concussion) to severe, with varying degrees of physical, cognitive, 
emotional, and behavioral effects (Birch et al., 2024). 

Table 1 Comparative Table of Neurocognitive Conditions. Comprehensive comparison of five 
major neurocognitive conditions across key clinical and neurological characteristics. This 
comparative framework facilitates differential diagnosis and understanding of the distinct 
neuropsychological profiles associated with each condition.  
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LHD RHD TBI Dementia MCI 

(Typical) 
Etiology 

Stroke (other 
focal 
Tumor/Infection
) 

Stroke (other 
focal 
Tumor/Infection
) 

External Physical Force Proteinopathy 
(Amyloid/Tau
) 

Prodromal 
AD, 
Vascular, 
etc. 

Onset Acute Acute Acute Insidious Insidious 

Progression Stable / 
Improving 

Stable / 
Improving 

Stable / Improving (risk 
for later decline) 

Progressive 
Decline 

Variable 
(Stable, 
Improving, 
or 
Progressive
) 

Primary 
Neuropathology 

Focal Cortical 
Lesion 

Focal Cortical 
Lesion 

Focal Contusion and/or 
Diffuse Axonal Injury 

Amyloid 
Plaques & 
Tau Tangles 

Early-stage 
AD 
pathology 
common 

Hallmark 
Cognitive 
Deficit 

Aphasia, 
Apraxia 

Unilateral 
Neglect, 
Anosognosia 

Dysexecutive 
Syndrome, Post-
Traumatic Amnesia 

Episodic 
Memory Loss 

Episodic 
Memory 
Loss 
(Amnestic 
type) 

Hallmark 
Language/Com
m. Deficit 

Agrammatism, 
Anomia, 
Paraphasias 

Aprosodia, 
Pragmatic 
Deficits, 
Discourse 
Incoherence 

Disorganized/Tangenti
al Discourse, Pragmatic 
Deficits 

Anomic, 
“Empty” 
Speech 

Word-
finding 
difficulty, 
Reduced 
verbal 
fluency 

Awareness of 
Deficits 

Typically, 
Present (often 
distressed) 

Typically, 
Absent 
(Anosognosia) 

Often Absent 
(Anosognosia) 

Variable; 
Declines with 
progression 

Typically, 
Present 
(source of 
concern) 

Note: Conditions include Left Hemisphere Damage (LHD), Right Hemisphere Damage (RHD), 
Traumatic Brain Injury (TBI), Dementia of Alzheimer's Disease type (AD-Type), and Mild 
Cognitive Impairment (MCI). Clinical features compared include: Typical Etiology (underlying 
cause or origin), Onset pattern (acute vs. insidious), Disease Progression trajectory (stable, 
improving, or declining), Primary Neuropathology (underlying brain pathology), Hallmark 
Cognitive Deficit (characteristic cognitive impairments), Hallmark Language/Communication 
Deficit (distinctive language and communication problems), and Awareness of Deficits (patient 
insight into their condition, including anosognosia - lack of awareness of deficits). Technical 
terms: Aphasia (language impairment), Apraxia (motor planning deficits), Aprosodia (prosodic 
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speech deficits), Agrammatism (grammatical impairments), Anomia (word-finding difficulties), 
Paraphasias (word substitution errors), and Dysexecutive Syndrome (executive function 
impairments). 

Conventional language assessment tools  

Conventional language assessment tools, including structured tasks (e.g., Philadelphia Naming 
Test (Roach et al., 1996), Boston Naming Test (Kaplan et al., 2001), standardized batteries  
Western aphasia battery (revised) (WAB-R) (Kertesz, 2006), Quick Aphasia Battery (QAB) 
(Wilson et al., 2018) and the Boston Diagnostic Aphasia Examination (BDAE) (Goodglass et al., 
2001), and patient- and clinician-rated evaluations (Frattali et al., 1995; Holland et al., 2018; 
Swinburn et al., 2019), are widely used to support diagnosis and guide treatment decisions. These 
methods often provide a narrow window into specific abilities like object naming, overlooking the 
multidimensional nature of everyday communication. Furthermore, their time-intensive and 
stressful nature makes them ill-suited for widespread screening. Clinicians may instead use general 
neurocognitive screeners like the MoCA or MMSE (Ciesielska et al., 2016; Davis et al., 2021; 
Tombaugh & McIntyre, 1992), but these still require in-person assessment and may not be 
sensitive enough to detect subtle language impairments characteristic of conditions like mild 
cognitive impairment (MCI). This creates a critical challenge for early detection and prognosis. A 
powerful solution lies in combining large-scale language corpora with computational methods 
such as Natural Language Processing (NLP) and Machine Learning (ML). This approach can 
enable automated screening and provide a deeper, comparative understanding of these conditions 
against each other and normative data from healthy individuals. 

We address a critical limitation in neurolinguistics—the tendency to study conditions in 
isolation—by creating a unified analytical framework. Analyzing connected speech and 
discourse—how individuals use language in natural, extended communication—is widely 
regarded by researchers and clinicians as a best practice for assessing language abilities (Mueller 
et al., 2018). This approach captures real-world communicative competence and can reveal subtle 
linguistic deficits that standardized, isolated tasks often overlook. However, despite its advantages, 
discourse analysis remains underused in clinical practice due to its time-intensive nature, lack of 
scalable and standardized tools, and the manual effort required for transcription and coding (Stark 
et al., 2021). Moreover, traditional assessments are typically conducted in controlled clinical 
environments, which may not reflect an individual’s everyday communication patterns, thereby 
limiting ecological validity. Consequently, subtle or early-stage language impairments—
especially those associated with heterogeneous conditions such as mild cognitive impairment 
(MCI) or early dementia—often go undetected until more pronounced cognitive or functional 
decline is evident. 

Recent advances in artificial intelligence (AI), NLP, ML, and automated speech analysis 
have opened new possibilities for addressing these limitations. By leveraging AI-driven 
approaches to extract and quantify linguistic features from spontaneous speech, we and others have 
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demonstrated their potential for objective, reproducible, and ecologically valid measures of 
language production from transcripts or audio files (Kim et al., 2024; Themistocleous et al., 2018; 
Themistocleous, Ficek, et al., 2020; Themistocleous, Webster, et al., 2020). These computational 
methods can quantify automatically domains of language disorder—spanning lexical diversity 
(Fergadiotis & and Wright, 2011), phonological structure (Barbieri et al., 2018; Croot et al., 2000), 
morphological patterns (Badecker et al., 1990; Caramazza & Hillis, 1991; Fridriksson et al., 2018; 
Hillis, 1989; Hillis et al., 2018; Stockbridge, Matchin, et al., 2021), syntactic complexity 
(Bastiaanse, 2013; Caramazza & Hillis, 1989; Mack et al., 2021; Thompson & Mack, 2014; Wilson 
et al., 2016), semantic content, and readability (Dale & Chall, 1948; Fitzsimmons et al., 2010; 
Klare, 1974; Themistocleous, 2024)—represent a promising class of digital biomarkers with the 
potential to support early detection (Fraser et al., 2018; Themistocleous et al., 2018; 
Themistocleous, Eckerström, et al., 2020), differential diagnosis (Fraser et al., 2019; Kim et al., 
2024; König et al., 2015; Stark et al., 2025; Themistocleous, Ficek, et al., 2020), and ongoing 
monitoring of neurological conditions (Ahmed et al., 2013; Lavoie et al., 2023; Tuomiranta et al., 
2025). Despite that these studies demonstrates that automated language analysis holds significant 
promise as a digital health tool, several challenges must be addressed before it can be fully 
integrated into clinical practice.		

Automated language analysis is progressively recognized as a digital health tool (Beltrami 
et al., 2018; Fraser et al., 2015), yet its clinical translation is constrained by several critical gaps. 
For these computational tools to improve patient outcomes in a meaningful way, they must first 
move beyond the current landscape of proof-of-concept studies, which often use small, 
homogenous datasets from isolated clinical populations but rely on rigorous validation across 
large, diverse, and multi-condition populations is essential. This validation must also establish 
robust normative data from healthy controls, enabling clinicians to benchmark an individual’s 
performance to accurately assess pathology and severity. Also, the development of sophisticated 
computational pipelines must be paired with a focus on practical application: creating scalable, 
automated, and openly accessible tools that can integrate seamlessly into clinical workflows to 
reduce clinician burden and enhance diagnostic precision. Addressing these interconnected 
challenges is the essential next step toward realizing language as a clinically actionable digital 
biomarker. 

Study Aims 

This study has an overarching aim to advance a novel paradigm for neurological assessment to 
corroborate existing neurological assessments and to establish spoken language as a scalable and 
clinical digital biomarker by evaluate a comprehensive set of measures from the key linguistic 
domains, readability, phonology, morphology, syntax, semantics, and lexicon (Supplementary 
Data 1 offers a detailed description see also the Methods section).  

This provides a two-fold aim. The first aim is to develop a multi-class machine learning approach 
for neurological screening (NeuroScreen) that can discriminate patients from HCs and the subtype 
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individual patient subgroups from each other. Ultimately, the MLs aim to answer two primary 
research questions (1) How well do the models distinguish patients and healthy controls? And (2) 
How well does the ML model distinguish each sub-group in the data? By answering these two 
questions, we will be able to determine how well the models can be employed in real-life scenarios 
for detecting patients and in the clinic to subtype patients, and which of them with high confidence. 
To achieve aim we have developed an end-to-end AI-driven procedure to analyze a large and 
diverse database of over 9,900 speech samples based on an end-to-end ML model that combines 
NLP pipelines that employ Open Brain AI (Themistocleous, 2024), a platform we have developed 
to extract the linguistic features. Subsequently, we preprocessed and standardized the calculated 
measures and passed them to a set of ML models, namely Random Forrest, Support Vector 
Machine, Logistic Regression, and Deep Neural Networks. These models were tuned through 
hyperparameter tuning and evaluated.  

(2) The second aim is to provide explainable measures, namely the linguistic signatures of five 
major neurological conditions (LHD, RHD, dementia, MCI, and TBI). This is critical to 
understanding the effects of each condition on language and to providing therapeutic targets for 
novel clinical approaches. In other words, we will determine (1) Which linguistic measures differ 
most due to diagnostic groups? (2) Which are the distinctive features for each neurological 
condition compared to HC? And (3) What do language measures reveal for each patient group? 
To achieve this aim, we developed (generalized) linear mixed effect models while controlling for 
the effects of task and the participant. 

This computational approach moves beyond prior research by leveraging ecologically valid data 
from everyday communicative tasks to create a comprehensive, multi-faceted portrait of how 
language changes in response to brain injury and disease, aiding in differential diagnosis, 
particularly for disorders with overlapping symptoms like MCI and early dementia, and offering a 
non-invasive, low burden means for monitoring disease progression and treatment response over 
time. Ultimately, this research contributes to the digital transformation of clinical practice by 
providing a validated set of open-access linguistic biomarkers, this study creates new opportunities 
for remote, low-burden monitoring of neurological health, supporting a future of more accessible, 
data-driven, and personalized care. 

2 Methodology 

2.1 Participants 

The individuals for this study were drawn from Neural Databank collected and developed by the 
second author (Stark et al., 2023), now part of the Aphasia Bank, and data from the TalkBank 
consortium (https://talkbank.org), which following a similar protocol. Each clinical bank (e.g., 
AphasiaBank, RHDBank) has an established discourse protocol that elicits a variety of discourse 
genres (MacWhinney, 2025). 
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i. Aphasia Bank: The database contains spoken discourse samples from individuals with 
LHD and control participants, designed to study language production and its neural 
foundations. The research emphasizes connected speech (discourse) rather than single 
words or isolated sentences. Participants completed a full discourse protocol twice within 
a short timeframe to assess the test-retest reliability and stability of discourse measures. 
The participants contain both people with LHD (536 individuals) and HCs (359 
individuals) (Stark et al., 2023). 

ii. Right Hemisphere Damage Bank (RHD Bank): This is a specialized database focused on 
communication in individuals with RHD. The database serves as a resource for 
understanding and treating communication disorders following RHD, particularly focusing 
on pragmatic language abilities, discourse coherence, and real-world communication 
challenges (Minga et al., 2022). This bank includes 38 individuals with RHD and 40 
Healthy Controls. 

iii. Traumatic Brain Injury (TBI Bank): This is a multimedia database focused on studying 
communication disorders in individuals with TBI. TBIBank protocol includes discourse 
tasks such as the Cinderella story retell, following similar methodology to other TalkBank 
databases. The protocol consists of discourse genres including personal narratives, picture 
descriptions, story retelling, and procedural discourse. TBIBank is a longitudinal study in 
which brain injured people are videoed at 6 different time points post injury performing a 
uniform set of tasks, with the goal of identifying recovery patterns. The database enables 
automated language analysis, diagnostic profiling, comparative evaluation of treatment 
effects, and profiling of recovery patterns in TBI populations, supporting both research and 
clinical applications in understanding cognitive-communication disorders following brain 
injury. This bank includes 58 individuals with TBI. 

iv. Dementia Bank - Delaware MCI dataset: This corpus is part of DementiaBank and includes 
language productions by 71 adults with MCI, from the Delaware Corpus and Baycrest 
Centre Corpus. This data contributes to early detection of subtle changes in language and 
cognition and provide insight into MCI subtypes based on discourse profiles (Lanzi Alyssa 
et al., 2023). 

v. Dementia Bank - Pitt Study (Pitt Study): A comprehensive description of this dataset is 
provided in Becker et al. (1994).Briefly, the study includes a picture description task from 
the Boston Diagnostic Aphasia Examination (Goodglass & Kaplan, 1983), a widely used 
diagnostic tool for detecting language abnormalities. In this task, participants were shown 
the “Cookie Theft” picture stimulus and instructed to describe everything they observed. 
Their responses were audio-recorded and later transcribed verbatim. This study includes 
193 individuals with Dementia and 99 Healthy Controls. 
 

