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Abstract

Individuals with left-hemisphere damage (LHD), right-hemisphere damage (RHD), dementia,
mild cognitive impairment (MCI), traumatic brain injury (TBI), and healthy controls are
characterized by overlapping clinical profiles affecting communication and social interaction.
Language provides a rich, non-invasive window into neurological health, yet objective and
scalable methods to automatically differentiate between conditions with are lacking. This method
aims to develop comprehensive neurolinguistic measures of these conditions, develop a machine
learning multiclass screening and language assessment model (NeuroScreen) and offer a large
comparative database of measures for other studies to build upon. We combined one of the largest
databases, comprising 291 linguistic biomarkers calculated from speech samples produced by
1,394 participants: 536 individuals with aphasia secondary to LHD, 193 individuals with dementia,
107 individuals with MCI, 38 individuals with RHD, 58 individuals with TBI, and 498 Healthy
Controls. Employing natural language processing (NLP) via the Open Brain Al platform

(http://openbrainai.com), we extracted multiple linguistic features from the speech samples,

including readability, lexical richness, phonology, morphology, syntax, and semantics. A Deep
Neural Network architecture (DNN) classifies these conditions from linguistic features with high
accuracy (up to 91%). A linear mixed-effects model approach was employed to determine the
biomarkers of the neurological conditions, revealing distinct, quantitative neurolinguistic
properties: LHD and TBI show widespread deficits in syntax and phonology; MCI is characterized
by fine-grained simplification; patients with dementia present with specific lexico-semantic
impairments; and RHD shows the most preserved profile. Ultimately, the outcomes provide an
automatic detection and classification model of key neurological conditions affecting language,
along with a novel set of validated neurological markers for facilitating differential diagnosis,

remote monitoring, and personalized neurological care.


http://openbrainai.com/

1 Introduction

Language is a distinctively human cognitive system that enables individuals to communicate, share
information, and socialize. It includes a complex interplay of spoken, written, and signed
modalities, drawing on multiple linguistic subsystems, including phonology (the sound structure
of words), morphology (the internal structure of words), syntax (rules governing sentence
structure), semantics (meaning), and pragmatics (the social use of language) [1, 2]. Even simple
tasks, such as ordering a meal, rely on the integration of these linguistic processes. Language is
not only central to social participation but is also tightly linked to broader cognitive functions,
including memory, attention, and executive functioning [3, 4]. Consequently, when language is
disrupted due to neurological conditions such as left hemisphere damage (LHD), right hemisphere
damage (LHD), dementia, mild cognitive impairment (MCI), or traumatic brain injury (TBI), the
consequences extend beyond isolated cognitive deficits to independence, social participation, and
overall quality of life. Yet, despite the critical role of language in human functioning, assessing
and monitoring language functioning in clinical practice and properly treating it remains

challenging.

The distinct underlying pathologies of LHD, RHD, dementia, MCI, and TBI produce unique
behavioral profiles by differentially affecting receptive and expressive language [5, 6] (Table 1).
These can serve as early linguistic markers that characterize these patients [7]. Neurological
research has shown that LHD primarily impacts language and other cognitive functions [8-10].
RHD can impair spatial awareness, emotions, and nonverbal and pragmatic communication [11-
15]. Both LHD and RHD can language deficits, but the specific nature of these deficits differs [16-
19]. MCI, an early cognitive decline, is typically amnestic in nature (affecting memory), but also
typically impacts language and other critical cognitive domains, such as attention, and executive
functions [20-25]. Dementia is a progressive deterioration of the brain health due to
neurodegeneration, affecting multiple cognitive domains, such as memory, language, attention,
and movement [26-28]. TBI is a heterogeneous disorder, resulting in open or closed head trauma
by an external force, such as a blow to the head, a fall, a car accident, and a penetrating injury. It
can range from mild (e.g., concussion) to severe, with varying degrees of physical, cognitive,

emotional, and behavioral effects [29].



Table 1 Comparative Table of Neurocognitive Conditions. Comprehensive comparison of five

major neurocognitive conditions across key clinical and neurological characteristics. This

comparative framework facilitates differential diagnosis and understanding of the distinct

neuropsychological profiles associated with each condition.

LHD RHD TBI Dementia MCI
(Typical) Stroke  (other Stroke  (other External Physical Force Proteinopathy  Prodromal
Etiology focal focal (Amyloid/Tau  AD,
Tumor/Infection  Tumor/Infection ) Vascular,
) ) etc.
Onset Acute Acute Acute Insidious Insidious
Progression Stable [ Stable [ Stable / Improving (risk  Progressive Variable
Improving Improving for later decline) Decline (Stable,
Improving,
or
Progressive
)
Primary Focal Cortical Focal Cortical Focal Contusion and/or Amyloid Early-stage
Neuropathology  Lesion Lesion Diffuse Axonal Injury  Plaques & AD
Tau Tangles pathology
common
Hallmark Aphasia, Unilateral Dysexecutive Episodic Episodic
Cognitive Apraxia Neglect, Syndrome, Post- Memory Loss Memory
Deficit Anosognosia Traumatic Amnesia Loss
(Amnestic
type)
Hallmark Agrammatism, Aprosodia, Disorganized/Tangenti ~ Anomic, Word-
Language/Com  Anomia, Pragmatic al Discourse, Pragmatic ~ “Empty” finding
m. Deficit Paraphasias Deficits, Deficits Speech difficulty,
Discourse Reduced
Incoherence verbal

fluency




Awareness  of Typically, Typically, Often Absent  Variable; Typically,

Deficits Present (often Absent (Anosognosia) Declines with Present
distressed) (Anosognosia) progression (source of
concern)

Note: Conditions include Left Hemisphere Damage (LHD), Right Hemisphere Damage (RHD),
Traumatic Brain Injury (TBI), Dementia of Alzheimer's Disease type (AD-Type), and Mild
Cognitive Impairment (MCI). Clinical features compared include: Typical Etiology (underlying
cause or origin), Onset pattern (acute vs. insidious), Disease Progression trajectory (stable,
improving, or declining), Primary Neuropathology (underlying brain pathology), Hallmark
Cognitive Deficit (characteristic cognitive impairments), Hallmark Language/Communication
Deficit (distinctive language and communication problems), and Awareness of Deficits (patient
insight into their condition, including anosognosia - lack of awareness of deficits). Technical
terms: Aphasia (language impairment), Apraxia (motor planning deficits), Aprosodia (prosodic
speech deficits), Agrammatism (grammatical impairments), Anomia (word-finding difficulties),
Paraphasias (word substitution errors), and Dysexecutive Syndrome (executive function

impairments).
Conventional language assessment tools

Conventional language assessment tools, including structured tasks (e.g., Philadelphia Naming
Test [30], Boston Naming Test [31], standardized batteries Western aphasia battery (revised)
(WAB-R) [32], Quick Aphasia Battery (QAB) [33] and the Boston Diagnostic Aphasia
Examination (BDAE) [34], and patient- and clinician-rated evaluations [35-37], are widely used
to support diagnosis and guide treatment decisions. These methods often provide a narrow window
into specific abilities like object naming, overlooking the multidimensional nature of everyday
communication. Furthermore, their time-intensive and stressful nature makes them ill-suited for
widespread screening. Clinicians may instead use general neurocognitive screeners like the
Montreal Cognitive Assessment (MoCA) or Mini-Mental State Examination (MMSE) [38-40], but
these still require in-person assessment and may not be sensitive enough to detect subtle language
impairments characteristic of conditions like mild cognitive impairment (MCI). This creates a
critical challenge for early detection and prognosis. A powerful solution lies in combining large-
scale language corpora with computational methods such as Natural Language Processing (NLP)



and Machine Learning (ML). This approach can enable automated screening and provide a deeper,
comparative understanding of these conditions against each other and normative data from healthy

individuals.

We address a critical limitation in neurolinguistics—the tendency to study conditions in
isolation—Dby creating a unified analytical framework. Analyzing connected speech and
discourse—how individuals use language in natural, extended communication—is widely
regarded by researchers and clinicians as a best practice for assessing language abilities [41]. This
approach captures real-world communicative competence and can reveal subtle linguistic deficits
that standardized, isolated tasks often overlook. However, despite its advantages, discourse
analysis remains underused in clinical practice due to its time-intensive nature, lack of scalable
and standardized tools, and the manual effort required for transcription and coding [42]. Moreover,
traditional assessments are typically conducted in controlled clinical environments, which may not
reflect an individual’s everyday communication patterns, thereby limiting ecological validity.
Consequently, subtle or early-stage language impairments—especially those associated with
heterogeneous conditions such as mild cognitive impairment (MCI) or early dementia—often go

undetected until more pronounced cognitive or functional decline is evident.

Recent advances in artificial intelligence (Al), NLP, ML, and automated speech analysis
have opened new possibilities for addressing these limitations. By leveraging Al-driven
approaches to extract and quantify linguistic features from spontaneous speech, we and others have
demonstrated their potential for objective, reproducible, and ecologically valid measures of
language production from transcripts or audio files [21, 43-45]. These computational methods can
quantify automatically domains of language disorder—spanning lexical diversity [46],
phonological structure [47, 48], morphological patterns [9, 10, 49-52], syntactic complexity [53-
57], semantic content, and readability [58-61]—represent a promising class of digital biomarkers
with the potential to support early detection [45, 62, 63], differential diagnosis [21, 43, 64-66], and
ongoing monitoring of neurological conditions [67-69]. Despite that these studies demonstrates
that automated language analysis holds significant promise as a digital health tool, several

challenges must be addressed before it can be fully integrated into clinical practice.

Automated language analysis is progressively recognized as a digital health tool [70, 71],

yet its clinical translation is constrained by several critical gaps. For these computational tools to



improve patient outcomes in a meaningful way, they must first move beyond the current landscape
of proof-of-concept studies, which often use small, homogenous datasets from isolated clinical
populations but rely on rigorous validation across large, diverse, and multi-condition populations
is essential. This validation must also establish robust normative data from healthy controls,
enabling clinicians to benchmark an individual’s performance to accurately assess pathology and
severity. Also, the development of sophisticated computational pipelines must be paired with a
focus on practical application: creating scalable, automated, and openly accessible tools that can
integrate seamlessly into clinical workflows to reduce clinician burden and enhance diagnostic
precision. Addressing these interconnected challenges is the essential next step toward realizing

language as a clinically actionable digital biomarker.
Study Aims

This study has an overarching aim to advance a novel paradigm for neurological assessment to
corroborate existing neurological assessments and to establish spoken language as a scalable and
clinical digital biomarker by evaluate a comprehensive set of measures from the key linguistic
domains, readability, phonology, morphology, syntax, semantics, and lexicon (Supplementary

Data 1 offers a detailed description see also the Methods section).

