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Abstract 

Individuals with left-hemisphere damage (LHD), right-hemisphere damage (RHD), dementia, 

mild cognitive impairment (MCI), traumatic brain injury (TBI), and healthy controls are 

characterized by overlapping clinical profiles affecting communication and social interaction. 

Language provides a rich, non-invasive window into neurological health, yet objective and 

scalable methods to automatically differentiate between conditions with are lacking. This method 

aims to develop comprehensive neurolinguistic measures of these conditions, develop a machine 

learning multiclass screening and language assessment model (NeuroScreen) and offer a large 

comparative database of measures for other studies to build upon. We combined one of the largest 

databases, comprising 291 linguistic biomarkers calculated from speech samples produced by 

1,394 participants: 536 individuals with aphasia secondary to LHD, 193 individuals with dementia, 

107 individuals with MCI, 38 individuals with RHD, 58 individuals with TBI, and 498 Healthy 

Controls. Employing natural language processing (NLP) via the Open Brain AI platform 

(http://openbrainai.com), we extracted multiple linguistic features from the speech samples, 

including readability, lexical richness, phonology, morphology, syntax, and semantics. A Deep 

Neural Network architecture (DNN) classifies these conditions from linguistic features with high 

accuracy (up to 91%). A linear mixed-effects model approach was employed to determine the 

biomarkers of the neurological conditions, revealing distinct, quantitative neurolinguistic 

properties: LHD and TBI show widespread deficits in syntax and phonology; MCI is characterized 

by fine-grained simplification; patients with dementia present with specific lexico-semantic 

impairments; and RHD shows the most preserved profile. Ultimately, the outcomes provide an 

automatic detection and classification model of key neurological conditions affecting language, 

along with a novel set of validated neurological markers for facilitating differential diagnosis, 

remote monitoring, and personalized neurological care.  
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1 Introduction 

Language is a distinctively human cognitive system that enables individuals to communicate, share 

information, and socialize. It includes a complex interplay of spoken, written, and signed 

modalities, drawing on multiple linguistic subsystems, including phonology (the sound structure 

of words), morphology (the internal structure of words), syntax (rules governing sentence 

structure), semantics (meaning), and pragmatics (the social use of language) [1, 2]. Even simple 

tasks, such as ordering a meal, rely on the integration of these linguistic processes. Language is 

not only central to social participation but is also tightly linked to broader cognitive functions, 

including memory, attention, and executive functioning [3, 4]. Consequently, when language is 

disrupted due to neurological conditions such as left hemisphere damage (LHD), right hemisphere 

damage (LHD), dementia, mild cognitive impairment (MCI), or traumatic brain injury (TBI), the 

consequences extend beyond isolated cognitive deficits to independence, social participation, and 

overall quality of life. Yet, despite the critical role of language in human functioning, assessing 

and monitoring language functioning in clinical practice and properly treating it remains 

challenging. 

The distinct underlying pathologies of LHD, RHD, dementia, MCI, and TBI produce unique 

behavioral profiles by differentially affecting receptive and expressive language [5, 6] (Table 1). 

These can serve as early linguistic markers that characterize these patients [7]. Neurological 

research has shown that LHD primarily impacts language and other cognitive functions [8-10]. 

RHD can impair spatial awareness, emotions, and nonverbal and pragmatic communication [11-

15]. Both LHD and RHD can language deficits, but the specific nature of these deficits differs [16-

19]. MCI, an early cognitive decline, is typically amnestic in nature (affecting memory), but also 

typically impacts language and other critical cognitive domains, such as attention, and executive 

functions [20-25]. Dementia is a progressive deterioration of the brain health due to 

neurodegeneration, affecting multiple cognitive domains, such as memory, language, attention, 

and movement [26-28]. TBI is a heterogeneous disorder, resulting in open or closed head trauma 

by an external force, such as a blow to the head, a fall, a car accident, and a penetrating injury. It 

can range from mild (e.g., concussion) to severe, with varying degrees of physical, cognitive, 

emotional, and behavioral effects [29]. 
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Table 1 Comparative Table of Neurocognitive Conditions. Comprehensive comparison of five 

major neurocognitive conditions across key clinical and neurological characteristics. This 

comparative framework facilitates differential diagnosis and understanding of the distinct 

neuropsychological profiles associated with each condition.  

 
LHD RHD TBI Dementia MCI 

(Typical) 

Etiology 

Stroke (other 

focal 

Tumor/Infection

) 

Stroke (other 

focal 

Tumor/Infection

) 

External Physical Force Proteinopathy 

(Amyloid/Tau

) 

Prodromal 

AD, 

Vascular, 

etc. 