Table 2 Cognitive assessment tasks administered across diagnostic groups and research studies.  
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Diagnosis Task List 

LHD Cat, Cinderella, Flood, Important Event, Sandwich, Speech, Stroke, Umbrella, 
Window 

MCI Cookie Theft 

HC Cat, Cinderella, Cookie Theft, Flood, Illness, Important Event, Sandwich, Speech, 
Umbrella, Window 

MCI Cat, Cinderella, Cookie Theft, Rockwell, Sandwich, Umbrella, Window 

Dementia Cooke Theft 

HC Cookie Theft 

RHS Cat, Cinderella, Cookie Theft, Sandwich, Speech, Stroke 

TBI Brain Injury, Cat, Cinderella, Important Event, Recovery, Sandwich, Speech, 
Umbrella, Window 

Note: Cat = A description of a single picture, in which a cat is being rescued from a tree; Cinderella 
= retelling of the fictional narrative Cinderella, which is done after looking at a wordless picture 
book; Flood = A description of a single picture of a rescue during a flood; Important Event = a 
personal narrative about an important event; Sandwich = a procedural narrative describing how to 
make a peanut butter and jelly sandwich; Stroke or Recovery = A personal narrative about one’s 
brain injury and recovery; Umbrella = A multiple scene picture sequence, in which a boy and 
mother interact about taking an umbrella into the rain; Window = A multiple scene picture 
sequence, in which a boy kicks a soccer ball through a man’s window, shattering it; Cookie Theft 
= A description of a single picture, in which two kids steal a cookie; Rockwell = A description of 
a single picture, which is Norman Rockwell’s “Coming and Going”. 

This study presents a comprehensive analysis of linguistic measures across various 
diagnostic groups by combining data from multiple discourse tasks, extending beyond the 
conventional Cookie Theft picture description. Our primary analysis provides a consolidated 
overview of these linguistic features (Table 2; Supplementary Data 2, provides a more 
comprehensive data breakdown of Data Count by Group, Project, and Task). Recognizing that 
different tasks may elicit distinct communication patterns, we have preemptively accounted for 
potential task-specific effects within our statistical models by adding the task in the random effects. 
To ensure full transparency and to allow for a more granular examination of these variations, we 
provide a detailed breakdown of the linguistic signatures for each task in the Supplementary 
Tables. 
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Table 3 Participant demographics across diagnostic groups and research databases. The table 
presents sample sizes, mean ages, and educational attainment for participants in each diagnostic 
group across different research corpora. Age is reported as mean years (standard deviation). 
Education is reported as mean years of formal education (standard deviation) except for the MCI 
group where educational categories are presented as percentages. 

Diagnosis Project Speakers Age at Testing Education 

HC Aphasia Bank 359 56.89 (15.91) 15.91(2.64) 
 

RHD Bank 40 47.95(13.54) 17.09 (2.93) 
 

Pitt Study 99 63.7 (7.9) 13.9 (2.5) 

LHD Aphasia Bank 536 61.04(12.4) 15.7 (2.91) 

Dementia Pitt Corpus 193 71.0 (8.6) 12.2 (2.9) 

MCI Dementia Bank  71 

73.5 (8.03) 

PhD: 10.81%,  

Bachelor/MA: 67.57% 

Vocational Training: 21.62% 

RHD RHD Bank 38 57.4 (12.33) 17.10 (3.99) 

TBI TBI Bank 58 36.25 (13.47) 13.91 (3.05) 

Note: LHD: left hemisphere damage, RHD: right hemisphere damage, MCI: Mild Cognitive 
Impairment, and TBI: Traumatic Brain Injury. 

Participants participated in different tasks providing often more than one samples, the 
analysis is based on 9955 language samples drawn from multiple clinical databases produced by 
the individuals reported in  

Table 3 (see also, Table 2 and Supplementary Data: Table 1). These databases exhibit 
significant clinical heterogeneity. For instance, the LHD database contains participant groups 
classified by subtype, including anomic, Wernicke's, and Broca's aphasia. The Pitt study's 
dementia subgroup (N=193) further illustrates this diversity; it is composed primarily of patients 
with dementia (91%), who present with lower average Mini-Mental State Examination (MMSE) 
scores of 17–18, alongside individuals with MCI. We chose to incorporate these databases in their 
entirety for several reasons. This approach maintains the ecological validity of the data, ensuring 
our findings reflect the natural heterogeneity of clinical populations. Furthermore, it preserves the 
integrity of these standard corpora, which is crucial for the reproducibility and comparability of 
our results within the wider research community. 
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2.2 Measures 

Speech samples were analyzed using Open Brain AI (http://openbrainai.com; Figure 1), a custom 
clinical linguistics platform developed by the first author (Themistocleous, 2024) to facilitate 
automatic audio and linguistic analysis of texts. Unlike generic computational models, Open Brain 
AI was designed specifically for phenotyping of language features through a clinical lens, enabling 
hypothesis-driven research into speech pathology and neurogenic communication disorders. The 
platform calculates linguistic metrics in real-time as participants type or as clinicians transcribe 
speech samples, enabling immediate quantitative analysis of discourse features relevant to 
neurological conditions. Additional analysis modules accessible via the toolbar include syntactic 
complexity measures, semantic density calculations, and comparative normative data. This 
example demonstrates the platform's capability to automatically extract objective linguistic 
measures from naturalistic discourse samples, facilitating evidence-based assessment of 
communication disorders across various neurological populations. Open Brain AI executed a 
cascade of NLP techniques. Core NLP steps included tokenization (segmenting text into individual 
words or tokens), part-of-speech tagging (assigning a grammatical category to each token), and 
dependency parsing (identifying the grammatical relationships between words and the syntactic 
structure of sentences). For each extracted feature, both raw counts and ratios (to normalize for 
variations in text length) are computed. These quantitative linguistic data were automatically 
exported by our computational platform as spreadsheet files, ready for statistical analysis. 
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Figure 1 User interface of the Open Brain AI text analysis platform (Themistocleous, 2024) for 
neuropsychological assessment. The web-based platform provides real-time linguistic analysis of 
narrative discourse samples. The interface displays a text editor (top panel) containing a 
participant's narrative description of the “Cat Rescue” picture stimulus, commonly used in aphasia 
and cognitive assessment batteries. The lower panel shows automated lexical measures including 
character count (643), word count (161), sentence count (17), and function word analysis (93 total 
function words, ratio 0.578).  

From these foundational analyses, a comprehensive suite of linguistic measures was 
automatically extracted, quantifying aspects of (Supplementary Data 1 offers a detailed list of the 
measures): 

i. Readability. Readability of text productions in patients with is a measure that has been 
evaluated for the first time concerning all these conditions in this study. Metrics assessing 
text complexity and perceived ease of understanding for a reader. Readability metrics 
include the Flesch-Kincaid Readability Tests, Gunning Fog Index, and SMOG Index (Dale 
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& Chall, 1948; Fitzsimmons et al., 2010; Klare, 1974; Themistocleous, 2024) quantify how 
easy a text can be to be read and understood by a reader. It is typically influenced by factors 
such as sentence length, word complexity, and the overall structure of the text. Overall, we 
expect that patient speech should be simpler and more readable than that of healthy 
individuals.  

ii. Lexicon and Lexical Information. We have designed features related to the vocabulary 
richness, diversity, and usage within the text. This includes measures like Type-Token 
Ratio, counts of content versus function words, and average word length. These measures 
explain the distribution of words and relationships between types and tokens that can 
quantify how words are used in different contexts and how they contribute to the overall 
meaning of a text such as lexical diversity measures (Fergadiotis & and Wright, 2011).  

i. Phonology. Characteristics of sound structure, such as counts of words by syllable Number: 
(e.g., one-syllable, two-syllable words) and the distribution of various Consonant (C) and 
Vowel (V) syllable structures (e.g., CV, CVC, CCVC). We designed these measures to 
quantify how users employ speech sounds, the sound combinations, and the complexity of 
syllables. Comparing these measures across patients with different language impairments 
can reveal characteristics that pertain to the effects of impairment on the cognitive 
representation of sounds and speech production (Barbieri et al., 2018; Croot et al., 2000). 

iii. Morphology. Analysis of word structure, encompassing both the distribution of parts of 
speech (e.g., counts and ratios of nouns, verbs, adjectives, and adverbs) and inflectional 
categories (e.g., tense, Number: Gender: case). Morphological measures quantify the 
structure and form of words, the distribution of parts of speech, and inflectional categories, 
such as tense, Number, Gender, and Case. Comparing patients with morphology 
impairments can reveal pathologies, like agrammatism and anomia (Badecker et al., 1990; 
Caramazza & Hillis, 1991; Fridriksson et al., 2018; Hillis, 1989; Hillis et al., 2018; 
Stockbridge, Matchin, et al., 2021). 

ii. Syntax. Measures of sentence structure and grammatical complexity. This included 
quantification of various phrase types (e.g., Noun Phrases, Verb Phrases, Prepositional 
Phrases), analysis of core syntactic dependencies and relations (e.g., nominal subjects, 
direct objects, adverbial clause modifiers), and overall sentence complexity metrics (e.g., 
Average Sentence Length, T-units, and syntactic tree depth/Yngve load). These measures 
quantify impairments of sentence structure (e.g., subject-verb-object order), grammatical 
rules (e.g., agreement between subject and verb), and phrase structure (e.g., noun phrases, 
verb phrases) (Bastiaanse, 2013; Caramazza & Hillis, 1989; Mack et al., 2021; Thompson 
& Mack, 2014; Wilson et al., 2016). 

iii. Semantics. Primarily focused on Named Entity Recognition (NER), which involves 
identifying and categorizing named entities in text into predefined classes such as persons, 
organizations, locations, dates, and quantities. 

These grammatical analyses utilized the Universal Dependencies framework for 
standardized annotation (Nivre et al., 2020) and custom made metrics, which were systematically 
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selected using both established measures  based on established theoretical frameworks in clinical 
linguistics and their demonstrated sensitivity to pathological language changes in neurogenic 
communication disorders (like counts of nouns and verbs) and novel measures that aim to 
encompass microstructural elements (phonology, morphology), macrostructural components 
(syntax, semantics), and pragmatic dimensions. 

Thus, these measures aim to provide a comprehensive characterization of language 
impairments that aligns with current models of linguistic breakdown in clinical populations. By 
capturing this full spectrum of linguistic variation, the analysis framework enables detection of 
subtle but clinically significant changes that might be overlooked by assessments targeting only 
isolated linguistic domains. A complete list of all measures and their detailed operational 
definitions is provided in Supplementary Data 1. Given this large feature set, the analyses 
presented in this paper prioritize a subset of measures selected for their demonstrated high 
sensitivity and specificity in distinguishing between the diagnostic groups (LHD, Dementia, MCI, 
RHS, TBI) and Healthy Controls, as well as differentiating the clinical groups from one another. 
An exhaustive output of all statistical results for every measure is available in the Supplementary 
Materials. 