This provides a two-fold aim. The first aim is to develop a multi-class machine learning approach
for neurological screening (NeuroScreen) that can discriminate patients from Healthy Controls
(HCs) and the subtype individual patient subgroups from each other. Ultimately, the MLs aim to
answer two primary research questions (1) How well do the models distinguish patients and
healthy controls? And (2) How well does the ML model distinguish each sub-group in the data?
By answering these two questions, we will be able to determine how well the models can be
employed in real-life scenarios for detecting patients and in the clinic to subtype patients, and
which of them with high confidence. To achieve aim we have developed an end-to-end Al-driven
procedure to analyze a large and diverse database of over 9,900 speech samples based on an end-
to-end ML model that combines NLP pipelines that employ Open Brain Al [61], a platform we
have developed to extract the linguistic features. Subsequently, we preprocessed and standardized
the calculated measures and passed them to a set of ML models, namely Random Forrest, Support
Vector Machine, Logistic Regression, and Deep Neural Networks. These models were tuned

through hyperparameter tuning and evaluated.



(2) The second aim is to provide explainable measures, namely the linguistic signatures of five
major neurological conditions (LHD, RHD, dementia, MCI, and TBI). This is critical to
understanding the effects of each condition on language and to providing therapeutic targets for
novel clinical approaches. In other words, we will determine (1) Which linguistic measures differ
most due to diagnostic groups? (2) Which are the distinctive features for each neurological
condition compared to HC? And (3) What do language measures reveal for each patient group?
To achieve this aim, we developed (generalized) linear mixed effect models while controlling for
the effects of task and the participant.

This computational approach moves beyond prior research by leveraging ecologically valid data
from everyday communicative tasks to create a comprehensive, multi-faceted portrait of how
language changes in response to brain injury and disease, aiding in differential diagnosis,
particularly for disorders with overlapping symptoms like MCI and early dementia, and offering a
non-invasive, low burden means for monitoring disease progression and treatment response over
time. Ultimately, this research contributes to the digital transformation of clinical practice by
providing a validated set of open-access linguistic biomarkers, this study creates new opportunities
for remote, low-burden monitoring of neurological health, supporting a future of more accessible,
data-driven, and personalized care.

2  Methodology

2.1 Participants

The individuals for this study were drawn from Neural Databank collected and developed by the
second author [72], now part of the Aphasia Bank, and data from the TalkBank consortium

(https://talkbank.org), which following a similar protocol. Each clinical bank (e.g., AphasiaBank,

RHDBank) has an established discourse protocol that elicits a variety of discourse genres [73].

I.  Aphasia Bank: The database contains spoken discourse samples from individuals with
LHD and control participants, designed to study language production and its neural
foundations. The research emphasizes connected speech (discourse) rather than single
words or isolated sentences. Participants completed a full discourse protocol twice within

a short timeframe to assess the test-retest reliability and stability of discourse measures.


https://talkbank.org/

The participants contain both people with LHD (536 individuals) and HCs (359
individuals) [72].

Right Hemisphere Damage Bank (RHD Bank): This is a specialized database focused on
communication in individuals with RHD. The database serves as a resource for
understanding and treating communication disorders following RHD, particularly focusing
on pragmatic language abilities, discourse coherence, and real-world communication
challenges [74]. This bank includes 38 individuals with RHD and 40 Healthy Controls.
Traumatic Brain Injury (TBI Bank): This is a multimedia database focused on studying
communication disorders in individuals with TBI. TBIBank protocol includes discourse
tasks such as the Cinderella story retell, following similar methodology to other TalkBank
databases. The protocol consists of discourse genres including personal narratives, picture
descriptions, story retelling, and procedural discourse. TBIBank is a longitudinal study in
which brain injured people are videoed at 6 different time points post injury performing a
uniform set of tasks, with the goal of identifying recovery patterns. The database enables
automated language analysis, diagnostic profiling, comparative evaluation of treatment
effects, and profiling of recovery patternsin TBI populations, supporting both research and
clinical applications in understanding cognitive-communication disorders following brain
injury. This bank includes 58 individuals with TBI.

Dementia Bank - Delaware MCI dataset: This corpus is part of DementiaBank and includes
language productions by 71 adults with MCI, from the Delaware Corpus and Baycrest
Centre Corpus. This data contributes to early detection of subtle changes in language and
cognition and provide insight into MCI subtypes based on discourse profiles [75]. The MCI
Delaware corpus contains mostly individuals with amnestic MCI, were the language-
variant should not be predominant. However, they have language differences from HCs
[66].

Dementia Bank - Pitt Study (Pitt Study): A comprehensive description of this dataset is
provided in Becker, Boiler [76].Briefly, the study includes a picture description task from
the Boston Diagnostic Aphasia Examination [77], a widely used diagnostic tool for
detecting language abnormalities. In this task, participants were shown the “Cookie Theft”

picture stimulus and instructed to describe everything they observed. Their responses were



audio-recorded and later transcribed verbatim. This study includes 193 individuals with

Dementia and 99 Healthy Controls.

Table 2 Cognitive assessment tasks administered across diagnostic groups and research studies.

Diagnosis  Task List

LHD Cat, Cinderella, Flood, Important Event, Sandwich, Speech, Stroke, Umbrella,
Window

MCI Cookie Theft

HC Cat, Cinderella, Cookie Theft, Flood, IlIness, Important Event, Sandwich, Speech,

Umbrella, Window
MCI Cat, Cinderella, Cookie Theft, Rockwell, Sandwich, Umbrella, Window

Dementia Cooke Theft

HC Cookie Theft
RHS Cat, Cinderella, Cookie Theft, Sandwich, Speech, Stroke
TBI Brain Injury, Cat, Cinderella, Important Event, Recovery, Sandwich, Speech,

Umbrella, Window

Note: Cat = A description of a single picture, in which a cat is being rescued from a tree; Cinderella
= retelling of the fictional narrative Cinderella, which is done after looking at a wordless picture
book; Flood = A description of a single picture of a rescue during a flood; Important Event = a
personal narrative about an important event; Sandwich = a procedural narrative describing how to
make a peanut butter and jelly sandwich; Stroke or Recovery = A personal narrative about one’s
brain injury and recovery; Umbrella = A multiple scene picture sequence, in which a boy and
mother interact about taking an umbrella into the rain; Window = A multiple scene picture
sequence, in which a boy kicks a soccer ball through a man’s window, shattering it; Cookie Theft
= A description of a single picture, in which two kids steal a cookie; Rockwell = A description of

a single picture, which is Norman Rockwell’s “Coming and Going”.



This study presents a comprehensive analysis of linguistic measures across various
diagnostic groups by combining data from multiple discourse tasks (see Supplementary Data 1).
Our primary analysis provides a consolidated overview of these linguistic features (Table 2;
Supplementary Data 2, provides a more comprehensive data breakdown of Data Count by Group,
Project, and Task). Recognizing that different tasks may elicit distinct communication patterns,
we have preemptively accounted for potential task-specific effects within our statistical models by
adding the task in the random effects. To ensure full transparency and to allow for a more granular
examination of these variations, we provide a detailed breakdown of the linguistic signatures for

each task in the Supplementary Tables.

Table 3 Participant demographics across diagnostic groups and research databases. The table
presents sample sizes, mean ages, and educational attainment for participants in each diagnostic
group across different research corpora. Age is reported as mean years (standard deviation).
Education is reported as mean years of formal education (standard deviation) except for the MCI

group where educational categories are presented as percentages.

Diagnosis Project Speakers - -Age at Testing Education
HC Aphasia Bank 359 56.89 (15.91) 15.91(2.64)
RHD Bank 40  47.95(13.54) 17.09 (2.93)
Pitt Study 99 63.7 (7.9) 13.9 (2.5)
LHD Aphasia Bank 536 61.04(12.4) 15.7 (2.91)
Dementia Pitt Corpus 193 71.0 (8.6) 12.2 (2.9)

PhD: 10.81%,
MCI Dementia Bank 71 Bachelor/MA: 67.57%
73.5(8.03) Vocational Training: 21.62%

RHD RHD Bank 38 57.4(12.33) 17.10 (3.99)



TBI TBI Bank 58  36.25 (13.47) 13.91 (3.05)

Note: LHD: left hemisphere damage, RHD: right hemisphere damage, MCI: Mild Cognitive
Impairment, and TBI: Traumatic Brain Injury. The Dementia group is composed primarily of
patients with Alzheimer’s-type dementia (91%), with MMSE scores of 17-18 (out of 30),
alongside individuals with MCI (whose MOCA scores are typically <23 out of 30).

Participants participated in different tasks providing often more than one samples, the
analysis is based on 9955 language samples drawn from multiple clinical databases produced by
the individuals reported in Table 3 (see also, Table 2 and Supplementary Data 2). These databases
exhibit significant clinical heterogeneity. For instance, the LHD database contains participant
groups classified by subtype, including anomic, Wernicke's, and Broca's aphasia. The Pitt study's
dementia subgroup (N=193) further illustrates this diversity; it is composed primarily of patients
with dementia (91%), who present with lower average Mini-Mental State Examination (MMSE)
scores of 17-18, alongside individuals with MCI. We chose to incorporate these databases in their
entirety for several reasons. This approach maintains the ecological validity of the data, ensuring
our findings reflect the natural heterogeneity of clinical populations. Furthermore, it preserves the
integrity of these standard corpora, which is crucial for the reproducibility and comparability of

our results within the wider research community.