Onset Acute Acute Acute Insidious Insidious 

Progression Stable / 

Improving 

Stable / 

Improving 

Stable / Improving (risk 

for later decline) 

Progressive 

Decline 

Variable 

(Stable, 

Improving, 

or 

Progressive

) 

Primary 

Neuropathology 

Focal Cortical 

Lesion 

Focal Cortical 

Lesion 

Focal Contusion and/or 

Diffuse Axonal Injury 

Amyloid 

Plaques & 

Tau Tangles 

Early-stage 

AD 

pathology 

common 

Hallmark 

Cognitive 

Deficit 

Aphasia, 

Apraxia 

Unilateral 

Neglect, 

Anosognosia 

Dysexecutive 

Syndrome, Post-

Traumatic Amnesia 

Episodic 

Memory Loss 

Episodic 

Memory 

Loss 

(Amnestic 

type) 

Hallmark 

Language/Com

m. Deficit 

Agrammatism, 

Anomia, 

Paraphasias 

Aprosodia, 

Pragmatic 

Deficits, 

Discourse 

Incoherence 

Disorganized/Tangenti

al Discourse, Pragmatic 

Deficits 

Anomic, 

“Empty” 

Speech 

Word-

finding 

difficulty, 

Reduced 

verbal 

fluency 
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Awareness of 

Deficits 

Typically, 

Present (often 

distressed) 

Typically, 

Absent 

(Anosognosia) 

Often Absent 

(Anosognosia) 

Variable; 

Declines with 

progression 

Typically, 

Present 

(source of 

concern) 

Note: Conditions include Left Hemisphere Damage (LHD), Right Hemisphere Damage (RHD), 

Traumatic Brain Injury (TBI), Dementia of Alzheimer's Disease type (AD-Type), and Mild 

Cognitive Impairment (MCI). Clinical features compared include: Typical Etiology (underlying 

cause or origin), Onset pattern (acute vs. insidious), Disease Progression trajectory (stable, 

improving, or declining), Primary Neuropathology (underlying brain pathology), Hallmark 

Cognitive Deficit (characteristic cognitive impairments), Hallmark Language/Communication 

Deficit (distinctive language and communication problems), and Awareness of Deficits (patient 

insight into their condition, including anosognosia - lack of awareness of deficits). Technical 

terms: Aphasia (language impairment), Apraxia (motor planning deficits), Aprosodia (prosodic 

speech deficits), Agrammatism (grammatical impairments), Anomia (word-finding difficulties), 

Paraphasias (word substitution errors), and Dysexecutive Syndrome (executive function 

impairments). 

Conventional language assessment tools  

Conventional language assessment tools, including structured tasks (e.g., Philadelphia Naming 

Test [30], Boston Naming Test [31], standardized batteries  Western aphasia battery (revised) 

(WAB-R) [32], Quick Aphasia Battery (QAB) [33] and the Boston Diagnostic Aphasia 

Examination (BDAE) [34], and patient- and clinician-rated evaluations [35-37], are widely used 

to support diagnosis and guide treatment decisions. These methods often provide a narrow window 

into specific abilities like object naming, overlooking the multidimensional nature of everyday 

communication. Furthermore, their time-intensive and stressful nature makes them ill-suited for 

widespread screening. Clinicians may instead use general neurocognitive screeners like the 

Montreal Cognitive Assessment (MoCA) or Mini-Mental State Examination (MMSE) [38-40], but 

these still require in-person assessment and may not be sensitive enough to detect subtle language 

impairments characteristic of conditions like mild cognitive impairment (MCI). This creates a 

critical challenge for early detection and prognosis. A powerful solution lies in combining large-

scale language corpora with computational methods such as Natural Language Processing (NLP) 
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and Machine Learning (ML). This approach can enable automated screening and provide a deeper, 

comparative understanding of these conditions against each other and normative data from healthy 

individuals. 

We address a critical limitation in neurolinguistics—the tendency to study conditions in 

isolation—by creating a unified analytical framework. Analyzing connected speech and 

discourse—how individuals use language in natural, extended communication—is widely 

regarded by researchers and clinicians as a best practice for assessing language abilities [41]. This 

approach captures real-world communicative competence and can reveal subtle linguistic deficits 

that standardized, isolated tasks often overlook. However, despite its advantages, discourse 

analysis remains underused in clinical practice due to its time-intensive nature, lack of scalable 

and standardized tools, and the manual effort required for transcription and coding [42]. Moreover, 

traditional assessments are typically conducted in controlled clinical environments, which may not 

reflect an individual’s everyday communication patterns, thereby limiting ecological validity. 