2.3 Machine Learning Pipelines 

 

Figure 2 NeuroScreen machine learning pipeline architecture for automated neurological 
assessment. The comprehensive workflow shows the development and validation of a diagnostic 
system that analyzes language production to distinguish between neurological conditions. Input 
data comprises speech and text samples from participants across six diagnostic groups: Left 
Hemisphere Damage (LHD), Right Hemisphere Damage (RHD), Dementia, Mild Cognitive 

Config & QC

Left Hemisphere Damage (LHD) 
Right Hemisphere Damage (RHD)

Dementia
Mild Cognitive Impairment (MCI) 

Traumatic Brain Injury (TBI) 
Healthy Controls

Linguistic
Signatures:

Lexicon
Phonology

Morphology
Syntax

Semantics
Readability

Loading the 
experiment 

configuration

Preprocessing Pipeline

SMOTE

RFLR SVM GB DNN

NeuroScreen

Language Production Tasks / 
Clinical Testing

Linguistic Feature Extraction
Speaker 

leakage checks

Drop corr. 
features

Imputation 
(train mean)

Standardizat
ion (z-score)

Dimensionality Reduction
PCA (95% variance)

Model Tuning

Hyperparameter 
Search

GroupKFold + 
Halving/Randomized

Model Evaluation

Data 
Collection

Feature 
Extraction 

Preprocessing 
Pipelines

M
od

el
in

g

Release

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.28.25334096doi: medRxiv preprint 

https://doi.org/10.1101/2025.08.28.25334096


Impairment (MCI), Traumatic Brain Injury (TBI), and Healthy Controls. Language production 
tasks undergo automated linguistic feature extraction across six domains: Lexicon (vocabulary 
richness), Phonology (speech sound patterns), Morphology (word formation), Syntax 
(grammatical structure), Semantics (meaning content), and Readability (text complexity). The 
preprocessing pipeline includes quality control checks, speaker leakage detection, correlated 
feature removal, mean imputation for missing values, z-score standardization, and principal 
component analysis for dimensionality reduction (retaining 95% variance). Five machine learning 
algorithms are systematically evaluated: Logistic Regression (LR), Random Forest (RF), Support 
Vector Machine (SVM), Gradient Boosting (GB), and Deep Neural Network (DNN). Model 
optimization employs hyperparameter tuning with GroupKFold cross-validation and 
randomized/halving grid search. Synthetic Minority Oversampling Technique (SMOTE) 
addresses class imbalance. The validated models comprise the NeuroScreen diagnostic tool for 
objective, automated neurological assessment based on quantitative linguistic analysis. 

We designed a machine learning pipeline to classify a speaker's diagnosis into one of six 
categories based on statistical features derived from language productions on tasks, namely patient 
with LHD, RHD, dementia, MCI, TBI, and HCs. The pipeline is designed to manage speaker-
dependent data, address class imbalance, and a provide comprehensive, comparative evaluation of 
multiple machine learning (ML) models, namely include Random Forest, Support Vector Machine 
(SVM), Logistic Regression, Gradient Boosting, and a Deep Neural Network (DNN). The entire 
process, from data preparation to model evaluation, was conducted in a Python environment 
utilizing pandas for data manipulation (McKinney, 2010), scikit-learn (Pedregosa et al., 2011) and 
imbalanced-learn (Lemaître et al., 2017) for machine learning algorithms. The deep learning 
component was build using Tensorflow (Abadi et al., 2016).  

1. Data Preparation and Cohort Definition 

The core of our methodology is built upon the principle of speaker-independent validation, which 
is crucial for developing models that can generalize to new, unseen individuals rather than 
memorizing characteristics of specific speakers in the training set. To facilitate this, a designated 
speaker identifier column was used to group data points belonging to the same individual. The 
dataset was then partitioned into features and the target variable.  

To ensure that the model evaluation provides a realistic estimate of performance on new 
individuals, a strict speaker-independent splitting protocol was enforced. The dataset was divided 
randomly into a training set (80%) and a hold-out test set (20%) using the GroupShuffleSplit 
strategy. This method guarantees that all data points from any given speaker are confined to only 
one of the sets (either training or testing), completely preventing data leakage between them. This 
approach is critical for assessing the model's ability to generalize beyond the specific speakers it 
was trained on. 

3. Preprocessing and Feature Engineering Pipeline 
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A multi-step preprocessing pipeline was applied sequentially to the data. Crucially, all 
preprocessing steps were fitted only on the training data to prevent information from the test set 
from influencing the training process. The same fitted transformers were then used to transform 
both the training and test sets. 

i. Missing values in the feature set were managed by imputing them with the mean of their 
respective columns, calculated from the training data. 

ii. To reduce multicollinearity and model complexity, highly correlated features were removed. 
A Pearson correlation matrix was computed on the training set, and for any pair of features 
with a correlation coefficient and we evaluated various threshold features, for correlations 
greater than 0.90, one of the features was discarded. 

iii. The features were standardized by removing the mean and scaling to unit variance using the 
StandardScaler (Pedregosa et al., 2011). This transformation ensures that features with larger 
scales do not disproportionately influence model training, which is particularly important for 
distance-based algorithms like SVM and regularization models like Logistic Regression. 

iv. Principal Component Analysis (PCA) was employed as the final feature engineering step. PCA 
transforms the standardized features into a smaller set of uncorrelated principal components. 
The number of components was chosen to retain 95% of the original variance in the training 
data, effectively reducing noise and the dimensionality of the feature space while preserving 
most of the relevant information. 

4. Model Training, Imbalance Handling, and Hyperparameter Optimization 

We have evaluated five distinct classification models to explore a range of algorithmic approaches: 
Logistic Regression (LG), Random Forest, Support Vector Machine (SVM) with an RBF kernel, 
Gradient Boosting, and a feedforward Deep Neural Network (DNN). We selected these models to 
allow for a comprehensive analysis of the dataset and selection of a model that explain the data. 
More specifically, the following models were selected:  

1. LG is a fundamental linear classification algorithm. It works by fitting a linear equation 
to the features and then applying a logistic function (or sigmoid function) to the output to return a 
probability between 0 and 1. This probability is then used to predict the class. LG serves as a 
baseline model (Hastie et al., 2009). 

2. RFs is an ensemble learning method; it constructs many individual decision trees during 
training. It can capture complex, non-linear relationships in the data without requiring explicit 
transformations. It is generally robust to overfitting, especially when compared to a single decision 
tree as it averages the predictions of many trees (Breiman, 2001). 

3. SVM models detect the optimal hyperplane (or decision boundary) that best separates the 
classes in the feature space. SVM can model both linear and non-linear boundary by mapping the 
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data into a higher-dimensional space, with good generalization performance on unseen data 
(Cortes & Vapnik, 1995). 

4. GB is another powerful ensemble technique like the RFs, which builds models 
sequentially. It starts with a simple model and then iteratively adds new decision trees that are 
specifically trained to correct the errors made by the previous ones. RFs, however, build trees 
independently and in parallel whereas GBs are sequential with an error-correcting approach 
leading to more powerful and flexible model (Hastie et al., 2009). 

5. DNN consists of an input layer, multiple “hidden” layers of interconnected nodes 
(neurons), and an output layer. The network learns to detect complex patterns and features by 
adjusting the connection weights between neurons during training. The DNN approach can 
uncover patterns in the data than the other, more traditional machine learning models might miss 
(Themistocleous, 2019). 

The data exhibited an imbalanced class distribution as there are fewer patients with MCI, 
RHD, and TBI, than patients with dementia, LHD, and HC. To mitigate the risk of models 
becoming biased towards the majority class, we integrated the SMOTE directly into our modeling 
pipeline (Chawla et al., 2002). For each model, a pipeline was constructed with SMOTE as the 
initial step. This approach ensures that over-sampling is performed correctly within each cross-
validation fold: SMOTE is fitted and applied only to the training data partition of a fold, generating 
synthetic samples for the minority classes before the classifier is trained. The validation partition 
of the fold remains in its original, imbalanced state, providing an unbiased evaluation of the 
model's performance. This in-pipeline application of SMOTE is crucial for preventing data leakage 
and obtaining a reliable estimate of model generalizability. We defined a custom DynamicSMOTE 
class to automatically adjust the k neighbors parameter, preventing errors in cross-validation folds 
where a minority class had very few samples. 

To identify the optimal set of hyperparameters for each model, we employed a hybrid search 
strategy using GroupKFold cross-validation (with 5 folds) to maintain speaker independence. For 
the traditional models (Logistic Regression, Random Forest, SVM, Gradient Boosting), we used 
HalvingRandomSearchCV. This efficient method starts by evaluating many hyperparameter 
combinations on a small subset of the data and iteratively prunes fewer promising candidates, 
allocating more resources to the best-performing ones.  

For the computationally intensive Deep Neural Network (DNN), we used 
RandomizedSearchCV to sample a fixed number of hyperparameter combinations from the search 
space. The performance of each combination was evaluated based on its default scoring metric. 
The best hyperparameters for SMOTE's k neighbors parameter were also determined during this 
search. The DNN architecture was also part of the hyperparameter search. Key parameters tuned 
included the number of hidden layers, the number of neurons, the dropout rate, batch size, and the 
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learning rate for the Adam optimizer. An “early stopping callback” was used to prevent overfitting 
by halting training when performance on the loss function stopped improving.  

6. Model Evaluation 
After hyperparameter tuning, the best-performing version of each model was evaluated on the 
completely unseen hold-out test set. Model performance was assessed using a comprehensive set 
of metrics to provide a holistic view of their classification capabilities: 

1) Accuracy is the percentage of predictions that were correct out of all predictions made. 
If your model correctly predicts 85 out of 100 cases, your accuracy is 85%.  

2) Balanced Accuracy solves this problem by averaging the accuracy within each class. It 
calculates the recall (true positive rate) for each class separately, then takes the average. 
In other words, the balanced accuracy is defined as the average of sensitivity (true-
positive rate) and specificity (true-negative rate) for the two classes in a binary 
classification “Patient vs. Healthy Control (HC)”, the Specificity (HC Recall) (1) and the 
Sensitivity (Patient Recall) (2) is calculated. Then the Balanced Accuracy is the sum of 
the Specificity and Sensitivity divided by two (2), the number of classes in a binary 
classification. 

Specificity =
number	of	true	HCs	correctly	predicted	as	HC

Total	number	of	HCs
(1) 

 

Sensitivity	/	Recall =
number	of	patient	samples	(any	subtype)	predicted	as	patient

Total	number	of	patient	samples
(2) 

3) F1-Score (Weighted) addresses the trade-off between recall (2) and precision (3). The 
F1-score is the harmonic mean of these two, giving you a single number that balances 
both concerns. The weighted version calculates F1-scores for each class and then 
averages them based on how many samples each class has, making it appropriate for 
imbalanced datasets. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 + 	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=
𝑎𝑐𝑡𝑢𝑎𝑙	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	𝑎𝑚𝑜𝑛𝑔	𝑎𝑙𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑜𝑛𝑒𝑠

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(3) 

4) Cohen's Kappa measures how much better your model performs compared to random 
chance. It is particularly valuable because it accounts for the possibility that some correct 
predictions might just be lucky guesses. Kappa values range from -1 to 1: 1.0: Perfect 
agreement beyond chance and 0.0: Agreement is no better than random chance; Negative 
values mean worse than random chance 
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5) AUC-ROC (Area Under the Receiver Operating Characteristic Curve). The ROC curve 
plots your model's true positive rate against its false positive rate across all possible 
classification thresholds. The AUC-ROC tells you how well your model can distinguish 
between classes. AUC = 1.0: Perfect classifier 

6) AUC-PR (Area Under the Precision-Recall Curve). ROC curves can often be optimistic 
on imbalanced datasets, precision-recall curves focus specifically on the positive class 
performance. This makes AUC-PR especially valuable when you care more about 
correctly identifying the minority class. The PR curve plots precision against recall at 
different thresholds. AUC-PR is particularly informative for imbalanced data.  

7) Confusion matrices were generated for each model to visualize the distribution of correct 
and incorrect predictions across the different classes. For tree-based models (Random 
Forest, Gradient Boosting), feature importance scores were calculated and visualized to 
provide insights into the most influential principal components for classification. Finally, 
the best overall model, along with the fitted preprocessing transformers, was saved for 
potential future deployment. 

2.4 Statistics 

To assess the influence of clinical diagnosis on each linguistic outcome variable, we utilized an 
automated mixed-effects modeling pipeline. This analysis included participants from the five 
diagnostic groups (LHD, Dementia, MCI, RHS, TBI) and the Healthy Control (HC) group. The 
pipeline, developed in R (R Core Team, 2025) was designed to be flexible, data-driven, and robust 
to violations of statistical assumptions common in linguistic data. 

For each linguistic variable, a mixed-effects model was implemented. Diagnosis was 
specified as a fixed effect to determine its influence on the outcome.  

As discussed earlier there is variation in the subgroups within the participants and the tasks 
they perform, to appropriately account for the non-independence of data arising from the study 
design, and given the complexity of the databases, two random intercepts were included in the 
model: 

1. The (1 | Speaker) term addresses that multiple observations (i.e., linguistic measures from 
one or more tasks) originate from the same individual. By including a random intercept for 
each speaker, the model accounts for individual-specific baseline differences in linguistic 
performance, thereby modeling the repeated measures dimension of the data. 