2.2 Measures

Texts were automatically preprocessed using a python algorithm to remove TalkBank’s
Computerized Language Analysis CHAT/CLAN coding, labels, and tags (e.g., prosodic markers,
time-aligned tiers with annotations, CHAT metadata) and prepare clean texts for further analysis.
Subsequently, the text samples were analyzed using Open Brain Al (http://openbrainai.com; Figure
1), a custom clinical linguistics platform developed by the first author [61] to facilitate automatic
audio and linguistic analysis of texts. Unlike generic computational models, Open Brain Al was
designed specifically for phenotyping of language features through a clinical lens, enabling
hypothesis-driven research into speech pathology and neurogenic communication disorders. The
platform calculates linguistic metrics in real-time as participants type or as clinicians transcribe
speech samples, enabling immediate quantitative analysis of discourse features relevant to

neurological conditions. Additional analysis modules accessible via the toolbar include syntactic


http://openbrainai.com/

complexity measures, semantic density calculations, and comparative normative data. This
example demonstrates the platform's capability to automatically extract objective linguistic
measures from naturalistic discourse samples, facilitating evidence-based assessment of
communication disorders across various neurological populations. Open Brain Al executed a
cascade of NLP techniques. Core NLP steps included tokenization (segmenting text into individual
words or tokens), part-of-speech tagging (assigning a grammatical category to each token), and
dependency parsing (identifying the grammatical relationships between words and the syntactic
structure of sentences). For each extracted feature, both raw counts and ratios (to normalize for
variations in text length) are computed. These quantitative linguistic data were automatically

exported by our computational platform as spreadsheet files, ready for statistical analysis.

B I U H H 9 o EE 9 % fi = x x* L

Cat oh my goodness . oh this looks like one of those typical incidents with people with a cat and possibly a dog . or it might be a neighborhood dog . anyway the
cat is up in the tree . and the little girl is just very very upset about that . and she is small . she has a tricycle . the dog is scrafching at the tree and barking . and
it looks like Il say dad or someone in the neighborhood climbed up the tree . but the ladder has now fallen down to the ground . he is sitting on a limb hanging
on . and someone has called the emergency people . they have arrived . the two emergency people are coming in with another ladder to get the man down out
of the tree and possibly get the cat down out of the tree . and their vehicle their emergency vehicle is parked nearby . and there's a little bird sitting in the tree
watching all this .

Lexical Measures

Characters

Character density

Words

Sentences

Function Words (Total)

Figure 1 User interface of the Open Brain Al text analysis platform [61] for neuropsychological
assessment. The web-based platform provides real-time linguistic analysis of narrative discourse
samples. The interface displays a text editor (top panel) containing a participant's narrative



description of the “Cat Rescue” picture stimulus, commonly used in aphasia and cognitive

assessment batteries. The lower panel shows automated lexical measures including character count

(643), word count (161), sentence count (17), and function word analysis (93 total function words,
ratio 0.578).

From these foundational analyses, a comprehensive suite of linguistic measures was

automatically extracted, quantifying aspects of (Supplementary Data 1 offers a detailed list of the

measures):

Readability. Readability of text productions in patients with neurological conditions is a
measure that has been evaluated for the first time concerning all these conditions in this
study. Metrics assessing text complexity and perceived ease of understanding for a reader.
Readability metrics include the Flesch-Kincaid Readability Tests, Gunning Fog Index, and
SMOG Index [58-61] quantify how easy a text can be to be read and understood by a
reader. It is typically influenced by factors such as sentence length, word complexity, and
the overall structure of the text. Overall, we expect that patient speech should be simpler
and more readable than that of healthy individuals.

Lexicon and Lexical Information. We have designed features related to the vocabulary
richness, diversity, and usage within the text. This includes measures like Type-Token
Ratio, counts of content versus function words, and average word length. These measures
explain the distribution of words and relationships between types and tokens that can
quantify how words are used in different contexts and how they contribute to the overall
meaning of a text such as lexical diversity measures [46].

Phonology. Characteristics of sound structure, such as counts of words by syllable Number:
(e.g., one-syllable, two-syllable words) and the distribution of various Consonant (C) and
Vowel (V) syllable structures (e.g., CV, CVC, CCVC). We designed these measures to
quantify how users employ speech sounds, the sound combinations, and the complexity of
syllables. Comparing these measures across patients with different language impairments
can reveal characteristics that pertain to the effects of impairment on the cognitive
representation of sounds and speech production [47, 48].

Morphology. Analysis of word structure, encompassing both the distribution of parts of

speech (e.g., counts and ratios of nouns, verbs, adjectives, and adverbs) and inflectional



categories (e.g., tense, Number: Gender: case). Morphological measures quantify the
structure and form of words, the distribution of parts of speech, and inflectional categories,
such as tense, Number, Gender, and Case. Comparing patients with morphology
impairments can reveal pathologies, like agrammatism and anomia [9, 10, 49-52].

ii.  Syntax. Measures of sentence structure and grammatical complexity. This included
quantification of various phrase types (e.g., Noun Phrases, Verb Phrases, Prepositional
Phrases), analysis of core syntactic dependencies and relations (e.g., nominal subjects,
direct objects, adverbial clause modifiers), and overall sentence complexity metrics (e.g.,
Average Sentence Length, T-units, and syntactic tree depth/Yngve load). These measures
quantify impairments of sentence structure (e.g., subject-verb-object order), grammatical
rules (e.g., agreement between subject and verb), and phrase structure (e.g., noun phrases,
verb phrases) [53-57].

iii.  Semantics. Primarily focused on Named Entity Recognition (NER), which involves
identifying and categorizing named entities in text into predefined classes such as persons,

organizations, locations, dates, and quantities.

These grammatical analyses utilized the Universal Dependencies framework for
standardized annotation [78] and custom made metrics, which were systematically selected using
both established measures based on established theoretical frameworks in clinical linguistics and
their demonstrated sensitivity to pathological language changes in neurogenic communication
disorders (like counts of nouns and verbs) and novel measures that aim to encompass
microstructural elements (phonology, morphology), macrostructural components (syntax,

semantics), and pragmatic dimensions.

Thus, these measures aim to provide a comprehensive characterization of language
impairments that aligns with current models of linguistic breakdown in clinical populations. By
capturing this full spectrum of linguistic variation, the analysis framework enables detection of
subtle but clinically significant changes that might be overlooked by assessments targeting only
isolated linguistic domains. A complete list of all measures and their detailed operational
definitions is provided in Supplementary Data 1. Given this large feature set, the analyses
presented in this paper prioritize a subset of measures selected for their demonstrated high

sensitivity and specificity in distinguishing between the diagnostic groups (LHD, Dementia, MCI,



RHS, TBI) and Healthy Controls, as well as differentiating the clinical groups from one another.
An exhaustive output of all statistical results for every measure is available in the Supplementary

Materials.

2.3 Visualizing linguistic performance across diagnostic groups

To explore patterns in linguistic performance across diagnostic groups, we conducted an
unsupervised dimensionality reduction analysis. We standardized all linguistic variables (mean =
0, SD = 1) to ensure equal weighting. We applied Principal Component Analysis (PCA) [79] to
identify the main axes of variation in the data and Uniform Manifold Approximation and
Projection (UMAP) [80, 81] to generate a nonlinear, two-dimensional embedding that preserves
local similarities. UMAP was configured with n neighbors = 15 and min dist = 0.1, and both
methods used a random seed for reproducibility. To enhance interpretability, extreme outliers
(beyond 1.5 x IQR in the reduced dimensions) were excluded from visualizations (retaining 8,927
and 9,791 participants for PCA and UMAP, respectively). The resulting embeddings were colored

by clinical diagnosis to assess the degree of separation or overlap among groups.

2.4 Machine Learning Pipelines
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Figure 2 NeuroScreen machine learning pipeline architecture for automated neurological
assessment. The comprehensive workflow shows the development and validation of a diagnostic
system that analyzes language production to distinguish between neurological conditions. Input
data comprises speech and text samples from participants across six diagnostic groups: Left
Hemisphere Damage (LHD), Right Hemisphere Damage (RHD), Dementia, Mild Cognitive
Impairment (MCI), Traumatic Brain Injury (TBI), and Healthy Controls. Language production
tasks undergo automated linguistic feature extraction across six domains: Lexicon (vocabulary
richness), Phonology (speech sound patterns), Morphology (word formation), Syntax
(grammatical structure), Semantics (meaning content), and Readability (text complexity). The
preprocessing pipeline includes quality control checks, speaker leakage detection, correlated
feature removal, mean imputation for missing values, z-score standardization, and principal
component analysis for dimensionality reduction (retaining 95% variance). Five machine learning
algorithms are systematically evaluated: Logistic Regression (LR), Random Forest (RF), Support
Vector Machine (SVM), Gradient Boosting (GB), and Deep Neural Network (DNN). Model
optimization employs hyperparameter tuning with GroupKFold cross-validation and
randomized/halving grid search. Synthetic ‘Minority Oversampling Technique (SMOTE)
addresses class imbalance. The validated models comprise the NeuroScreen diagnostic tool for

objective, automated neurological assessment based on quantitative linguistic analysis.

We designed a machine learning pipeline to classify a speaker's diagnosis into one of six
categories based on statistical features derived from language productions on tasks, namely patient
with LHD, RHD, dementia, MCI, TBI, and HCs. The pipeline is designed to manage speaker-
dependent data, address class imbalance, and a provide comprehensive, comparative evaluation of
multiple machine learning (ML) models, namely include Random Forest, Support Vector Machine
(SVM), Logistic Regression, Gradient Boosting, and a Deep Neural Network (DNN). The entire
process, from data preparation to model evaluation, was conducted in a Python environment
utilizing pandas for data manipulation [82], scikit-learn [83] and imbalanced-learn [84] for

machine learning algorithms. The deep learning component was build using Tensorflow [85].

2.4.1 Data Preparation and Cohort Definition

The core of our methodology is built upon the principle of speaker-independent validation, which

is crucial for developing models that can generalize to new, unseen individuals rather than



memorizing characteristics of specific speakers in the training set. To facilitate this, a designated
speaker identifier column was used to group data points belonging to the same individual. The

dataset was then partitioned into features and the target variable.

To ensure that the model evaluation provides a realistic estimate of performance on new
individuals, a strict speaker-independent splitting protocol was enforced. The dataset was divided
randomly into a training set (80%) and a hold-out test set (20%) using the GroupShuffleSplit
strategy. This method guarantees that all data points from any given speaker are confined to only
one of the sets (either training or testing), completely preventing data leakage between them. This
approach is critical for assessing the model's ability to generalize beyond the specific speakers it

was trained on.

2.4.2 Preprocessing and Feature Engineering Pipeline

A multi-step preprocessing pipeline was applied sequentially to the data. Crucially, all
preprocessing steps were fitted only on the training data to prevent information from the test set
from influencing the training process. The same fitted transformers were then used to transform

both the training and test sets.