2. The (1 | Task) term addresses the inherent variability across different elicitation tasks (e.g., 
“Cinderella,” “Flood,” and “Cookie Theft,” as listed in Table 1). Given that the study 
design involved diverse groups of participants undertaking varying subsets of these tasks, 
this random intercept allows the model to estimate an average deviation from the overall 
mean for each specific task. This effectively controls for baseline differences in how tasks 
might elicit certain linguistic features, regardless of the speaker or their diagnosis. 
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These random effects structure is robust to the unbalanced nature of task administration (i.e., 
not all participants completed all tasks, and tasks were not fully crossed with participants). It allows 
for the estimation of the fixed effect of 'Diagnosis' while simultaneously partitioning out variance 
attributable to individual speakers and specific tasks. The general model structure was: 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒~𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 + (1|𝑇𝑎𝑠𝑘) 	+	(1|Speaker) (3) 

The analytical pipeline systematically selected the most appropriate statistical model based 
on the distribution of each dependent variable. This adaptive process involved fitting Gaussian 
Linear Mixed-Effects Models (LMMs) for continuous variables, using robust LMMs if residual 
diagnostics (via the DHARMa package (Hartig, 2016)) indicated violations of model assumptions, 
and employing Generalized Linear Mixed-Effects Models (GLMMs) with appropriate 
distributions (e.g., binomial, Poisson, or negative binomial) for binary or count data, including 
checks for overdispersion and zero-inflation. If a suitable model could not be fitted through these 
steps, a rank-based LMM was applied as a robust fallback. (Further details on the specific model 
selection criteria and R packages, such as lmerTest (Kuznetsova et al., 2016) and robustlmm 
(Koller, 2016). 

When a significant main effect of 'Diagnosis' was found (typically p<.05), post-hoc pairwise 
comparisons were conducted between all diagnostic groups using estimated marginal means (via 
the emmeans package (Russell, 2020)). Tukey's method was applied to adjust for multiple 
comparisons. Group means and confidence intervals are reported to aid in the interpretation of 
these differences. 

To create a ranked list of linguistic signatures, a key statistic from the post-hoc analysis of 
your mixed-effects models. A larger z-ratio indicates a more robust and statistically significant 
difference. It simultaneously accounts for the size of the difference and the precision of the 
measurement. We use the absolute value of the z-ratio for ranking because we are interested in the 
magnitude of the difference, regardless of whether a feature's value increased or decreased. This 
allows us to directly compare the most impactful features across all groups. The direction of the 
change (increase or decrease) is then indicated separately in the table with arrows. 

3 Results 

We examined the distinct linguistic production of each group on a comprehensive set of linguistic 
automated measures spanning lexical, morphological, phonological, readability, semantic, and 
syntactic domains.  

3.1 How well do the models distinguish patients and healthy controls? 
To assess how well the models distinguish patients and HCs, we have collapsed all five patient 
subtypes into one “Patient” group, and we can compute the results shown in Table 4. The plethora 
of available data for this classification enabled the models to perform exceptional well. LR is 
essentially perfect at flagging “Patient” vs. “HC” (balanced accuracy ≈ 99%). The DNN and the 
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SVM both perform close to 95% thresholds; the RF and the GB (were close to 90%). Taking the 
best models into account (LR, DNN, and SVM), two main findings are important first, all the 
models can be employed for distinguishing patients from HCs in a real-life environment and 
second that the measures we employed have discriminatory power. Although these are multi-class 
rather than pure HC vs. Patient, their reported AUC-ROC and AUC-PR reflect overall separability. 

Table 4 Model performance of the binary classification “Patient Group” vs. Healthy Controls. 

Model HC Recall 
(Specificity) 

Patient Recall 
(Sensitivity) 

Balanced 
Accuracy 

AUC-
ROC 

AUC-
PR 

LR 0.98 0.99 0.99 0.920 0.909 
SVM 0.93 0.98 0.96 0.970 0.972 
DNN 0.91 0.99 0.95 0.966 0.935 
GB 0.88 0.93 0.90 0.918 0.925 
RF 0.86 0.89 0.88 0.902 0.897 
 

3.2 How well does the ML model distinguish each sub-group in the data?  

Above we collapsed all patients into one group, to determine howe well the model identifies 
patients from HCs. In this section, we discuss the performance of the models as multiclass 
classifiers, to determine how well the model distinguishes each group from each individual 
subgroup.  

When examining the classifier’s performance on all categories, all models demonstrate robust 
performance with scores predominantly above 0.8 across most metrics (Figure 4 and 
Supplementary Data 4). For the detection of patients with LHD, all models excel here (F1 ≥ 0.92), 
with SVM slightly edging out the others (0.96) thanks to near-perfect precision (0.94) and recall 
(0.99). For patients with dementia LR is most balanced (F1 = 0.88), combining good precision 
(0.83) with high recall (0.94). The DNN overcalls patients (precision 0.61) despite high recall 
(0.98), yielding a lower F1. The detection of the HC within the LR again leads (F1 = 0.98), 
misclassifying only ~2 % of controls, while the tree‐based models lag (GB 0.85, RF 0.81). For the 
MCI, SVM outperformed the other models (F1 = 0.60) by balancing 0.63 precision with 0.56 
recall. The detection of minority classes was poor, namely patients with RHD (DNN, F = 0.56 and 
low precision 0.17) comes at poor and TBI (SVM, F1 = 0.58, combining 0.71 precision with 0.50 
recall). These suggests either both the need for more data or that language markers are overlapping 
so that the models are not discriminating these groups well. This will become evident from the 
following statistical analysis of markers associated with each condition in the following sections. 

To address the problem of the minority classes, we collapsed the patient categories with MCI, 
RHD, and TBI into a category “Other Neurological Conditions”. In this way, the model has an 
exceptionally good performance, allowing the detection of patients with Dementia, LHD, and HCs 
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and all the minority classes together. In this case, the model-specific performance across all 
categories. SVM demonstrates consistent performance with balanced precision and recall across 
LHD (precision: 0.94, recall: 0.99), Dementia (precision: 0.89, recall: 0.83), HC (precision: 0.94, 
recall: 0.93), and Other neurological conditions (precision: 0.94, recall: 0.72). In contrast, DNN 
exhibits perfect precision for LHD (1.00) but shows high recall sensitivity for Dementia (0.98) and 
Other Neurological conditions (0.93) at the cost of reduced precision (0.61 and 0.59, respectively). 
Support values indicate the sample sizes for each category: LHD (n=1173), HC (n=573), Other 
(n=211), and Dementia (n=47), with Dementia representing the smallest patient subgroup. 

 

 

Figure 10. Two-stage hierarchical classification system for distinguishing neurological patients 
from healthy controls and subsequent patient subgroup classification. The flowchart illustrates a 
binary decision tree where test samples are first classified as either patient or healthy control (HC), 
followed by multi-class classification of patient samples into specific neurological conditions. The 
first stage achieves high performance with F1 scores of 96% for patient detection. Patients are 
subsequently classified into Left Hemisphere Damage (LHD, F1 = 96%), Dementia (F1 = 86%), 
or Other Neurological Conditions including Mild Cognitive Impairment (MCI), Traumatic Brain 
Injury (TBI), and Right Hemisphere Damage (RHD) (F1 = 82%). 

3.3 Which linguistic measures differ most due to diagnostic groups? 

Healthy Controls (HC) served as the intercept, and the estimates for each diagnostic group (LHD, 
Dementia, MCI, RHD, TBI) represent the difference from this HC baseline. The analysis of 
various linguistic measures reveals that the diagnosis has a statistically significant and often 

Test Sample

Is it 
from a 
patient

?

No

Yes

LHD
(F1 Score: 

96%)

Dementia
(F1 Score: 

86%)

Other 
Neurological 

Condition (MCI, 
TBI, RHD)

(F1 Score: 82%)

Which 
group does 
the patient 
belong to?

HC Recall 
(Specificity)

Patient 
Recall 

(Sensitivity)

Balanced 
Accuracy AUC-ROC AUC-PR

LR 0.98 0.99 0.99 0.920 0.909

SVM 0.93 0.98 0.96 0.970 0.972

DNN 0.91 0.99 0.95 0.966 0.935

Best Model Performance on “Is it from a patient?”: 
Category Support Precision Recall F1-Score

SVM LHD 1173 0.94 0.99 0.96
Dementia 47 0.89 0.83 0.86
HC 573 0.94 0.93 0.94
Other 211 0.94 0.72 0.82

DNN LHD 1173 1.00 0.90 0.94
Dementia 47 0.61 0.98 0.75
HC 573 0.97 0.91 0.94
Other 211 0.59 0.93 0.72

Which group does the patient belong to?
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substantial impact across a wide array of speech and language characteristics provides the top 
features with the largest explanatory power related to neurological condition. The complete results 
are shown in Appendix 2.  

The strength of this impact, however, varies considerably among measures, as indicated by Partial 
Eta Squared (Partial η²) values for the Diagnosis and the Marginal R-squared (R² Marginal) for the 
overall fixed effects of the models is shown in Table 5. All p-values for the reported F-statistics 
are extremely small (e.g., p < .001), indicating high statistical significance for the effect of 
Diagnosis on these measures. Note that from the presentation below we have removed measures 
with extremely high Partial η² values but very low denominator degrees of freedom, suggesting 
their large effect sizes in this sample should be interpreted with caution due to potential model 
instability or low power for the inferential test despite the large point estimate of effect, also 
removed were measures with non-significant effects of diagnosis. 

Table 5 Measures ranked by effect size, highlighting Large and Robust Effect Sizes (Partial η² > 
0.15). The table presents the top 29 linguistic features ranked by partial eta-squared values, 
representing the proportion of variance in each measure explained by diagnostic group 
membership. Features are categorized into five linguistic domains: Morphology (word structure 
and grammatical forms), Lexicon (vocabulary and word usage), Phonology (sound patterns and 
syllable structure), and Syntax (grammatical relationships and phrase structure). F-statistics, 
degrees of freedom (Num DF = numerator, Den DF = denominator), p-values, partial η², and 
marginal R² values are reported for each measure. Morphological features dominate the top 
rankings, with Indefinite Count showing the largest effect size (partial η² = 0.29, F = 87.39, p < 
0.001), followed by Cardinal Number Count (partial η² = 0.26, F = 90.88, p < 0.001). Lexical 
diversity measures (Types, Content Words Unique) and phonological complexity features (CVCC, 
syllable patterns) also demonstrate substantial discriminative power. All reported features 
achieved statistical significance (p < 0.001) with effect sizes meeting the threshold for practical 
significance in neurological assessment. 

 
 Measure  Categor

y 
F  Num 

DF  
 Den DF  p 

value 
Partial η2 R2 

Marginal 
1 Indefinite Count  Morpho

logy 
 87.39   2.00   431.02  1.38E-

32 
 0.29   0.26  

2  Cardinal 
Number Count  

Morpho
logy 

 90.88   2.00   526.94  1.24E-
34 

 0.26   0.24  

3  Types  Lexicon  62.63   2.00   598.34  2.02E-
25 

 0.17   0.19  

4 CVCC  Phonolo
gy 

 63.29   2.00   630.04  8.96E-
26 

 0.17   0.20  

5  Number Plural 
Count  

Morpho
logy 

 56.81   2.00   568.22  3.22E-
23 

 0.17   0.19  

6 Content Words 
Unique  

Lexicon  57.43   2.00   577.53  1.79E-
23 

 0.17   0.18  
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7 Attribute Count  Syntax  67.64   2.00   683.24  1.57E-
27 

 0.17   0.24  

8 2 syllables word  Phonolo
gy 

 57.92   2.00   594.29  1.05E-
23 

 0.16   0.19  

9 Appositional 
modifier Count  

Syntax  41.96   2.00   431.04  2.24E-
17 

 0.16   0.21  

10 Degree Positive 
Count  

Morpho
logy 

 48.38   2.00   499.73  6.19E-
20 

 0.16   0.17  

11 Adjective Count  Morpho
logy 

 57.71   2.00   600.00  1.19E-
23 

 0.16   0.19  

12 Adjective 
Phrases  

Syntax  57.47   2.00   597.62  1.48E-
23 

 0.16   0.19  

13 Adjectival 
modifier Count  

Syntax  56.27   2.00   586.36  4.41E-
23 

 0.16   0.19  

14 Numeral Count  Morpho
logy 

 88.21   2.00   941.26  7.68E-
36 

 0.16   0.24  

15 Noun Count  Morpho
logy 

 52.31   2.00   570.44  1.39E-
21 

 0.15   0.17  

16 Expletive Count  Morpho
logy 

 16.51   2.00   180.42  2.61E-
07 

 0.15   0.11  

17 Syllables  Phonolo
gy 

 53.61   2.00   591.15  4.03E-
22 

 0.15   0.18  

18 CVC  Phonolo
gy 

 53.58   2.00   593.36  4.07E-
22 

 0.15   0.17  

19 Content Words 
Total  

Lexicon  51.06   2.00   576.36  3.82E-
21 

 0.15   0.18  

20 Total Characters 
in Text Letters 
Only  

Lexicon  51.64   2.00   585.38  2.22E-
21 

 0.15   0.17  

21 Corrected TTR 
CTTR  

Lexicon  82.39   2.00   937.05  1.09E-
33 

 0.15   0.20  

22  Prepositional 
modifier Count  

Syntax  51.04   2.00   581.51  3.78E-
21 

 0.15   0.18  

23  Prepositional 
Phrases  

Syntax  51.79   2.00   590.31  1.88E-
21 

 0.15   0.18  

24  Unclassified 
dependent 
Count  

Syntax  10.19   2.00   117.38  8.29E-
05 

 0.15   0.05  

25  Adposition 
Count  

Morpho
logy 

 51.23   2.00   593.33  3.00E-
21 

 0.15   0.18  

26  CV  Phonolo
gy 

 59.48   2.00   693.62  1.44E-
24 

 0.15   0.18  

27  Verb Phrases  Syntax  50.38   2.00   590.91  6.28E-
21 

 0.15   0.17  
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28  Direct object 
Count  

Syntax  46.34   2.00   543.58  2.62E-
19 

 0.15   0.17  

29  Words Tokens  Lexicon  49.53   2.00   582.53  1.36E-
20 

 0.15   0.17  

 

Diagnosis demonstrates a widespread influence on a multitude of linguistic measures. The 
strongest differentiating features (those with large Partial η² values and robust model fits) are 
concentrated in areas of semantic content (especially numerical and definiteness marking), overall 
lexical production and diversity, counts of various morphological categories (nouns, adjectives, 
plurals), and basic phonological/syllable structure counts. Additionally, measures of syntactic 
complexity and certain readability characteristics also show substantial impact. 

These findings highlight that the neurological conditions under study manifest with distinct 
and quantifiable linguistic profiles. The identified measures with the largest effect sizes are prime 
candidates for inclusion in diagnostic models or for tracking linguistic changes associated with 
these conditions. The high R² Marginal values for many of these top-ranking measures further 
underscore the explanatory power of Diagnosis in accounting for the observed linguistic variations. 
A substantial number of linguistic measures demonstrated large and robust effects of Diagnosis, 
indicating these are strong candidates for differentiating between the groups. These involve all the 
aspects of grammar like phonology, morphology, syntax and semantics, lexical usage, and 
readability that is text difficulty. 

Measures with Medium Effects (Partial η² ~0.06 - 0.13) 

Beyond the large effects, a broad range of other measures showed medium-sized effects of 
Diagnosis. These span across all linguistic domains, which we included like the total Number of 
Function Words (Partial η² = 0.14), phonology, such as the different syllable types, like VC and 
CCVCC (Partial η² = 0.14), morphology including the Number of Verbs (Partial η² = 0.14), syntax 
like the number of Complex thematic units (T units), the number of matrix sentences (Root), 
dependent clauses, and the object of preposition. As discussed below although the readability 
measures did not make it to the list shown in Table 5, several readability measures remain 
important as they achieve a Partial η² between 0.14 and 0.13; these include the Estimated Reading 
Time (sec), Smog Index, Total Classical Yngve Load, Difficult Words; the latter is a measure 
based on a standardized dictionary (Themistocleous, 2024). 

3.4 Which are the distinctive features for each neurological condition compared to HC? 

In this section, we summarize the high-level “linguistic signatures” that distinguish each group. 
Table 6 below synthesizes the results for each neurological condition, by highlighting the top ten 
(10) linguistic features that most strongly distinguish it from Healthy Controls by using the 
magnitude of the z scores from the post-hoc analysis (emmeans). The complete list of distinctive 
linguistic features is provided in the Supplementary Table 5. 
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Table 6 Top 10 distinctive linguistic features for each neurological condition compared to healthy 
controls. Features are ranked by absolute t-ratio values from post-hoc pairwise comparisons, 
identifying the most diagnostically discriminative linguistic markers for each condition. Upward 
arrows (↑) indicate significantly increased measures in patient groups relative to healthy controls; 
downward arrows (↓) indicate significantly decreased measures.  

Rank LHD Dementia TBI MCI Right 
Hemisphere 
Stroke 

1 ↑ Verb Type: 
Modal Ratio 

↓ CCVCCC ↓ Pron Type: 
Relative Count 

↓ Clausal 
modifier of noun 
Count 

↓ Degree: 
Comparative 
Count 

2 ↓ Complement 
of preposition 
Count 

↑ Dative Count ↓ CCVCCC ↓ 5 syllables 
word 

↓ Complement 
of preposition 
Count 

3 ↓ 5 syllables 
word 

↓ Degree 
Comparative 
Count 

↓ 5 syllables 
word 

↓ Case marker 
Count 

↓ CCVCCC 

4 ↓ Case marker 
Count 

↑ Verb Type: 
Mod Ratio 

↓ Degree 
Comparative 
Count 

↓ CCVCCC ↓ 5 syllables 
word 

5 ↑ CCCV ↓ Complement 
of preposition 
Count 

↓ Dative Count ↓ Dative Count ↓ Pron Type: 
Relative Count 

6 ↓ Pron Type: 
Relative Count 

↓ 5 syllables 
word 

↓ Complement 
of preposition 
Count 

↓ Complement 
of preposition 
Count 

↓ Degree 
Comparative 
Ratio 

7 ↓ CCVCCC ↑ Clausal 
modifier of noun 
Count 

↓ Clausal 
modifier of noun 
Count 

↓ Pron Type: 
Relative Count 

↓ Case marker 
Count 

8 ↓ Clausal 
modifier of noun 
Count 

↓ Pron Type: 
Relative Count 

↓ Case marker 
Count 

↓ Degree 
Comparative 
Count 

↓ Clausal 
modifier of noun 
Count 

9 ↑ Degree 
Comparative 
Ratio 

↑ CCCV ↑ Verb Type: 
Modal Ratio 

↑ Verb Type: 
Mod Ratio 

↑ CCCV 

10 ↓ Dative Count ↑ Case marker 
Count 

↓ Degree 
Comparative 
Ratio 

↓ CCCV ↑ Dative Count 

Note: Features are ranked based on the absolute t-ratio from post-hoc pairwise comparisons against 
the Healthy Control group. (↓) indicates a significant decrease and (↑) indicates a significant 
increase in the measure for the patient group compared to controls. LHD = Left Hemisphere 
Damage; TBI = Traumatic Brain Injury; MCI = Mild Cognitive Impairment. Linguistic features 
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span multiple domains including morphology (verb types, degree markers, case markers, dative 
constructions), phonology (syllable patterns: CCVCCC = consonant-consonant-vowel-consonant-
consonant-consonant, CCCV = consonant-consonant-consonant-vowel, 5-syllable words), syntax 
(clausal modifiers, complement structures), and lexicon (pronoun types).  

Several key patterns emerge from the statistical analysis. Individuals with LHD are 
characterized by a widespread disruption across multiple linguistic domains. While the most 
discriminating feature is an increased ratio of verb-modifying word types, the majority of the top-
10 features are decreases (↓), reflecting a reduction in phonological complexity (e.g., 5 syllables 
word, CCVCCC), syntactic structures (Complement of preposition ), and the use of specific word 
types (Pronoun Type: Relative Pronouns). Individuals with Dementia show a pattern of 
impairment that is also broad but appears centered on the use of specific content and function 
words (Verb Type: Modal) and a decrease relative to HCs on measures of phonological complexity 
(5 syllables word, CCVCCC). Individuals with TBI present a mixed profile of mostly decreases in 
its top features, suggesting a unique pattern of linguistic disruption with a notable increases in of 
ratio of Modal Verbs. Individuals with MCI is uniquely distinguished by a strong decrease in 
measures that associated with increased production complexity like five (5) syllable-words, 
syllables with complex articulatory patterns (CCVCCC, CCCV) and complex syntactic patterns 
such as the number of Clausal Modifier of Nouns and Complement of Prepositions. This pattern 
of decreased production in several of the top-ranking features supports the hypothesis that 
individuals with MCI more general disruptions in language and domains like memory that can 
explain their use of simpler patterns. Individuals with RHD shows the most subtle linguistic 
profile. Its top discriminators are related to the diminished production of the number Comparative 
Adjectives, Complements of Prepositions and complex syllable patterns (CCVCCC) and 
phonological structures (5 syllable-words). 

The primary linguistic signatures based on measures that resulted in statistical significance 
are described in the next section. 

3.5 What do language measures reveal about each patient group? 

The detailed statistical analyses reveal distinct linguistic profiles for each diagnostic group when 
compared to healthy controls. The nature of these differences—whether reductions in production, 
complexity, or alterations in proportional usage of linguistic features—varies by measure and 
group, underscoring the unique impact of each neurological condition on language processing. We 
present the results only for the measures that had an overall significant effect with large and 
medium effect sizes. For a comprehensive list of all statistical comparisons for every measure, 
please refer to the Supplementary Data 6.  

3.5.1 Lexical Markers 

Analysis of lexical features revealed distinct profiles across the diagnostic groups when compared 
to Healthy Controls (HC). The findings indicate that phonological impairments follow a severity 
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gradient, with LHD and individuals with TBI showing the most pronounced deficits, individuals 
with MCI displaying moderate impairments, and dementia and individuals with RHD maintaining 
relatively preserved abilities compared to healthy controls. 

 

Figure 3 shows key lexical measures selected based on the effect size (η2). 
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Figure 3 Distribution of key linguistic measures across neurological diagnostic groups. 
Violin plots display the probability density distribution of six fundamental linguistic features, with 
outliers removed using the interquartile range (IQR) method. Each violin shows the full 
distribution shape, with embedded box plots indicating median (white line), first and third quartiles 
(box boundaries), and range (whiskers). Red dots represent mean values for each group. Diagnostic 
groups include HC = Healthy Controls, LHD = Left Hemisphere Damage, Dementia, MCI = Mild 
Cognitive Impairment, RHD = Right Hemisphere Damage, TBI = Traumatic Brain Injury. The 
measures represent core aspects of language production: Content Words (Total) measures semantic 
word usage; Content Words (Unique) reflects lexical diversity; Corrected Type-Token Ratio 
(CTTR) quantifies vocabulary richness adjusted for text length; Number of Letters indicates 
overall text production; Number of Tokens represents total word output; Number of Types 
measures vocabulary breadth. Notable patterns include reduced lexical diversity in dementia 
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(lower CTTR and unique content words), variable text production across conditions (Number of 
Letters and Tokens), and preserved vocabulary breadth in some conditions despite reduced overall 
output. Healthy controls generally show the most consistent distributions, while neurological 
conditions exhibit increased variability and condition-specific patterns. These distributions 
demonstrate the diagnostic potential of quantitative linguistic analysis for differentiating 
neurological conditions based on language production characteristics. 

3.5.1.1 Individuals with LHD 
The LHD group demonstrated a consistent and statistically significant reduction in performance 
across nearly all measures of lexical productivity and diversity compared to healthy controls. This 
group produced significantly fewer total words (β = -69.67, p < .001), content words (β = -33.49, 
p < .001), and unique word types (β = -28.47, p < .001). Furthermore, their lexical diversity was 
significantly lower, as measured by the Corrected Type-Token Ratio (CTTR; β = -0.81, p < .001). 
An interesting exception was observed in Maas's TTR, where the LHD group scored significantly 
higher than controls (β = 0.007, p < .001), suggesting a more complex pattern of lexical usage. 

3.5.1.2 Individuals with Dementia 
The Dementia group exhibited a pattern of lower, albeit less pronounced, lexical performance. 
They showed a statistically significant reduction in average word length (β = -0.06, p = .011) and 
Corrected TTR (β = -0.13, p = .003) compared to the HC group. On measures of word productivity, 
such as the total number of content words or unique types, the Dementia group scored lower than 
controls, but these differences did not reach statistical significance (e.g., for unique content words, 
p = .126). 

3.5.1.3 Individuals with MCI 
The MCI group displayed a consistent and significant reduction in lexical productivity. This group 
produced significantly fewer total words (β = -58.59, p < .001), content words (β = -26.46, p < 
.001), function words (β = -30.12, p < .001), and unique word types (β = -14.36, p < .001) than 
their healthy peers. In contrast, their lexical diversity, as measured by the standard Type-Token 
Ratio (TTR), was significantly higher than the HC group (β = 0.02, p = .008). 

3.5.1.4 Individuals with TBI 
The TBI group showed a performance profile marked by significantly reduced lexical productivity 
but increased lexical diversity. They produced significantly fewer total words (β = -65.50, p < 
.001), unique content words (β = -15.10, p < .001), and unique function words (β = -4.30, p < 
.001). Concurrently, their TTR was significantly higher than that of the HC group (β = 0.04, p < 
.001), suggesting that while they produced fewer words overall, the vocabulary they used was 
more varied. 

3.5.1.5 Individuals with RHD 
Across all lexical measures analyzed, the RHD group’s performance was not statistically different 
from that of the healthy control group. The estimates for this group were consistently small and 
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associated with non-significant p-values (all ps > .14), indicating a comparable lexical profile to 
the healthy controls on these specific tasks. 

3.5.2 Phonological Markers 

Phonological measures relate to sound structures, syllable complexity, and word length in terms 
of characters and syllables. Individuals with different diagnosis differed in the number of 
distinctively characteristics measures. 