Missing values in the feature set were managed by imputing them with the mean of their

respective columns, calculated from the training data.

To reduce multicollinearity and model complexity, highly correlated features were removed.
A Pearson correlation matrix was computed on the training set, and for any pair of features
with a correlation coefficient and we evaluated various threshold features, for correlations

greater than 0.90, one of the features was discarded.

The features were standardized by removing the mean and scaling to unit variance using the
StandardScaler [83]. This transformation ensures that features with larger scales do not
disproportionately influence model training, which is particularly important for distance-based

algorithms like SVM and regularization models like Logistic Regression.

Principal Component Analysis (PCA) was employed as the final feature engineering step. PCA
transforms the standardized features into a smaller set of uncorrelated principal components.

The number of components was chosen to retain 95% of the original variance in the training



data, effectively reducing noise and the dimensionality of the feature space while preserving

most of the relevant information.

2.4.3 Model Training, Imbalance Handling, and Hyperparameter Optimization

We have evaluated five distinct classification models to explore a range of algorithmic approaches:
Logistic Regression (LG), Random Forest, Support Vector Machine (SVM) with an RBF kernel,
Gradient Boosting, and a feedforward Deep Neural Network (DNN). We selected these models to
allow for a comprehensive analysis of the dataset and selection of a model that explain the data.
More specifically, the following models were selected:

1. LG is a fundamental linear classification algorithm. It works by fitting a linear equation
to the features and then applying a logistic function (or sigmoid function) to the output to return a
probability between 0 and 1. This probability is then used to predict the class. LG serves as a

baseline model [86].

2. RFs is an ensemble learning method; it constructs many individual decision trees during
training. It can capture complex, non-linear relationships in the data without requiring explicit
transformations. It is generally robust to overfitting, especially when compared to a single decision

tree as it averages the predictions of many trees [87].

3. SVM models detect the optimal hyperplane (or decision boundary) that best separates the
classes in the feature space. SVM can model both linear and non-linear boundary by mapping the

data into a higher-dimensional space, with good generalization performance on unseen data [88].

4. GB is another powerful ensemble technique like the RFs, which builds models
sequentially. It starts with a simple model and then iteratively adds new decision trees that are
specifically trained to correct the errors made by the previous ones. RFs, however, build trees
independently and in parallel whereas GBs are sequential with an error-correcting approach

leading to more powerful and flexible model [86].

5. DNN consists of an input layer, multiple “hidden” layers of interconnected nodes
(neurons), and an output layer. The network learns to detect complex patterns and features by
adjusting the connection weights between neurons during training. The DNN approach can



uncover patterns in the data than the other, more traditional machine learning models might miss
[89].

The data exhibited an imbalanced class distribution as there are fewer patients with MCI,
RHD, and TBI, than patients with dementia, LHD, and HC. To mitigate the risk of models
becoming biased towards the majority class, we integrated the SMOTE directly into our modeling
pipeline [90]. For each model, a pipeline was constructed with SMOTE as the initial step. This
approach ensures that over-sampling is performed correctly within each cross-validation fold:
SMOTE is fitted and applied only to the training data partition of a fold, generating synthetic
samples for the minority classes before the classifier is trained. The validation partition of the fold
remains in its original, imbalanced state, providing an unbiased evaluation of the model's
performance. This in-pipeline application of SMOTE is crucial for preventing data leakage and
obtaining a reliable estimate of model generalizability. We defined a custom DynamicSMOTE
class to automatically adjust the k neighbors parameter, preventing errors in cross-validation folds

where a minority class had very few samples.

To identify the optimal set of hyperparameters for each model, we employed a hybrid search
strategy using a participant-aware data partitioning with GroupKFold cross-validation (with 5
folds) to maintain speaker independence. For the traditional models (Logistic Regression, Random
Forest, SVM, Gradient Boosting), we used HalvingRandomSearchCV. This efficient method starts
by evaluating many hyperparameter combinations on a small subset of the data and iteratively

prunes fewer promising candidates, allocating more resources to the best-performing ones.

For the computationally intensive Deep Neural Network (DNN), we used
RandomizedSearchCV to sample a fixed number of hyperparameter combinations from the search
space. The performance of each combination was evaluated based on its default scoring metric.
The best hyperparameters for SMOTE's k neighbors parameter were also determined during this
search. The DNN architecture was also part of the hyperparameter search. Key parameters tuned
included the number of hidden layers, the number of neurons, the dropout rate, batch size, and the
learning rate for the Adam optimizer. An “early stopping callback” was used to prevent overfitting
by halting training when performance on the loss function stopped improving.



2.5 Model Evaluation

After hyperparameter tuning, the best-performing version of each model was evaluated on the

completely unseen hold-out test set. Model performance was assessed using a comprehensive set

of metrics to provide a holistic view of their classification capabilities:

1) Accuracy is the percentage of predictions that were correct out of all predictions made.

2)

Sensitivity / Recall =

If your model correctly predicts 85 out of 100 cases, your accuracy is 85%.

Balanced Accuracy solves this problem by averaging the accuracy within each class. It
calculates the recall (true positive rate) for each class separately, then takes the average.
In other words, the balanced accuracy is defined as the average of sensitivity (true-
positive rate) and specificity (true-negative rate) for the two classes in a binary
classification “Patient vs. Healthy Control (HC)”, the Specificity (HC Recall) (1) and the
Sensitivity (Patient Recall) (2) is calculated. Then the Balanced Accuracy is the sum of
the Specificity and Sensitivity divided by two (2), the number of classes in a binary

classification.

number of true HCs correctly predicted as HC
Total number of HCs

Specificity = (1)

number of patient samples (any subtype) predicted as patient

(2)

Total number of patient samples

3) F1-Score (Weighted) addresses the trade-off between recall (2) and precision (3). The

Precision =

F1-score is the harmonic mean of these two, giving you a single number that balances
both concerns. The weighted version calculates Fl-scores for each class and then
averages them based on how many samples each class has, making it appropriate for

imbalanced datasets.

True Positives actual positives among all predicted ones
True Positives + False Positives predicted positives

(3)

4) Cohen's Kappa measures how much better your model performs compared to random

chance. It is particularly valuable because it accounts for the possibility that some correct



predictions might just be lucky guesses. Kappa values range from -1 to 1: 1.0: Perfect
agreement beyond chance and 0.0: Agreement is no better than random chance; Negative
values mean worse than random chance

5) AUC-ROC (Area Under the Receiver Operating Characteristic Curve). The ROC curve
plots your model's true positive rate against its false positive rate across all possible
classification thresholds. The AUC-ROC tells you how well your model can distinguish
between classes. AUC = 1.0: Perfect classifier

6) AUC-PR (Area Under the Precision-Recall Curve). ROC curves can often be optimistic
on imbalanced datasets, precision-recall curves focus specifically on the positive class
performance. This makes AUC-PR especially valuable when you care more about
correctly identifying the minority class. The PR curve plots precision against recall at
different thresholds. AUC-PR is particularly informative for imbalanced data.

7) Confusion matrices were generated for each model to visualize the distribution of correct
and incorrect predictions across the different classes. For tree-based models (Random
Forest, Gradient Boosting), feature importance scores were calculated and visualized to
provide insights into the most influential principal components for classification. Finally,
the best overall model, along with the fitted preprocessing transformers, was saved for

potential future deployment.

2.6 Statistics

To assess the influence of clinical diagnosis on each linguistic outcome variable, we utilized an
automated mixed-effects modeling pipeline. This analysis included participants from the five
diagnostic groups (LHD, Dementia, MCI, RHS, TBI) and the Healthy Control (HC) group. The
pipeline, developed in R [91] was designed to be flexible, data-driven, and robust to violations of

statistical assumptions common in linguistic data.

For each linguistic variable, a mixed-effects model was implemented. Diagnosis was

specified as a fixed effect to determine its influence on the outcome.

As discussed earlier there is variation in the subgroups within the participants and the tasks

they perform, to appropriately account for the non-independence of data arising from the study



design, and given the complexity of the databases, two random intercepts were included in the

model:

1. The (1 | Speaker) term addresses that multiple observations (i.e., linguistic measures from
one or more tasks) originate from the same individual. By including a random intercept for
each speaker, the model accounts for individual-specific baseline differences in linguistic
performance, thereby modeling the repeated measures dimension of the data.

2. The (1| Task) term addresses the inherent variability across different elicitation tasks (e.qg.,
“Cinderella,” “Flood,” and “Cookie Theft,” as listed in Table 1). Given that the study
design involved diverse groups of participants undertaking varying subsets of these tasks,
this random intercept allows the model to estimate an average deviation from the overall
mean for each specific task. This effectively controls for baseline differences in how tasks

might elicit certain linguistic features, regardless of the speaker or their diagnosis.

These random effects structure is robust to the unbalanced nature of task administration (i.e.,
not all participants completed all tasks, and tasks were not fully crossed with participants). It allows
for the estimation of the fixed effect of 'Diagnosis’ while simultaneously partitioning out variance

attributable to individual speakers and specific tasks. The general model structure was:
Outcome~Diagnosis + (1|Task) + (1|Speaker) (3)

The analytical pipeline systematically selected the most appropriate statistical model based
on the distribution of each dependent variable. This adaptive process involved fitting Gaussian
Linear Mixed-Effects Models (LMMs) for continuous variables, using robust LMMs if residual
diagnostics (via the DHARMa package [92]) indicated violations of model assumptions, and
employing Generalized Linear Mixed-Effects Models (GLMMs) with appropriate distributions
(e.g., binomial, Poisson, or negative binomial) for binary or count data, including checks for
overdispersion and zero-inflation. If a suitable model could not be fitted through these steps, a
rank-based LMM was applied as a robust fallback. (Further details on the specific model selection

criteria and R packages, such as ImerTest [93] and robustimm [94].

When a significant main effect of 'Diagnosis’ was found (typically p<.05), post-hoc pairwise

comparisons were conducted between all diagnostic groups using estimated marginal means (via



the emmeans package [95]). Tukey's method was applied to adjust for multiple comparisons.

Group means and confidence intervals are reported to aid in the interpretation of these differences.

To create a ranked list of linguistic signatures, a key statistic from the post-hoc analysis of
your mixed-effects models. A larger z-ratio indicates a more robust and statistically significant
difference. It simultaneously accounts for the size of the difference and the precision of the
measurement. We use the absolute value of the z-ratio for ranking because we are interested in the
magnitude of the difference, regardless of whether a feature's value increased or decreased. This
allows us to directly compare the most impactful features across all groups. The direction of the

change (increase or decrease) is then indicated separately in the table with arrows.
3 Results

We examined the distinct linguistic production of each group on a comprehensive set of linguistic
automated measures spanning lexical, morphological, phonological, readability, semantic, and
syntactic domains. Figure 3 shows a UMAP plot illustrating the distribution of linguistic profiles
across six clinical groups.! Centroids (marked with 'x) separate HCs, patients with LHD,
Dementia, from the three other conditions (that is, patients with TBI, RHD, and MCI), which show
significant overlap indicating that individual language abilities vary widely within each diagnosis
and often resemble those of other three diagnostic categories. To study the linguistic differences
of the diagnostic groups indetail, we conducted a supervised ML analysis and designed regression

mixed effect models.

L1t uses all data, that is before dimensionality reduction.
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Figure 3. Uniform Manifold Approximation and Projection (UMAP) visualization of
linguistic profiles across diagnostic groups. This plot represents the non-linear dimensionality
reduction of linguistic features extracted from speech samples (covering syntax, morphology,
phonology, semantics, lexicon, and readability). (A) The axes (UMAP1 and UMAP2) are
dimensionless coordinates derived to preserve the local neighborhood structure of the high-
dimensional data; absolute values are arbitrary, but proximity between points indicates
similarity in the overall linguistic phenotype. (B) Colored points represent individual participants.
The X' markers indicate the centroid (geometric mean) for each diagnostic group, and shaded
ellipses illustrate the general distribution. (C) The spatial separation of Left Hemisphere Damage
(LHD) and Dementia from Healthy Controls (HC) reflects their distinct and severe linguistic
deficits (e.g., syntactic simplification and lexical retrieval issues). Conversely, the significant
overlap of Mild Cognitive Impairment (MCI), Right Hemisphere Damage (RHD), and Traumatic
Brain Injury (TBI) with the HC cluster indicates that these conditions manifest with subtler
linguistic deviations and higher individual variability, often preserving core structural language

elements. (Trustworthiness: 0.868)

To investigate the global structure of linguistic variations across diagnostic groups, we performed

a Uniform Manifold Approximation and Projection (UMAP) analysis [80, 81]. Figure 3 displays



the two-dimensional embedding of the comprehensive linguistic profiles (derived from the
extracted linguistic features) for all participants. Interpretation of the UMAP Projection Unlike
linear projections (e.g., PCA), the axes in Figure 3 (UMAP 1 and UMAP 2) do not correspond to
specific, single linguistic variables. Instead, they represent non-linear, dimensionless coordinates
that preserve the local neighborhood structure of the high-dimensional data. Consequently, the
proximity between data points indicates the similarity of their overall linguistic profiles: points
clustered closely together represent individuals with highly similar speech patterns across the
domains of morphology, syntax, lexicon, and phonology. The ‘X’ markers indicate the centroids
(geometric centers) of each diagnostic group, illustrating the average location of that group's

linguistic profile in the projected space.

The distribution observed in Figure 3 is a direct result of the feature selection process, where we
retained robust, non-redundant measures across all linguistic levels. This multidimensional
approach reveals three primary patterns of distribution. Firstly, the distinct clusters in LHD and
Dementia show that the LHD group forms a distinct cluster significantly separated from the HCx.
This separation aligns with the severe deficits in syntax and phonology (e.g., reduced complex
syllable structures and functional words) identified in our statistical analysis. Similarly, the

Dementia group separates from HCs, driven by their specific lexico-semantic impairments.

In contrast, the TBI, MCI, and RHD groups show substantial overlap with each other and the HC
group. This visual overlap suggests that while these conditions have unique linguistic markers (as
detailed in Table 6), their overall linguistic footprint is less distinct than that of LHD. The wide
dispersion of the LHD and TBI clouds relative to the tighter HC cluster illustrates the high variance
in these populations—reflecting that brain injury affects language production in heterogeneous
ways depending on severity and lesion location. This unsupervised visualization serves as a
validation of the supervised ML results presented in subsequent sections, confirming that while
LHD and Dementia present strong, separable signals, conditions like MCl and RHD present subtler
linguistic deviations that require the high-dimensional discrimination provided by the

NeuroScreen models.



3.1 How well do the models distinguish patients and healthy controls?

To assess how well the models distinguish patients and HCs, we have collapsed all five patient
subtypes into one “Patient” group, and we can compute the results shown in Table 4. The plethora
of available data for this classification enabled the models to perform exceptional well. LR is
essentially perfect at flagging “Patient” vs. “HC” (balanced accuracy = 99%). The DNN and the
SVM both perform close to 95% thresholds; the RF and the GB (were close to 90%). Taking the
best ML models into account (LR, DNN, and SVM), two main findings are important. First, all
the ML models distinguish patients and HCs; second, the linguistic measures used by the ML
models distinguish the groups, so they can function as linguistic markers. Although these are multi-
class rather than pure HC vs. Patient, their reported AUC-ROC and AUC-PR reflect overall
separability.

Table 4 Model performance of the binary classification “Patient Group” vs. Healthy Controls.

Model HC Recall Patient Recall Balanced AUC-  AUC-
(Specificity) (Sensitivity) Accuracy ROC PR
LR 0.98 0.99 0.99 0.920 0.909
SVM 0.93 0.98 0.96 0.970 0.972
DNN 0.91 0.99 0.95 0.966 0.935
GB 0.88 0.93 0.90 0.918 0.925
RF  0.86 0.89 0.88 0.902 0.897

3.2 How well does the ML model distinguish each sub-group in the data?

Above we collapsed all patients into one group, to determine howe well the model identifies
patients from HCs. In this section, we discuss the performance of the models as multiclass
classifiers, to determine how well the model distinguishes each group from each individual

subgroup.

When examining the classifier’s performance on all categories, all models demonstrate robust
performance with scores predominantly above 0.8 across most metrics (Figure 4 and

Supplementary Data 4). For the detection of patients with LHD, all models excel here (F1 >0.92),



with SVM slightly edging out the others (0.96) thanks to near-perfect precision (0.94) and recall
(0.99). For patients with dementia LR is most balanced (F1 = 0.88), combining good precision
(0.83) with high recall (0.94). The DNN overcalls patients (precision 0.61) despite high recall
(0.98), yielding a lower F1. The detection of the HC within the LR again leads (F1 = 0.98),
misclassifying only ~2 % of controls, while the tree-based models lag (GB 0.85, RF 0.81). For the
MCI, SVM outperformed the other models (F1 = 0.60) by balancing 0.63 precision with 0.56
recall. The detection of minority classes was poor, namely patients with RHD (DNN, F = 0.56 and
low precision 0.17) comes at poor and TBI (SVM, F1 = 0.58, combining 0.71 precision with 0.50
recall). These suggests either both the need for more data or that language markers are overlapping
so that the models are not discriminating these groups well. This will become evident from the

following statistical analysis of markers associated with each condition in the following sections.

To address the problem of the minority classes, we collapsed the patient categories with MCI,
RHD, and TBI into a category “Other Neurological Conditions”. In this way, the model has an
exceptionally good performance, allowing the detection of patients with Dementia, LHD, and HCs
and all the minority classes together. In this case, the model-specific performance across all
categories. SVM demonstrates consistent performance with balanced precision and recall across
LHD (precision: 0.94, recall: 0.99), Dementia (precision: 0.89, recall: 0.83), HC (precision: 0.94,
recall: 0.93), and Other neurological conditions (precision: 0.94, recall: 0.72). In contrast, DNN
exhibits perfect precision for LHD (1.00) but shows high recall sensitivity for Dementia (0.98) and
Other Neurological conditions (0.93) at the cost of reduced precision (0.61 and 0.59, respectively).
Support values indicate the sample sizes for each category: LHD (n=1173), HC (n=573), Other

(n=211), and Dementia (n=47), with Dementia representing the smallest patient subgroup.
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Figure 3 Two-stage hierarchical classification system  for distinguishing neurological
patients from healthy controls and subsequent patient subgroup classification. The flowchart
illustrates a binary decision tree where test samples are first classified as either patient or healthy
control (HC), followed by multi-class classification of patient samples into specific neurological
conditions. The first stage achieves high performance with F1 scores of 96% for patient detection.
Patients are subsequently classified into Left Hemisphere Damage (LHD, F1 = 96%), Dementia
(F1 = 86%), or Other Neurological Conditions including Mild Cognitive Impairment (MCI),
Traumatic Brain Injury (TBI), and Right Hemisphere Damage (RHD) (F1 = 82%).

3.3 Which linguistic measures differ most due to diagnostic groups?

Healthy Controls (HC) served as the intercept, and the estimates for each diagnostic group (LHD,
Dementia, MCI, RHD, TBI) represent the difference from this HC baseline. The analysis of
various linguistic measures reveals that the diagnosis has a statistically significant and often
substantial impact across a wide array of speech and language characteristics provides the top
features with the largest explanatory power related to neurological condition. The complete results

are shown in Appendix 2.



The strength of this impact, however, varies considerably among measures, as indicated by Partial
Eta Squared (Partial #2) values for the Diagnosis and the Marginal R-squared (R Marginal) for the
overall fixed effects of the models is shown in Table 5. All p-values for the reported F-statistics
are extremely small (e.g., p < .001), indicating high statistical significance for the effect of
Diagnosis on these measures. Note that from the presentation below we have removed measures
with extremely high Partial #2 values but very low denominator degrees of freedom, suggesting
their large effect sizes in this sample should be interpreted with caution due to potential model
instability or low power for the inferential test despite the large point estimate of effect, also

removed were measures with non-significant effects of diagnosis.