 

Figure 4 shows key lexical measures selected based on the effect size (η2). 
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Figure 4 Violin plots showing distribution density with boxplots and mean values (red diamonds) 
of phonology measures by diagnosis. Distribution of phonological complexity measures across 
neurological diagnostic groups. Violin plots display the probability density distribution of five 
phonological features that capture syllable structure complexity and phonological processing 
abilities, with outliers removed using the interquartile range (IQR) method. Each violin shows the 
full distribution shape, with embedded box plots indicating median (white line), first and third 
quartiles (box boundaries), and range (whiskers). Red dots represent mean values for each group. 
Diagnostic groups include HC = Healthy Controls, LHD = Left Hemisphere Damage, Dementia, 
MCI = Mild Cognitive Impairment, RHD = Right Hemisphere Damage, TBI = Traumatic Brain 
Injury. Phonological measures include CV (Consonant-Vowel) patterns representing the simplest 
syllable structure; CVC (Consonant-Vowel-Consonant) patterns indicating moderate complexity; 
CVCC (Consonant-Vowel-Consonant-Consonant) patterns reflecting higher phonological 
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complexity; Number of Syllables measuring overall phonological output; Number of Two-Syllable 
Words indicating specific syllable length preferences. Notable patterns include preserved simple 
syllable structures (CV, CVC) across most conditions, while complex syllable patterns (CVCC) 
show greater variability and potential reduction in certain neurological conditions. RHD and TBI 
groups demonstrate elevated usage of complex syllable structures compared to other patient 
groups, possibly reflecting compensatory strategies or preserved phonological complexity. These 
phonological measures provide insights into the articulatory and phonological planning abilities 
affected differentially across neurological conditions, complementing lexical and syntactic 
analyses for comprehensive linguistic assessment. 

3.5.2.1 Individuals with LHD 
Individuals with LHD had the most severe phonological impairments across virtually all measures. 
Significant reductions were observed in word production across syllable lengths, with 1-syllable 
words showing a 48.27-point decrease (p < 0.001), 2-syllable words decreasing by 15.47 points 
(p < 0.001), and 4-syllable words declining by 3.49 points (p < 0.001). Total syllable production 
was reduced by 107.13 (p < 0.001), and overall character output decreased by 391.83 characters 
(p < 0.001). Most syllable structures showed significant impairments, including CV patterns (β = 
-23.79, p < 0.001) and CVC patterns (β = -36.56, p < 0.001). Notably, individuals with LHD 
showed a rare positive effect in CCCV patterns (+0.92, p < 0.001). 

3.5.2.2 Individuals with Dementia 
Individuals with dementia showed relatively preserved phonological abilities compared to other 
groups. Most measures showed no significant differences from healthy controls, with p-values 
consistently exceeding 0.05. While numerical trends suggested slight reductions in some areas 
(e.g., β = -7.30 for 1-syllable words, β = -15.88 for total syllables), these differences were not 
statistically significant. 

3.5.2.3 Individuals with MCI 
Individuals with MCI showed moderate but consistent phonological difficulties across most 
measures. Significant reductions were found in 1-syllable words (β = -43.47, p < 0.001), 2-syllable 
words (β = -9.78, p < 0.001), and 4-syllable words (β = -1.58, p < 0.001). Total syllable production 
was reduced by 74.87 (p < 0.001), with character output decreasing by 302.66 characters (p < 
0.001). Several syllable structures showed significant deficits, including CV patterns (β = -15.64, 
p < 0.001) and CVC patterns (β = -22.47, p < 0.001). 

3.5.2.4 Individuals with TBI 
Individuals with TBI exhibited substantial phonological deficits similar in magnitude to LHD 
patients. Significant reductions included 1-syllable words (β = -48.52, p < 0.001), 2-syllable words 
(β = -12.38, p < 0.001), and 4-syllable words (β = -2.55, p < 0.001). Total syllable production 
decreased by 90.62 (p < 0.001), with corresponding reductions in character output (β = -342.62, p 
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< 0.001). Multiple syllable structures showed significant impairments, including CV (β = -19.18, 
p < 0.001) and CVC patterns (β = -28.61, p < 0.001). 

3.5.2.5 Individuals with RHD 
Individuals with RHD showed largely intact phonological functioning with minimal significant 
effects. Most measures revealed no significant differences from controls, suggesting that 
phonological processing remains relatively preserved following right hemisphere injury. Only 4-
syllable word production showed a small but significant reduction (β = -1.35, p = 0.020). 

3.5.3 Morphological Markers 
Morphology provides insights into how different patient populations structure their utterances at 
the word level. 
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Figure 5 shows the distribution of the morphological measures selected based on the effect size 
(η2). In the following, we discuss the part of speech measures first, and as we see the individual 
linguistic profile for each diagnostic group had significantly varied with high effect size for 
adjectives, expletives, nouns, and numerals.  

 

 

Figure 5 Distribution of morphological complexity measures across neurological diagnostic 
groups. Violin plots display the probability density distribution of nine phonological features that 
capture syllable structure complexity and phonological processing abilities, with outliers removed 
using the interquartile range (IQR) method: Cardinal Number (Count), ranging from 0-2; Definite 
vs. Indefinite Articles (Count), ranging from 0-15; Number of Adjectives, ranging from 0-10; 
Number of Adpositions (Prepositions/Postpositions), ranging from 0-20; Number of Expletives, 
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ranging from 0-4; Number of Nouns, ranging from -10 to 50; Number of Numerals, ranging from 
0-2; Plural Number Markers (Count), ranging from 0-15; and Positive Degree Markers (Count), 
ranging from 0-10. Each violin shows the full distribution shape, with embedded box plots 
indicating median (white line), first and third quartiles (box boundaries), and range (whiskers). 
Red dots represent mean values for each group. Diagnostic groups include HC = Healthy Controls, 
LHD = Left Hemisphere Damage, Dementia, MCI = Mild Cognitive Impairment, RHD = Right 
Hemisphere Damage, TBI = Traumatic Brain Injury. 

3.5.3.1 Individuals with LHD 
Individuals with LHD displayed a mixed profile. They showed a significantly lower ratio of 
adjectives, adverbs, conjunctions, and determiners. For example, the Adjective Ratio was 
significantly reduced (β = -0.008, p < .001). Conversely, they demonstrated a significantly higher 
ratio of nouns, proper nouns, and interjections. The proportional use of proper nouns, for instance, 
was markedly increased (β = 0.03, p < .001). 

3.5.3.2 Individuals with Dementia 
Individuals with dementia had largely comparable proportional use of morphology to HCs, with 
only a few exceptions, such as a higher ratio of nouns in the nominative case (β = 0.003, p = .017). 

3.5.3.3 Individuals with MCI 
Individuals with MCI showed significant differences on several ratios. They used a lower 
proportion of adverbs (β = -0.008, p < .001) and coordinating conjunctions (β = -0.005, p = .023) 
but a higher proportion of plural nouns (β = 0.004, p = .025) and nouns in the accusative case (β 
= 0.002, p = .007). 

3.5.3.4 Individuals with TBI 
Individuals with TBI also exhibited a mixed pattern. They showed a significantly lower ratio of 
coordinating conjunctions (β = -0.009, p < .001) but a higher ratio of nouns in the accusative case 
(β = 0.003, p < .001) and words with perfective aspect (β = 0.004, p < .001) and passive voice (β 
= 0.002, p < .001). 

3.5.3.5 Individuals with RHD 
Individuals with RHD was again broadly like HCs, though they showed a significantly lower use 
of second-person pronouns (β = -0.006, p = .001) and a higher use of first-person pronouns (β = 
0.007, p < .001). 
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3.5.4 Syntactic Characteristics 

Syntactic measures evaluate sentence structure, complexity, and the use of different phrase and 
clause types. 

 

Figure 6 shows the distribution of the key syntactic measures by diagnosis selected based on the 
model’s effect size (η2). 
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Figure 6 Violin plots showing distribution density with boxplots and mean values (red diamonds) 
of syntactic measures by diagnosis. Each violin shows the full distribution shape, with embedded 
box plots indicating median (white line), first and third quartiles (box boundaries), and range 
(whiskers). Red dots represent mean values for each group. Diagnostic groups include HC = 
Healthy Controls, LHD = Left Hemisphere Damage, Dementia, MCI = Mild Cognitive 
Impairment, RHD = Right Hemisphere Damage, TBI = Traumatic Brain Injury. 

These findings reveal a clear hierarchy of syntactic impairment severity, with LHD and 
individuals with TBI showing the most pronounced deficits, individuals with MCI displaying 
moderate impairments, and dementia and individuals with RHD maintaining relatively preserved 
syntactic abilities compared to healthy controls. 
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3.5.4.1 Individuals with LHD 
Individuals with LHD demonstrated the most severe and comprehensive syntactic deficits across 
virtually all measures. Significant reductions were observed in phrase-level structures, including 
adjectival complements (β = -1.12, p < 0.001), adjectival modifiers (β = -2.63, p < 0.001), 
adjective phrases (β = -3.93, p < 0.001), and adverbial phrases (β = -6.52, p < 0.001). Sentence 
complexity was markedly reduced, with average sentence length decreasing by 2.45 words (p < 
0.001) and average tree height declining by 0.75 units (p < 0.001). Complex syntactic structures 
showed substantial impairments, including total complex nominals (β = -11.21, p < 0.001), 
prepositional phrases (β = -8.46, p < 0.001), and total dependent clauses (β = -2.06, p < 0.001). 
Interestingly, individuals with LHD showed compensatory increases in certain simpler structures, 
including compound modifiers (β = 1.91, p < 0.001) and appositional modifiers (β = 0.94, p < 
0.001), suggesting possible strategic shifts toward less complex syntactic patterns. 

3.5.4.2 Individuals with Dementia 
Individuals with dementia demonstrated relatively preserved syntactic abilities compared to other 
groups, with most measures showing no significant differences from healthy controls. While some 
isolated significant effects emerged, such as reduced adverbial clause modifier ratios (β = -
0.00216, p = 0.007) and prepositional modifier ratios (β = -0.00389, p = 0.022), the overall pattern 
suggested substantially better preservation of syntactic structure compared to LHD, TBI, and MCI 
groups. 

3.5.4.3 Individuals with MCI 
Individuals with MCI showed moderate but consistent syntactic difficulties across many domains. 
Significant reductions were found in adjectival complements (β = -1.16, p < 0.001), adjectival 
modifiers (β = -1.65, p< 0.001), and adjective phrases (β = -2.60, p < 0.001). Sentence length was 
modestly reduced (β = -0.42 words, p = 0.020), while complex structures showed notable 
impairments, including total complex nominals (β = -6.67, p < 0.001), prepositional phrases (β = 
-4.01, p < 0.001), and coordinate phrases (β = -4.68, p < 0.001). Clause-level complexity was 
affected, with reductions in total clauses (β = -3.84, p < 0.001) and dependent clauses (β = -1.51, 
p < 0.001). 

3.5.4.4 Individuals with TBI 
Individuals with TBI exhibited substantial syntactic impairments comparable in severity to LHD 
patients. Significant deficits included reduced adjectival complements (β = -1.05, p < 0.001), 
adjectival modifiers (β = -1.99, p< 0.001), and adjective phrases (β = -3.11, p < 0.001). Sentence 
structure was compromised, with average sentence length decreasing by 1.19 words (p < 0.001) 
and average tree height declining by 0.32 units (p < 0.001). Complex syntactic constructions 
showed marked reductions, including total complex nominals (β = -9.32, p < 0.001), prepositional 
phrases (β = -4.86, p < 0.001), and coordinate phrases (β = -6.16, p < 0.001). Overall syntactic 
complexity was reduced across multiple measures, including total dependent clauses (β = -1.95, p 
< 0.001) and complex T-units (-1.86, p < 0.001). 
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3.5.4.5 Individuals with RHD 
Individuals with RHD showed largely intact syntactic functioning with minimal significant 
impairments. Most syntactic measures remained within normal ranges, with only occasional 
significant effects such as reduced complement of preposition counts (-0.41, p = 0.023) and 
number modifier counts (β = -1.03, p = 0.011). This pattern indicates that syntactic processing 
remains relatively preserved following right hemisphere injury. 

3.5.5 Readability Metrics 

Readability formulas estimate the level of education (e.g., first year student, second year student) 
needed to understand a text. Although the readability measures had a lower effect size, their effect 
was statistically significant. The results are presented in Table 7. The Smog Index had the highest 
effect size (Partial η² > 0.15) among the readability measures. The findings suggest that clinical 
populations differ not only in speech and cognitive abilities but also in the structural and lexical 
complexity of their language production, as quantified by standardized readability metrics. 

Table 7 Table 5. Effect Size of Readability Measures Across Diagnostic Groups. This table 
presents the results of statistical analyses examining the differences in various readability measures 
across clinical diagnostic categories. Each row represents a separate readability metric, including 
both traditional indices (e.g., Smog Index, Gunning Fog Index) and computational linguistic 
measures (e.g., Yngve Load, Difficult Words). The table reports the F-statistic, numerator and 
denominator degrees of freedom (Num DF, Den DF), p-values (in scientific notation), and partial 
eta-squared (η²) as a measure of effect size. 

 Measure  Category F  Num DF   Den DF  p value Partial η2 
 Estimated Reading Time 
(sec) 

 47.42   2.00   575.91  8.60E-
20 

 0.14   0.16  

 Smog Index   86.37   2.00   1,085.65  1.55E-
35 

 0.14   0.14  

 Total Classical Yngve Load   42.47   2.00   575.78  6.27E-
18 

 0.13   0.15  

 Difficult Words   64.47   2.00   875.73  7.58E-
27 

 0.13   0.20  

 Gunning Fog Index   27.21   2.00   1,036.36  3.04E-
12 

 0.05   0.05  

 Linsear Write Formula   16.89   2.00   931.51  6.22E-
08 

 0.03   0.08  

 Dale Chall Readability 
Score  

 14.23   2.00   981.68  8.06E-
07 

 0.03   0.07  

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.28.25334096doi: medRxiv preprint 

https://doi.org/10.1101/2025.08.28.25334096


 

Figure 7 shows the violin plots displaying the distribution density with boxplots and mean 
values (red diamonds) of readability measures by diagnosis. 
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Figure 7 Violin plots showing distribution density with boxplots and mean values (red 
diamonds) of readability measures by diagnosis (HC: Healthy Controls, LHD: Left Hemisphere 
Damage, MCI: Mild Cognitive Impairment, RHD: Right Hemisphere Damage, TBI: Traumatic 
Brain Impairment). 

Readability findings indicate that neurological conditions, particularly those with LHD, 
result in the production of linguistically simpler text that requires lower reading levels and is more 
accessible to general audiences. This simplification likely reflects both the direct effects of 
language impairments and potential compensatory strategies employed by patients to maintain 
communicative effectiveness despite underlying linguistic deficits. 

3.5.5.1 Individuals with LHD 
Left Hemisphere Damage (LHD) patients demonstrated the most pronounced shift toward 
simplified text readability across virtually all measures. Significant reductions in complexity were 
observed in the Automated Readability Index (β = -2.12, p < 0.001), Coleman Liau Index (β = -
3.21, p < 0.001), Flesch-Kincaid Grade Level (β = -1.38, p < 0.001), Gunning Fog Index (β = -

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 28, 2025. ; https://doi.org/10.1101/2025.08.28.25334096doi: medRxiv preprint 

https://doi.org/10.1101/2025.08.28.25334096


1.50, p < 0.001), and SMOG Index (β = -1.22, p < 0.001). Conversely, the Flesch Reading Ease 
score increased significantly (β = 4.40, p < 0.001), indicating easier-to-read text. The Dale-Chall 
Readability Score showed a significant increase (β = 1.68, p < 0.001), suggesting greater use of 
common vocabulary. Estimated reading time was substantially reduced (-4.67 seconds, p < 0.001), 
reflecting shorter, simpler content. 

3.5.5.2 Individuals with Dementia 
Individuals with dementia demonstrated moderate simplification across several readability 
measures. Significant decreases were observed in the Automated Readability Index (β = -0.43, p 
< 0.001), Coleman Liau Index (β = -0.47, p = 0.008), Flesch-Kincaid Grade Level (-0.22, p = 
0.012), Gunning Fog Index (β = -0.22, p = 0.017), and SMOG Index (β = -0.35, p < 0.001). Flesch 
Reading Ease increased significantly (β = 1.06, p = 0.020). However, estimated reading time and 
difficult word usage showed no significant changes. 

3.5.5.3 Individuals with MCI 
Individuals with MCI showed moderate readability changes with a mixed pattern. While some 
complexity measures decreased significantly, including the Coleman Liau Index (β = -0.40, p = 
0.036) and Flesch-Kincaid Grade Level (β = -0.21, p = 0.020), others remained unchanged or 
showed minimal effects. Flesch Reading Ease increased (β = 0.97, p = 0.039), and difficult word 
usage decreased significantly (-7.40, p = 0.018). Estimated reading time was reduced by 3.39 
seconds (p < 0.001). Interestingly, the Linsear Write Formula showed a small but significant 
increase (β = 0.20, p = 0.040). 

3.5.5.4 Individuals with TBI 
Individuals with TBI exhibited substantial simplification in text complexity, though to a lesser 
degree than LHD patients. Significant decreases were found in the Automated Readability Index 
(β = -0.52, p < 0.001), Flesch-Kincaid Grade Level (β = -0.56, p < 0.001), Gunning Fog Index (β 
= -0.60, p < 0.001), and SMOG Index (β = -0.56, p < 0.001). Flesch Reading Ease increased 
significantly (β = 1.45, p < 0.001), while the Dale-Chall score increased (β = 0.46, p< 0.001), 
indicating simpler vocabulary usage. Estimated reading time decreased by 3.94 seconds (p < 
0.001). 

3.5.5.5 Individuals with RHD 
Individuals with individuals with RHD showed minimal changes in text readability, with most 
measures remaining within normal ranges. Only the Flesch Reading Ease showed a significant 
increase (β = 1.50, p = 0.038) and the Linsear Write Formula decreased slightly (β = -0.38, p = 
0.012). This pattern suggests that text complexity remains largely preserved following right 
hemisphere injury. 

3.5.6 Semantic Markers (Named Entity Analysis) 

The semantic findings reveal a markedly different pattern from phonological and syntactic results, 
with some patient groups showing compensatory increases in certain semantic categories. The 
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preservation or enhancement of organization and person references in several groups suggests that 
semantic processing may be more resilient to neurological damage, with patients potentially 
shifting toward concrete, socially relevant semantic content when other linguistic abilities are 
compromised. 

3.5.6.1 Individuals with LHD 
Individuals with LHD demonstrated a complex pattern of semantic changes characterized by both 
impairments and compensatory increases. Significant reductions were observed in cardinal 
number usage (count: -0.29, p < 0.001; ratio: -0.052, p < 0.001) and date references (count: -0.80, 
p < 0.001; ratio: -0.070, p < 0.001). However, individuals with LHD showed notable increases in 
organization references (count: +0.78, p < 0.001; ratio: +0.103, p < 0.001) and person reference 
ratios (+0.069, p < 0.001), suggesting possible compensatory semantic strategies or shifts toward 
more concrete, person-centered discourse. 

3.5.6.2 Individuals with Dementia 
Individuals with dementia demonstrated mild semantic changes with the most notable effect being 
a significant reduction in cardinal number ratios (β = -0.060, p < 0.001) and date ratios (β = -0.030, 
p = 0.029). Interestingly, organization ratios showed a significant increase (β = 0.074, p < 0.001), 
potentially reflecting preserved or compensatory use of organizational semantic categories. 
Overall, the semantic profile in dementia appeared less severely affected than in other patient 
groups. 

3.5.6.3 Individuals with MCI 
Individuals with MCI exhibited selective semantic difficulties with a distinctive pattern. Cardinal 
number ratios showed a significant increase (β = 0.132, p < 0.001), while date ratios decreased (β 
= -0.039, p = 0.003). Organization ratios were reduced (β = -0.054, p = 0.005), and person counts 
declined (β = -0.61, p = 0.038). This pattern suggests specific difficulties with temporal and 
organizational semantic categories while potentially overcompensating with numerical references. 

3.5.6.4 Individuals with TBI 
Individuals with TBI showed moderate semantic impairments primarily in numerical and personal 
reference domains. Significant reductions included cardinal number counts (β = -0.45, p = 0.002) 
and ratios (-0.041, p = 0.008), as well as person counts (β = -0.57, p = 0.033). Date and 
organization references remained relatively preserved, indicating more selective semantic deficits 
compared to other linguistic domains. 

3.5.6.5 Individuals with RHD 
Individuals with RHD showed minimal semantic impairments with only cardinal number counts 
significantly reduced (-0.53, p = 0.012) and organization counts increased (+1.06, p = 0.010). 
Most other semantic measures remained within normal ranges, suggesting that semantic 
processing is largely preserved following right hemisphere injury. 
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4 Discussion 

Language is an extraordinarily complex a distributed network, interfacing with human faculties 
and cognitive processes such as memory, attention, executive functions, and emotions (Margulies 
& Petrides, 2013; Stanford & Delage, 2023; Themistocleous, 2025). Damage in brain areas 
responsible for language or areas affecting these cognitive systems is intrinsically reflected in an 
individual's language (Hickok & Poeppel, 2007). An impaired cognitive function is often the 
earliest indication of neurological conditions, like mild cognitive impairment (MCI) and dementia, 
or can designate another acquired damage like left (LHD) and right hemisphere stroke (RHD), and 
traumatic brain injury (TBI) and can manifest as a subtle or severe change in linguistic expression, 
lexical choice, syntactic structure, acoustic properties, and discourse coherence. This makes speech 
and language a uniquely rich, non-invasive, and continuously available source of medical 
information, offering a veritable window into an individual's brain health and cognitive status. The 
potential to harness this data for diagnostic and prognostic purposes is immense. Traditional 
approaches are time-consuming, require controlled clinical settings, and can be stressful to the 
patients. These drawbacks of traditional methods can be addressed by the recent advancements in 
Machine Learning (ML) and Natural Language Processing (NLP), demonstrating remarkable 
capabilities in pattern recognition, data analysis, and predictive modeling. In our previous research, 
we have already shown that ML techniques can enhance the diagnostic accuracy for 
neurodegenerative disorders by identifying complex patterns in clinical and neuroimaging data 
that often elude conventional analytical approaches (Kim et al., 2024; Themistocleous et al., 2018; 
Themistocleous, Ficek, et al., 2020; Themistocleous, Webster, et al., 2020). Additionally, this 
underscores the methodological capacity of AI algorithms to manage and interpret intricate 
medical data, a capability directly transferable to the complexities of speech. In this study, we 
employed NLP, ML, and robust statistical approach to extract relevant linguistic information and 
detect signatures for text productions of patients in a variety of discoursal tasks. That resulted into 
an analysis of 292 linguistic measures from distinct language domains.  

4.1 Language Discriminates Diverse Neurological Conditions: NeuroScreen 

Having a high-performing, end-to-end model is critical for its real-world usefulness in a clinical 
setting. The excellent performance metrics demonstrate that this system is not just a theoretical 
exercise but a potentially powerful diagnostic tool. The model's ability to distinguish between 
patients and healthy controls with up to 99% accuracy is its most crucial feature. This near-perfect 
performance means the system can function as a reliable screening tool for early detection and 
characterization of neurological conditions. The model excels at identifying common and distinct 
conditions like LHD with a 96% F1 score and Dementia with an 88% F1 score. This provides a 
strong basis as a useful tool in the clinic to advice the diagnostic process. While the model 
struggled with rarer or less linguistically distinct conditions (like RHD and TBI), by grouping them 
into “Other Neurological Conditions” category offers a smart, practical approach as in this way 
the category still achieves a high F1 score of 82%. In this way the ML flags these patients for more 
specialized expert review without overstating its diagnostic precision. 
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Clinicians can trust the model to accurately flag individuals who need further evaluation, 
minimizing the chances of missing a patient with a neurological condition. It automates the initial 
assessment, saving valuable time for specialists and allowing healthcare systems to screen more 
people, more quickly. Beyond simply identifying a patient, the model's strength lies in its ability 
to differentiate between specific neurological conditions. Knowing which condition a person has 
is essential for providing the right treatment. In essence, this two-stage, end-to-end performance 
creates a complete and practical workflow. It reliably filters the general population and then 
provides a highly accurate differential diagnosis for common conditions while intelligently 
triaging more complex cases. This makes the system on of the most powerful and scalable tool for 
clinical decision support (Ahmed et al., 2013; Fraser et al., 2019; Fraser et al., 2018; Kim et al., 
2024; König et al., 2015; Lavoie et al., 2023; Themistocleous et al., 2018; Themistocleous, 
Eckerström, et al., 2020; Themistocleous, Ficek, et al., 2020; Tuomiranta et al., 2025).  

The reasons are twofold, we rely on a large dataset and on the large number of computational 
measures that we have develop and provide within Open Brain AI (Themistocleous, 2024) 
covering a wide range of language domains spanning from textual readability (Dale & Chall, 1948; 
Fitzsimmons et al., 2010; Klare, 1974; Themistocleous, 2024), Lexicon and Lexical Information  
(Fergadiotis & and Wright, 2011), Phonology (Barbieri et al., 2018; Croot et al., 2000), 
Morphology (Badecker et al., 1990; Caramazza & Hillis, 1991; Fridriksson et al., 2018; Hillis, 
1989; Hillis et al., 2018; Stockbridge, Matchin, et al., 2021), Syntax (Bastiaanse, 2013; Caramazza 
& Hillis, 1989; Mack et al., 2021; Thompson & Mack, 2014; Wilson et al., 2016), and Semantics. 
Finaly, this approach demonstrates the importance of these metrics to function as linguistic 
signatures indicating that symptoms associated with neurological conditions can both facilitate 
diagnosis and function as therapeutic targets. The characteristics of these language signatures and 
their patterns are discussed next.  