Table 5 Measures ranked by effect size, highlighting Large and Robust Effect Sizes (Partial #2 >
0.15). The table presents the top 29 linguistic features ranked by partial eta-squared values,
representing the proportion of variance in each measure explained by diagnostic group
membership. Features are categorized into five linguistic domains: Morphology (word structure
and grammatical forms), Lexicon (vocabulary and word usage), Phonology (sound patterns and
syllable structure), and Syntax (grammatical relationships and phrase structure). F-statistics,
degrees of freedom (Num DF = numerator, Den DF = denominator), p-values, partial #2, and
marginal R? values are reported for each measure. Morphological features dominate the top
rankings, with Indefinite Count showing the largest effect size (partial 2 = 0.29, F = 87.39, p <
0.001), followed by Cardinal Number Count (partial 2 = 0.26, F = 90.88, p < 0.001). Lexical
diversity measures (Types, Content Words Unique) and phonological complexity features (CVCC,
syllable patterns) also demonstrate substantial discriminative power. All reported features
achieved statistical significance (p < 0.001) with effect sizes meeting the threshold for practical

significance in neurological assessment.

Measure Categor F Num P Partial #? R?
Den DF )
y DF value Marginal
1 Indefinite Count Morpho 87.39 2.00 431.02 1.38E- 0.29 0.26
logy 32
2 Cardinal Morpho  90.88 2.00 526.94 1.24E- 0.26 0.24

Number Count  logy 34
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Adjective Count
Adjective
Phrases
Adjectival
modifier Count
Numeral Count
Noun Count
Expletive Count
Syllables

cvC

Content Words
Total

Lexicon

Phonolo

gy
Morpho

logy
Lexicon

Syntax

Phonolo

gy
Syntax

Morpho

logy
Morpho
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logy
Morpho

logy
Morpho

logy
Phonolo

gy
Phonolo

ay
Lexicon

62.63

63.29

56.81
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41.96
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20 Total Characters Lexicon 51.64 2.00 585.38 2.22E- 0.15 0.17

in Text Letters 21
Only

21 Corrected TTR  Lexicon 82.39  2.00 937.05 1.09E- 0.15 0.20
CTTR 33

22 Prepositional Syntax 51.04 2.00 581.51 3.78E- 0.15 0.18
modifier Count 21

23 Prepositional Syntax 51.79  2.00 590.31 1.88E- 0.15 0.18
Phrases 21

24 Unclassified Syntax 10.19  2.00 117.38 8.29E- 0.15 0.05
dependent 05

Count

25 Adposition Morpho 51.23  2.00 593.33 3.00E- 0.15 0.18
Count logy 21

26 CV Phonolo 59.48  2.00 693.62  1.44E- 0.15 0.18
aQy 24

27 Verb Phrases Syntax 50.38  2.00 590.91 6.28E- 0.15 0.17
21

28 Direct object Syntax 46.34  2.00 54358 2.62E- 0.15 0.17
Count 19

29 Words Tokens  Lexicon 49,53  2.00 582,53 1.36E- 0.15 0.17
20

Diagnosis demonstrates a widespread influence on a multitude of linguistic measures. The
strongest differentiating features (those with large Partial #? values and robust model fits) are
concentrated in areas of semantic content (especially numerical and definiteness marking), overall
lexical production and diversity, counts of various morphological categories (nouns, adjectives,
plurals), and basic phonological/syllable structure counts. Additionally, measures of syntactic
complexity and certain readability characteristics also show substantial impact.

These findings highlight that the neurological conditions under study manifest with distinct
and quantifiable linguistic profiles. The identified measures with the largest effect sizes are prime

candidates for inclusion in diagnostic models or for tracking linguistic changes associated with



these conditions. The high R2 Marginal values for many of these top-ranking measures further
underscore the explanatory power of Diagnosis in accounting for the observed linguistic variations.
A substantial number of linguistic measures demonstrated large and robust effects of Diagnosis,
indicating these are strong candidates for differentiating between the groups. These involve all the
aspects of grammar like phonology, morphology, syntax and semantics, lexical usage, and

readability that is text difficulty.
Measures with Medium Effects (Partial #2 ~0.06 - 0.13)

Beyond the large effects, a broad range of other measures showed medium-sized effects of
Diagnosis. These span across all linguistic domains, which we included like the total Number of
Function Words (Partial #? = 0.14), phonology, such as the different syllable types, like VC and
CCVCC (Partial #2=0.14), morphology including the Number of Verbs (Partial #2 = 0.14), syntax
like the number of Complex thematic units (T units), the number of matrix sentences (Root),
dependent clauses, and the object of preposition. As discussed below although the readability
measures did not make it to the list shown in Table 5, several readability measures remain
important as they achieve a Partial #2 between 0.14 and 0.13; these include the Estimated Reading
Time (sec), Smog Index, Total Classical Yngve Load, Difficult Words; the latter is a measure

based on a standardized dictionary [61].

3.4 Which are the distinctive features for each neurological condition compared to HC?

In this section, we summarize the high-level “linguistic signatures” that distinguish each group.
Table 6 below synthesizes the results for each neurological condition, by highlighting the top ten
(10) linguistic features that most strongly distinguish it from Healthy Controls by using the
magnitude of the z scores from the post-hoc analysis (emmeans). The complete list of distinctive

linguistic features is provided in the Supplementary Table 5.

Table 6 Top 10 distinctive linguistic features for each neurological condition compared to healthy
controls. Features are ranked by absolute t-ratio values from post-hoc pairwise comparisons,
identifying the most diagnostically discriminative linguistic markers for each condition. Upward
arrows (1) indicate significantly increased measures in patient groups relative to healthy controls;

downward arrows (] ) indicate significantly decreased measures.



Rank LHD Dementia TBI MCI RHD
1 1 Verb Type: | CCVvCCC | Pron Type: | Clausal | Degree:
Modal Ratio Relative Count modifier of noun Comparative
Count Count
2 | Complement 1 Dative Count | CCVCCC | 5 syllables | Complement
of preposition word of preposition
Count Count
3 | 5 syllables | Degree | 5 syllables | Case marker | CCVvCCC
word Comparative word Count
Count
4 | Case marker 1 Verb Type: | Degree | CCvCCC | 5 syllables
Count Mod Ratio Comparative word
Count
5 1+ CCCV | Complement | Dative Count | Dative Count | Pron Type:
of preposition Relative Count
Count
6 | Pron Type: | 5 syllables | Complement | Complement | Degree
Relative Count  word of preposition of preposition Comparative
Count Count Ratio
7 | CCVCCC 1 Clausal | Clausal | Pron Type: | Case marker
modifier of noun modifier of noun Relative Count Count
Count Count
8 | Clausal | Pron Type: | Case marker | Degree | Clausal
modifier of noun Relative Count Count Comparative modifier of noun
Count Count Count
9 1 Degree 1 CCCV 1 Verb Type: 1 Verb Type: 1+ CCCV
Comparative Modal Ratio Mod Ratio
Ratio
10 | Dative Count 1 Case marker | Degree | CCCV 1 Dative Count

Count

Comparative

Ratio

Note: Features are ranked based on the absolute t-ratio from post-hoc pairwise comparisons against

the Healthy Control group. (]) indicates a significant decrease and (1) indicates a significant



increase in the measure for the patient group compared to controls. LHD = Left Hemisphere
Damage; TBI = Traumatic Brain Injury; MCI = Mild Cognitive Impairment. Linguistic features
span multiple domains including morphology (verb types, degree markers, case markers, dative
constructions), phonology (syllable patterns: CCVVCCC = consonant-consonant-vowel-consonant-
consonant-consonant, CCCV = consonant-consonant-consonant-vowel, 5-syllable words), syntax

(clausal modifiers, complement structures), and lexicon (pronoun types).

Several key patterns emerge from the statistical analysis. Individuals with LHD are
characterized by a widespread disruption across multiple linguistic domains. While the most
discriminating feature is an increased ratio of verb-modifying word types, the majority of the top-
10 features are decreases (| ), reflecting a reduction in phonological complexity (e.g., 5 syllables
word, CCVCCC), syntactic structures (Complement of preposition ), and the use of specific word
types (Pronoun Type: Relative Pronouns). Individuals with Dementia show a pattern of
impairment that is also broad but appears centered on the use of specific content and function
words (Verb Type: Modal) and a decrease relative to HCs on measures of phonological complexity
(5 syllables word, CCVCCC). Individuals with TBI present a mixed profile of mostly decreases in
its top features, suggesting a unique pattern of linguistic disruption with a notable increases in of
ratio of Modal Verbs. Individuals with MCI is uniquely distinguished by a strong decrease in
measures that associated with increased production complexity like five (5) syllable-words,
syllables with complex articulatory patterns (CCVCCC, CCCV) and complex syntactic patterns
such as the number of Clausal Modifier of Nouns and Complement of Prepositions. This pattern
of decreased production in several of the top-ranking features supports the hypothesis that
individuals with MCI more general disruptions in language and domains like memory that can
explain their use of simpler patterns. Individuals with RHD shows the most subtle linguistic
profile. Its top discriminators are related to the diminished production of the number Comparative
Adjectives, Complements of Prepositions and complex syllable patterns (CCVCCC) and
phonological structures (5 syllable-words).

A comprehensive list of all statistical comparisons for every measure, is showing in
Supplementary Data 6 and the primary linguistic signatures based on measures that resulted in

statistical significance are reported in Supplementary Table 9.



4  Discussion

Language is an extraordinarily complex a distributed network, interfacing with human faculties
and cognitive processes such as memory, attention, executive functions, and emotions [96-98].
Damage in brain areas responsible for language or areas affecting these cognitive systems is
intrinsically reflected in an individual's language [99]. An impaired cognitive function is often the
earliest indication of neurological conditions, like mild cognitive impairment (MCI) and dementia,
or can designate another acquired damage like left (LHD) and right hemisphere damage (RHD),
and traumatic brain injury (TBI) and can manifest as a subtle or severe change in linguistic
expression, lexical choice, syntactic structure, acoustic properties, and discourse coherence. This
makes speech and language a uniquely rich, non-invasive, and continuously available source of
medical information, offering a veritable window into an individual's brain health and cognitive
status. The potential to harness this data for diagnostic and prognostic purposes is immense.
Traditional approaches are time-consuming, require controlled clinical settings, and can be
stressful to the patients. These drawbacks of traditional methods can be addressed by the recent
advancements in Machine Learning (ML) and Natural Language Processing (NLP), demonstrating
remarkable capabilities in pattern recognition, data analysis, and predictive modeling. In our
previous research, we have already shown that ML techniques can enhance the diagnostic accuracy
for neurodegenerative disorders by identifying complex patterns in clinical and neuroimaging data
that often elude conventional analytical approaches [21, 43-45]. Additionally, this underscores the
methodological capacity of Al algorithms to manage and interpret intricate medical data, a
capability directly transferable to the complexities of speech. In this study, we employed NLP,
ML, and robust statistical approach to extract relevant linguistic information and detect signatures
for text productions of patients in a variety of discoursal tasks. That resulted into an analysis of

292 linguistic measures from distinct language domains.