4.2 Overall language characteristics 

The findings revealed condition-specific distinct patterns of linguistic impairments. The most 
significant differences were observed in individuals with LH stroke and dementia, TBI, MCI, and 
finally RHD, which showed the most preserved language.  

Concerning the lexical markers and the vocabulary usage, we found that individuals with 
LHD and TBI showed significant reductions in the number of words produced and lexical 
diversity. Patients with dementia also exhibited reduced word production and diversity, though to 
a lesser extent while patients with MCI and RHD lexical profile was closer to that of HCs. 
Concerning the phonological measurements, such as key syllable patterns and syllable complexity, 
patients with LHD, TBI, and dementia groups produced fewer words of varying syllable lengths 
and less complex syllable structures. Patients with RHD produced similar phonological patterns to 
HCs. 

In addition to the lexicon and phonology, key morphological measures that involve both the 
distribution of part of speech (POS) production and inflectional morphology presented key 
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differences among group in the distribution of these measures (Kiran, 2012; Kiran et al., 2014; 
Kiran et al., 2009; Thompson et al., 2003). Patients with LHD and TBI demonstrated widespread 
reductions in the use of most word classes, including determiners, adjectives, nouns, and verbs. 
Patients with dementia also showed a decline in the use of several word classes whereas patients 
with RHD showed relatively minor differences compared to HCs.  

In line with earlier findings (den Ouden et al., 2016; Den Ouden et al., 2019; Thompson et 
al., 2013), syntactic complexity was significantly reduced in individuals with LHD and TBI, who 
produced shorter and structurally simpler sentences. Patients with dementia also showed notable 
reductions in syntactic complexity. The MCI group presented mostly reductions of the core 
syntactic measures whereas patients with RHD provided fewer distinct patterns compared to HCs.  

The statistical models about the readability of the text, a novel measure that we employed in 
this study, reveal several important insights about the language production in the patient groups. 
Individuals with LHD, TBI, and dementia was generally rated as less complex and easier to read 
by various readability indices. Patients with LHD, TBI, and dementia groups used fewer named 
entities like cardinal numbers and dates.  

4.3 Overall Patterns Across Diagnostic Groups 

A global view of the results reveals distinct patterns of linguistic alteration across the diagnostic 
groups. 

Expectedly, individuals with LHD consistently demonstrated the most extensive and 
pronounced differences from HCs across nearly all linguistic categories as detailed in the results 
section. The majority of these were characterized by significantly lower scores (negative 
estimates), particularly in measures of lexical production and diversity, morphological complexity, 
phonological output, and syntactic complexity. These findings corroborate our existing 
understanding about the grammatical difficulties (Matchin et al., 2014), reduced lexical diversity 
(Fergadiotis & and Wright, 2011), and impaired phonological output (Miceli et al., 1980), but at 
the same time they offer a broader understanding, given the extensive coverage our measures 
provide of the language domain andthe systematic integration of features spanning the entire 
linguistic hierarchy—from phonological structures to discourse-level semantics. Unlike traditional 
clinical assessments that typically focus on isolated linguistic domains (e.g., naming tests for 
semantics, sentence repetition for syntax), whereas this approach captures the complex interplay 
between linguistic levels that characterizes real-world communication. 

Importantly, the results highlight previously underappreciated compensatory strategies, such 
as increased reliance on proper nouns, socially salient references (e.g., persons, organizations), and 
syntactic simplification through appositional and compound modifiers. This suggests that 
individuals with LHD are not merely producing less language but may be restructuring their output 
(whether consciously or unconsciously) to maximize communicative success within their impaired 
linguistic system. Furthermore, the readability metrics provide novel, ecologically relevant 
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evidence that the language produced by individuals with LHD is objectively simpler and more 
accessible, supporting the interpretation that both deficits and adaptations co-occur in spontaneous 
language use. 

Individuals with TBI also exhibited a broad range of significant differences from HCs, which 
lies upon with prior evidence that has also found reductions in linguistic output (e.g., total words, 
content words, unique words), complexity (e.g., Corrected TTR), and various syntactic counts 
(Coelho, 2016; Lê & Coelho, 2024; Marini et al., 2011). In several measures, the magnitude of 
these differences was comparable to or, in some specific instances, even exceeded those seen in 
dementia. At the same time, the TBI group displayed increased lexical diversity and preserved, or 
even compensatory, use of certain morphological and syntactic features, indicating strategic 
adaptations rather than uniform linguistic degradation. The semantic profile of TBI also revealed 
selective vulnerabilities, particularly in numerical and personal references, suggesting domain-
specific disruptions in meaning construction rather than global semantic impairment. Importantly, 
the readability metrics demonstrate that language produced by individuals with TBI is objectively 
simplified, mirroring patterns seen in aphasia and underscoring the functional consequences of 
these linguistic changes for everyday communication. Together, these results contribute novel, 
objective evidence that TBI disrupts language in ways that are both overlapping with and distinct 
from classical aphasia profiles. 

While global cognitive impairment is a hallmark of dementia, this study demonstrates that 
spontaneous language production in this group is relatively preserved across many core linguistic 
domains, particularly in phonology, syntax, and overall lexical productivity (this is the case in 
amnestic dementia, but not necessarily in primary progressive aphasia, which is not a syndrome 
studied her). However, subtle but meaningful disruptions emerged in specific areas which echo 
prior findings, notably reduced lexical diversity (Williams et al., 2023), simplified word choice 
(e.g., shorter average word length), and decreased use of complex syntactic and semantic structures 
(Le et al., 2011; Meteyard et al., 2014; Snowdon, 2002). The readability findings further 
underscore this pattern, showing a moderate shift toward simpler, more accessible language that 
likely reflects both cognitive decline and simplification strategies. While the pattern was generally 
one of decreased scores compared to HCs, the effects were often less pronounced and less 
uniformly distributed across measures compared to the LHD group, reflecting high variation in 
this group (Le et al., 2011; Meteyard et al., 2014; Snowdon, 2002). 

Unlike LHD aphasia or TBI, MCI was characterized by a subtler but systematic pattern of 
linguistic simplification, which has been shown previously, particularly evident in reduced lexical 
productivity, decreased syntactic complexity, and phonological impairments (Kim et al., 2019; 
Sanborn et al., 2022; Sung et al., 2020). The findings reveal that even at this early disease stage, 
individuals with MCI produced fewer total words, content words, and unique word types, 
accompanied by reductions in sentence length and the use of complex syntactic structures such as 
dependent clauses and prepositional phrases. Interestingly, lexical diversity (standard TTR) was 
increased compared to HCs, reflecting a compensatory pattern where speakers produce fewer 
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words overall but rely on a more varied vocabulary within their reduced output. Readability 
metrics further indicated that MCI speakers produce objectively simpler, more accessible language 
than HCs, likely reflecting both cognitive constraints and emerging compensatory strategies.  

These results provide new, quantitative evidence reinforcing and extending long-standing 
but often inconsistently documented observations that language production following RHD is 
relatively preserved in terms of core linguistic structure, but may still exhibit subtle disruptions, 
particularly in semantic, pragmatic, and higher-order discourse features. The present analyses 
reveal that individuals with RHD performed comparably to healthy controls across most lexical, 
phonological, morphological, syntactic, and readability measures, supporting prior research 
showing that RHD does not typically produce the overt language breakdown observed in left 
hemisphere stroke or TBI. However, the detection of reduced use of specific structures, such as 
comparative adjectives, complex syllable patterns, and second-person pronouns, along with a 
selective reduction in certain semantic categories (e.g., cardinal numbers), highlights that RHD 
may subtly affect aspects of language tied to complexity, perspective-taking, or relational meaning. 
These findings align with previous evidence that while RHD does not result in classical aphasia, 
it can impact elements of discourse organization, inferencing, and pragmatic language, often in 
ways that evade detection by standard language batteries.  

A key insight from these findings is that while language simplification emerges as a common 
consequence of neurological damage, the specific linguistic signature varies systematically across 
disorders, reflecting both the nature of the underlying neural disruption and the ways in which 
language production shifts in response to these deficits. Across conditions such as LHD, TBI, MCI, 
and dementia, individuals consistently produced simpler language characterized by reduced lexical 
output, diminished syntactic complexity, and lower readability. Yet, the precise linguistic domains 
affected, and the nature of these changes differed. For example, individuals with MCI and TBI 
showed increased lexical diversity within reduced output, while LHD and dementia speakers 
exhibited greater reliance on proper nouns and socially salient references. These patterns suggest 
that language production does not decline uniformly but instead reflects a combination of 
impairment and adaptive linguistic shifts, whether conscious or automatic. Even in the context of 
cognitive or neural decline, measurable alterations in language use indicate preserved linguistic 
capacity and potential compensatory processes. Capturing both these deficits and adaptations 
provides a more complete and clinically informative picture of how language reflects the complex 
interaction between neural damage, cognitive constraints, and preserved linguistic mechanisms 
across neurological conditions. 

4.4 Limitations and Future Research 

Although this study marks a critical starting point for comparing more than one and 
especially often conditions that are dissimilar in their underlying pathology making this 
comparison possible there are several that are inherent to this approach. First, for many 
neurological conditions, especially rare disorders or the initial stages of more common ones like 
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MCI, large-scale speech datasets are lacking, especially for languages other than English, so shared 
corpora like DementiaBank and TalkBank are crucial.  

A second issue is the need for more fine-grained distinctions between the populations. 
Although the categories we have presented here like LHD, or dementia correspond to a broader 
diagnosis, there is an important variation within the population because of their condition, the 
potential influence of medication and other comorbidities on the linguistic profiles. So, there is a 
need for a greater understanding through subtyping the populations into subgroups, like individuals 
with anomic aphasia and conduction aphasia and individuals with different severity levels.  

Understanding disease progression and the evolution of linguistic signatures over time 
necessitates longitudinal data collection, where individuals are assessed repeatedly. Such data, as 
used in the MCI-to-AD progression study, is invaluable but expensive and time-consuming to 
acquire. The noted lack of longitudinal AD speech data, particularly at the MCI stage, and 
DementiaBank's aim for longitudinal tracking highlight this ongoing need.  

A key limitation of the current study is that we collapsed language data across multiple 
discourse tasks, despite well-established evidence that different tasks elicit distinct linguistic 
profiles (Stark & Fukuyama, 2021; Stark Brielle, 2019). While this approach maximized statistical 
power and facilitated broad comparisons across diagnostic groups, it may have obscured task-
specific linguistic patterns that are clinically and theoretically meaningful. We have planned for 
future work that will systematically examine how task type interacts with diagnosis to influence 
linguistic profiles. 

Finally, there is an increasing need to have acoustic data along with linguistic data. For 
example, previous research has shown that the extension of information provided be even a single 
sound is incredible. As we have learnt from our research, the way speakers pronounce their vowels 
(Themistocleous, 2017), consonants (Themistocleous, 2019), voice quality and prosody 
(Themistocleous, Eckerström, et al., 2020) reveal aspects of speakers’ identity, like their dialects, 
sociolects and pathology. Our future research will intergrade these different concepts together and 
provide multimodal systems for understanding language and cognition. Future research should 
also prioritize the continued expansion of this dataset, enhancing its diversity and generalizability. 
Integrating multimodal signatures, such as neuroimaging data, alongside these linguistic measures 
will be the next frontier, promising even greater precision and clinical utility. Ultimately, this open 
library provides the essential groundwork for a future where language analysis is a core component 
of neurological care. 

4.5 Conclusion 

This study represents a critical step toward transforming language analysis from a research tool 
into a scalable, clinically actionable digital biomarker for neurological disorders. By applying 
automated, computational linguistic analysis to one of the largest and most diverse databases of 
spoken language, we demonstrate that distinct, quantifiable linguistic profiles can differentiate 
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between individuals with left hemisphere damage, right hemisphere damage, dementia, MCI, TBI, 
and healthy controls. These findings not only advance scientific understanding of language 
impairments but also establish a practical foundation for integrating language-based digital 
biomarkers into routine neurological assessment. 

Importantly, the architecture of Open Brain AI provides a clear pathway for translation 
beyond the research setting. With further development, this platform could be scaled into an 
accessible, secure application deployable by researchers, speech-language pathologists, and 
clinicians worldwide. Such a tool could enable real-time, automated language analysis in clinical 
environments, telemedicine, or even remote monitoring contexts—delivering objective, 
reproducible language metrics that augment clinical decision-making. The naturalistic, low-burden 
nature of speech samples makes this approach uniquely suited to scalable, patient-friendly 
assessment. 

Looking ahead, the integration of Open Brain AI into clinical workflows, combined with 
regulatory-compliant development and continued dataset expansion, holds the potential to redefine 
how language is used to detect, monitor, and personalize care for individuals with neurological 
conditions. By moving beyond proof-of-concept and toward scalable, validated tools, this work 
contributes to the broader goal of leveraging AI and language as accessible, ecologically valid 
biomarkers in digital medicine. 
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