4.1 Language Discriminates Diverse Neurological Conditions: NeuroScreen

Having a high-performing, end-to-end model is critical for its real-world usefulness in a clinical
setting. The excellent performance metrics demonstrate that this system is not just a theoretical
exercise but a potentially powerful diagnostic tool. The model's ability to distinguish between
patients and healthy controls with up to 99% accuracy is its most crucial feature. This near-perfect

performance means the system can function as a reliable screening tool for early detection and



characterization of neurological conditions. The model excels at identifying common and distinct
conditions like LHD with a 96% F1 score and Dementia with an 88% F1 score. This provides a
strong basis as a useful tool in the clinic to advice the diagnostic process. Since the model had
difficulty with less linguistically distinct conditions (like MCI, RHD, and TBI), we had grouped
them into “Other Neurological Conditions” category. This approach provides a more realistic
clinical pipeline, namely first an early diagnosis is being performed to distinguish this group from
HCs, then we distinguish patients with dementia and patients that require further specialized
neurological examination. In this way the NeuroScreen flags these patients for more specialized
expert review at the linguistic level yet, it does not get at propositional, macrostructural, or
pragmatic levels, required for find grained distinctions especially between TBI, RHD, and MCI
where these conditions are known to differ more readily from HCs. Therefore, while NeuroScreen
excels in distinguishing patients from HCs, its diagnostic precision on subtyping between patient
groups is not overstated, being a complementary to, not a substitute for, gold-standard assessments
(e.g., WAB-R, BDAE).

Clinicians can trust the model to accurately flag individuals who need further evaluation,
minimizing the chances of missing a patient with a neurological condition. It automates the initial
assessment, saving valuable time for specialists and allowing healthcare systems to screen more
people, more quickly. Beyond simply identifying a patient, the model's strength lies in its ability
to differentiate between specific neurological conditions. Knowing which condition a person has
is essential for providing the right treatment. In essence, this two-stage, end-to-end performance
creates a complete and practical workflow. It reliably filters the general population and then
provides a highly accurate differential diagnosis for common conditions while intelligently
triaging more complex cases. This makes the system on of the most powerful and scalable tool for
clinical decision support [21, 43, 45, 62-65, 67-69].

The reasons are twofold, we rely on a large dataset and on the large number of computational
measures that we have develop and provide within Open Brain Al [61] covering a wide range of
language domains spanning from textual readability [58-61], Lexicon and Lexical Information
[46], Phonology [47, 48], Morphology [9, 10, 49-52], Syntax [53-57], and Semantics. Finaly, this
approach demonstrates the importance of these metrics to function as linguistic signatures

indicating that symptoms associated with neurological conditions can both facilitate diagnosis and



function as therapeutic targets. The characteristics of these language signatures and their patterns

are discussed next.

4.2 Overall language characteristics

The findings revealed condition-specific distinct patterns of linguistic impairments. The most
significant differences were observed in individuals with LH stroke and dementia, TBI, MCI, and
finally RHD, which showed the most preserved language.

Concerning the lexical markers and the vocabulary usage, we found that individuals with
LHD and TBI showed significant reductions in the number of words produced and lexical
diversity. Patients with dementia also exhibited reduced word production and diversity, though to
a lesser extent while patients with MCI and RHD lexical profile was closer to that of HCs.
Concerning the phonological measurements, such as key syllable patterns and syllable complexity,
patients with LHD, TBI, and dementia groups produced fewer words of varying syllable lengths
and less complex syllable structures. Patients with RHD produced similar phonological patterns to
HCs.

In addition to the lexicon and phonology, key morphological measures that involve both the
distribution of part of speech (POS) production and inflectional morphology presented key
differences among group in the distribution of these measures [100-103]. Patients with LHD and
TBI demonstrated widespread reductions in the use of most word classes, including determiners,
adjectives, nouns, and verbs. Patients with dementia also showed a decline in the use of several

word classes whereas patients with RHD showed relatively minor differences compared to HCs.

In line with earlier findings [104-106], syntactic complexity was significantly reduced in
individuals with LHD and TBI, who produced shorter and structurally simpler sentences. Patients
with dementia also showed notable reductions in syntactic complexity. The MCI group presented
mostly reductions of the core syntactic measures whereas patients with RHD provided fewer

distinct patterns compared to HCs.

The statistical models about the readability of the text, a novel measure that we employed in
this study, reveal several important insights about the language production in the patient groups.
Individuals with LHD, TBI, and dementia was generally rated as less complex and easier to read



by various readability indices. Patients with LHD, TBI, and dementia groups used fewer named

entities like cardinal numbers and dates.

4.3 Overall Patterns Across Diagnostic Groups

In many clinical contexts, gross differential diagnosis (e.g., stroke vs. neurodegenerative dementia)
is often straightforward based on history, imaging, and basic cognitive screening, yet this study
tested whether language can serve as a scalable signal to augment established workflows — not
only for early screening before individuals reach a specialist, but also for tracking disease
progression, monitoring treatment response, and stratifying risk in already-diagnosed populations.
This broader potential is critical because many people with cognitive change are never flagged by
family, resist specialist visits, face economic or logistical barriers, or live far from tertiary care.
Language is produced ubiquitously in daily life and can be captured passively and non-invasively,
enabling remote and longitudinal monitoring. With advances in transcription and automatic speech
recognition (ASR) embedded in common digital platforms, language-based analytics could help
identify individuals with subjective cognitive complaints who are at elevated risk for mild
cognitive impairment or dementia, but also characterize evolving disease trajectories, detect
meaningful within-person change, and support clinical decision-making over time. This study
demonstrates that language can augment detection, monitoring, and management across the
continuum of disease — extending cognitive assessment into primary care, telehealth, and other
settings beyond specialized neurology clinics. Therefore, these signatures not only aid differential
diagnosis but also stratify patients for targeted intervention, aligning with precision medicine
approaches in neurorehabilitation. Table 8 associates these linguistic signatures to therapeutic

targets, showing their clinical pertinence.



Table 7. Linguistic profiles informing potential, personalized therapeutic targets per group. LHD = Left hemisphere damage; TBI =

Traumatic Brain Injury; MCI = Mild cognitive impairment; RHD = Right hemisphere disorder.

Group Lexicon & Phonology & Syntax & Readability &  Notable Patterns /
Vocabulary Morphology Structure Complexity Compensations
LHD Fewer total words, Reduced syllable Shorter, simpler Language is Impoverished semantic,
lower lexical diversity  complexity; fewer sentences markedly easier lexical, phonological,
nouns, verbs, and to read syntactic output
modifiers
TBI Fewer total and content ~ Simpler phonology;  Shorter, less Language Varied vocabulary
words but relatively mixed morphological complex sentences  objectively despite reduced output;
higher diversity within  use with some simplified simpler language in
reduced output compensatory terms of readability;
strategies simpler syntax
Dementia Slight reductions in Phonology largely Mild reduction in Moderately High individual
(amnestic) word count and intact; mild complex structures  simplified variability; some
diversity; preference for = reductions in some (e.g., dependent language objective semantic,
shorter words word classes clauses) lexical, morphological,

and syntactic

simplification




MCI Fewer total and content  Mild phonological Shorter sentences;  Language Varied vocabulary
(mostly words but relatively impairments: reduced use of simpler and despite reduced output;
amnestic) higher diversity within ~ morphology largely ~ complex syntax more accessible  simpler language in
reduced output preserved (e.g., prepositional  than controls terms of readability;
phrases) simpler syntax
RHD Similar to healthy Phonology and Syntax comparable  No significant ~ Subtle decreases in

controls overall, small
decrease in comparative
adjectives, second-
person pronouns and

cardinal numbers

morphology largely

intact

to controls

changes

specific vocabulary (e.g.,

comparative adjectives)




Expectedly, individuals with LHD consistently demonstrated the most extensive and
pronounced differences from HCs across nearly all linguistic categories as detailed in the results
section. The majority of these were characterized by significantly lower scores (negative
estimates), particularly in measures of lexical production and diversity, morphological complexity,
phonological output, and syntactic complexity. These findings corroborate our existing
understanding about the grammatical difficulties [107], reduced lexical diversity [46], and
impaired phonological output [108], but at the same time they offer a broader understanding, given
the extensive coverage our measures provide of the language domain and the systematic
integration of features spanning the entire linguistic hierarchy—from phonological structures to
discourse-level semantics. Unlike traditional clinical assessments that typically focus on isolated
linguistic domains (e.g., naming tests for semantics, sentence repetition for syntax), whereas this
approach captures the complex interplay between linguistic levels that characterizes real-world

communication.

Importantly, the results highlight previously underappreciated compensatory strategies, such
as increased reliance on proper nouns, socially salient references (e.g., persons, organizations), and
syntactic simplification through appositional and compound modifiers. This suggests that
individuals with LHD are not merely producing less language but may be restructuring their output
(whether consciously or unconsciously) to maximize communicative success within their impaired
linguistic system. Furthermore, the readability metrics provide novel, ecologically relevant
evidence that the language produced by individuals with LHD is objectively simpler and more
accessible, supporting the interpretation that both deficits and adaptations co-occur in spontaneous

language use.

Individuals with TBI also exhibited a broad range of significant differences from HCs, which
lies upon with prior evidence that has also found reductions in linguistic output (e.g., total words,
content words, unique words), complexity (e.g., Corrected TTR), and various syntactic counts
[109-111]. In several measures, the magnitude of these differences was comparable to or, in some
specific instances, even exceeded those seen in dementia. At the same time, the TBI group
displayed increased lexical diversity and preserved, or even compensatory, use of certain
morphological and syntactic features, indicating strategic adaptations rather than uniform

linguistic degradation. The semantic profile of TBI also revealed selective vulnerabilities,



particularly in numerical and personal references, suggesting domain-specific disruptions in
meaning construction rather than global semantic impairment. Importantly, the readability metrics
demonstrate that language produced by individuals with TBI is objectively simplified, mirroring
patterns seen in aphasia and underscoring the functional consequences of these linguistic changes
for everyday communication. Together, these results contribute novel, objective evidence that TBI
disrupts language in ways that are both overlapping with and distinct from classical aphasia

profiles.

The global cognitive impairment is a hallmark of dementia, this study emphasizes this by
demonstrating that spontaneous language production in this group is relatively preserved across
many core linguistic domains, particularly in phonology, syntax, and overall lexical productivity
(this is the case in amnestic dementia, but not necessarily in primary progressive aphasia, which is
not a syndrome studied here). However, subtle but meaningful disruptions emerged in specific
areas which echo prior findings, notably reduced lexical diversity [112], simplified word choice
(e.g., shorter average word length), and decreased use of complex syntactic and semantic structures
[113-115]. The readability findings further underscore this pattern, showing a moderate shift
toward simpler, more accessible language that likely reflects both cognitive decline and
simplification strategies. While the pattern was generally one of decreased scores compared to
HCs, the effects were often less pronounced and less uniformly distributed across measures

compared to the LHD group, reflecting high variation in this group [113-115].

Unlike LHD aphasia or TBI, MCI was characterized by a subtler but systematic pattern of
linguistic simplification, which has been shown previously, particularly evident in reduced lexical
productivity, decreased syntactic complexity, and phonological impairments [116-118]. The
findings reveal that even at this early disease stage, individuals with MCI produced fewer total
words, content words, and unique word types, accompanied by reductions in sentence length and
the use of complex syntactic structures such as dependent clauses and prepositional phrases.
Interestingly, lexical diversity (standard TTR) was increased compared to HCs, reflecting a
compensatory pattern where speakers produce fewer words overall but rely on a more varied
vocabulary within their reduced output. Readability metrics further indicated that MCI speakers
produce objectively simpler, more accessible language than HCs, likely reflecting both cognitive

constraints and emerging compensatory strategies.



These results provide new, quantitative evidence reinforcing and extending long-standing
but often inconsistently documented observations that language production following RHD is
relatively preserved in terms of core linguistic structure, but may still exhibit subtle disruptions,
particularly in semantic, pragmatic, and higher-order discourse features. The present analyses
reveal that individuals with RHD performed comparably to healthy controls across most lexical,
phonological, morphological, syntactic, and readability measures, supporting prior research
showing that RHD does not typically produce the overt language breakdown observed in left
hemisphere stroke or TBI. However, the detection of reduced use of specific structures, such as
comparative adjectives, complex syllable patterns, and second-person pronouns, along with a
selective reduction in certain semantic categories (e.g., cardinal numbers), highlights that RHD
may subtly affect aspects of language tied to complexity, perspective-taking, or relational meaning.
These findings align with previous evidence that while RHD does not result in classical aphasia,
it can impact elements of discourse organization, inferencing, and pragmatic language, often in

ways that evade detection by standard language batteries.

A key insight from these findings is that while language simplification emerges as a common
consequence of neurological damage, the specific linguistic signature varies systematically across
disorders, reflecting both the nature of the underlying neural disruption and the ways in which
language production shifts in response to these deficits. Across conditions such as LHD, TBI, MClI,
and dementia, individuals consistently produced simpler language characterized by reduced lexical
output, diminished syntactic complexity, and lower readability. Yet, the precise linguistic domains
affected, and the nature of these changes differed. For example, individuals with MCI and TBI
showed increased lexical diversity within reduced output, while LHD and dementia speakers
exhibited greater reliance on proper nouns and socially salient references. These patterns suggest
that language production does not decline uniformly but instead reflects a combination of
impairment and adaptive linguistic shifts, whether conscious or automatic. Even in the context of
cognitive or neural decline, measurable alterations in language use indicate preserved linguistic
capacity and potential compensatory processes. Capturing both these deficits and adaptations
provides a more complete and clinically informative picture of how language reflects the complex
interaction between neural damage, cognitive constraints, and preserved linguistic mechanisms

across neurological conditions.



4.4 Limitations and Future Research

Although this study marks a critical starting point for comparing more than one and
especially often conditions that are dissimilar in their underlying pathology making this
comparison possible there are several that are inherent to this approach. First, for many
neurological conditions, especially rare disorders or the initial stages of more common ones like
MCI, large-scale speech datasets are lacking, especially for languages other than English, so shared

corpora like DementiaBank and TalkBank are crucial.

A second issue is the need for more fine-grained distinctions between the populations.
Although the categories we have presented here like LHD, or dementia correspond to a broader
diagnosis, there is an important variation within the population because of their condition, the
potential influence of medication and other comorbidities on the linguistic profiles. So, there is a
need for a greater understanding through subtyping the populations into subgroups, like individuals
with anomic aphasia and conduction aphasia and individuals with different severity levels as
severity is a critical factor both for interpreting the results and for understanding the limits of
generalizability. In the present study, harmonizing severity indicators across groups was not
feasible because the source datasets used different clinical scales (e.g., MMSE for dementia,
NIHSS for stroke, and no directly comparable metric for TBI or MCI). Given this heterogeneity,
and our goal of evaluating whether language features alone can distinguish diagnostic categories,
we chose not to include severity as an explicit covariate. Instead, we partially accounted for
patient-specific variability by including subject-level random intercepts in the statistical models
and by grouping observations by individual in the ML analyses. This approach allowed the models
to adjust for within-subject dependencies without relying on non-uniform severity scores. As
feature sets grow richer (e.g., incorporating acoustic or pragmatic Al-derived measures), we
anticipate even finer-grained resolution of behaviorally meaningful subgroups exceeding

traditional diagnostic categories

Understanding disease progression and the evolution of linguistic signatures over time
necessitates longitudinal data collection, where individuals are assessed repeatedly. Such data, as
used in the MCI-to-AD progression study, is invaluable but expensive and time-consuming to
acquire. The noted lack of longitudinal AD speech data, particularly at the MCI stage, and

DementiaBank's aim for longitudinal tracking highlight this ongoing need.



A key limitation of the current study is that we collapsed language data across multiple
discourse tasks, despite well-established evidence that different tasks elicit distinct linguistic
profiles [119, 120]. This approach maximizes statistical power and facilitates broad comparisons
across diagnostic groups, but it an obscure task-specific linguistic patterns that are clinically and
theoretically meaningful. We have planned for future work that will systematically examine how

task type interacts with diagnosis to influence linguistic profiles.

Future work must advance on two fronts. First, we need to develop composite metrics that
integrate multiple linguistic features into coherent, interpretable scores and validate these scores
as meaningful indicators of underlying cognitive and communicative processes. Such aggregate
measures could improve the signal-to-noise ratio, enhance generalizability across tasks, and align
more directly with clinical constructs such as agrammatism or anomia. Second, linguistic analyses
should be enriched with acoustic data. Even subtle acoustic cues can convey a surprising amount
of information. For example, previous research has shown that the extension of information
provided be even a single sound is incredible. As we have learnt from our research, the way
speakers pronounce their vowels [121], consonants [89], voice quality and prosody [62] reveal
aspects of speakers’ identity, like their dialects, sociolects and pathology. Our future research will
intergrade these different concepts together and provide multimodal systems for understanding
language and cognition. Future research should also prioritize the continued expansion of this
dataset, enhancing its diversity and generalizability. Integrating multimodal signatures, such as
neuroimaging data, alongside these linguistic measures will be the next frontier, promising even
greater precision and clinical utility. Ultimately, this open library provides the essential

groundwork for a future where language analysis is a core component of neurological care.

45 Conclusion

This study represents a critical step toward transforming language analysis from a research tool
into a scalable, clinically actionable digital biomarker for neurological disorders. By applying
automated, computational linguistic analysis to one of the largest and most diverse databases of
spoken language, we demonstrate that distinct, quantifiable linguistic profiles can differentiate
between individuals with left hemisphere damage, right hemisphere damage, dementia, MCI, TBI,

and healthy controls. These findings not only advance scientific understanding of language



impairments but also establish a practical foundation for integrating language-based digital

biomarkers into routine neurological assessment.

Importantly, the architecture of Open Brain Al provides a clear pathway for translation
beyond the research setting. With further development, this platform could be scaled into an
accessible, secure application deployable by researchers, speech-language pathologists, and
clinicians worldwide. Such a tool could enable real-time, automated language analysis in clinical
environments, telemedicine, or even remote monitoring contexts—delivering objective,
reproducible language metrics that augment clinical decision-making. The naturalistic, low-burden
nature of speech samples makes this approach uniquely suited to scalable, patient-friendly

assessment.

Looking ahead, the integration of Open Brain Al into clinical workflows, combined with
regulatory-compliant development and continued dataset expansion, holds the potential to redefine
how language is used to detect, monitor, and personalize care for individuals with neurological
conditions. Thus, future validation of this work will include direct comparisons with traditional
metrics (e.g., naming accuracy, fluency scores) to establish convergent validity, as well as future

directions noted in Section 4.4.

By moving beyond proof-of-concept and toward scalable, validated tools, this work
contributes to the broader goal of leveraging Al and language as accessible, ecologically valid

biomarkers in digital medicine.
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Welcome, Charalambos

Let's tackle today's challenges together. What's first on the agenda?

SICoMTANION i .
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Cat oh my goodness . oh this looks like one of those typical incidents with people with a cat and possibly a dog . or it might be a neighborhood dog . anyway the
cat is up in the tree . and the little girl is just very very upset about that . and she is small . she has a tricycle . the dog is scratching at the tree and barking . and
it looks like I'll say dad or someone in the neighborhood climbed up the tree . but the ladder has now fallen down to the ground . he is sitting on a limb hanging
on . and someone has called the emergency people . they have arrived . the two emergency people are coming in with another ladder to get the man down out
of the tree and possibly get the cat down out of the tree . and their vehicle their emergency vehicle is parked nearby . and there's a little bird sitting in the tree
watching all this .
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Measure Count Ratio
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Character density 3.994 NaN
Words 161.000 NaN
Sentences 17.000 NaN

Function Words (Total) 93.000 0578
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Test Sample

patient

Isit
from a

?

Best Model Performance on “Is it from a patient?”:

No

Yes

[:pi;::l:] l:l.at;T ::l::rif:: AUC-ROC AUC-PR
(Sensitivity)
LR 0.98 0.99 0.99 0.920 0.909
SVM 0.93 0.98 0.96 0.970 0.972
DNN 0.91 0.99 0.95 0.966 0.935

Which group does the

Category

SVM LHD
Dementia
HC

Other
LHD
Dementia
HC

Other