Consequently, subtle or early-stage language impairments—especially those associated with 

heterogeneous conditions such as mild cognitive impairment (MCI) or early dementia—often go 

undetected until more pronounced cognitive or functional decline is evident. 

Recent advances in artificial intelligence (AI), NLP, ML, and automated speech analysis 

have opened new possibilities for addressing these limitations. By leveraging AI-driven 

approaches to extract and quantify linguistic features from spontaneous speech, we and others have 

demonstrated their potential for objective, reproducible, and ecologically valid measures of 

language production from transcripts or audio files [21, 43-45]. These computational methods can 

quantify automatically domains of language disorder—spanning lexical diversity [46], 

phonological structure [47, 48], morphological patterns [9, 10, 49-52], syntactic complexity [53-

57], semantic content, and readability [58-61]—represent a promising class of digital biomarkers 

with the potential to support early detection [45, 62, 63], differential diagnosis [21, 43, 64-66], and 

ongoing monitoring of neurological conditions [67-69]. Despite that these studies demonstrates 

that automated language analysis holds significant promise as a digital health tool, several 

challenges must be addressed before it can be fully integrated into clinical practice.  

Automated language analysis is progressively recognized as a digital health tool [70, 71], 

yet its clinical translation is constrained by several critical gaps. For these computational tools to 
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improve patient outcomes in a meaningful way, they must first move beyond the current landscape 

of proof-of-concept studies, which often use small, homogenous datasets from isolated clinical 

populations but rely on rigorous validation across large, diverse, and multi-condition populations 

is essential. This validation must also establish robust normative data from healthy controls, 

enabling clinicians to benchmark an individual’s performance to accurately assess pathology and 

severity. Also, the development of sophisticated computational pipelines must be paired with a 

focus on practical application: creating scalable, automated, and openly accessible tools that can 

integrate seamlessly into clinical workflows to reduce clinician burden and enhance diagnostic 

precision. Addressing these interconnected challenges is the essential next step toward realizing 

language as a clinically actionable digital biomarker. 

Study Aims 

This study has an overarching aim to advance a novel paradigm for neurological assessment to 

corroborate existing neurological assessments and to establish spoken language as a scalable and 

clinical digital biomarker by evaluate a comprehensive set of measures from the key linguistic 

domains, readability, phonology, morphology, syntax, semantics, and lexicon (Supplementary 

Data 1 offers a detailed description see also the Methods section).  

This provides a two-fold aim. The first aim is to develop a multi-class machine learning approach 

for neurological screening (NeuroScreen) that can discriminate patients from Healthy Controls 

(HCs) and the subtype individual patient subgroups from each other. Ultimately, the MLs aim to 

answer two primary research questions (1) How well do the models distinguish patients and 

healthy controls? And (2) How well does the ML model distinguish each sub-group in the data? 

By answering these two questions, we will be able to determine how well the models can be 

employed in real-life scenarios for detecting patients and in the clinic to subtype patients, and 

which of them with high confidence. To achieve aim we have developed an end-to-end AI-driven 

procedure to analyze a large and diverse database of over 9,900 speech samples based on an end-

to-end ML model that combines NLP pipelines that employ Open Brain AI [61], a platform we 

have developed to extract the linguistic features. Subsequently, we preprocessed and standardized 

the calculated measures and passed them to a set of ML models, namely Random Forrest, Support 

Vector Machine, Logistic Regression, and Deep Neural Networks. These models were tuned 

through hyperparameter tuning and evaluated.  
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(2) The second aim is to provide explainable measures, namely the linguistic signatures of five 

major neurological conditions (LHD, RHD, dementia, MCI, and TBI). This is critical to 

understanding the effects of each condition on language and to providing therapeutic targets for 

novel clinical approaches. In other words, we will determine (1) Which linguistic measures differ 

most due to diagnostic groups? (2) Which are the distinctive features for each neurological 

condition compared to HC? And (3) What do language measures reveal for each patient group? 

To achieve this aim, we developed (generalized) linear mixed effect models while controlling for 

the effects of task and the participant. 

This computational approach moves beyond prior research by leveraging ecologically valid data 

from everyday communicative tasks to create a comprehensive, multi-faceted portrait of how 

language changes in response to brain injury and disease, aiding in differential diagnosis, 

particularly for disorders with overlapping symptoms like MCI and early dementia, and offering a 

non-invasive, low burden means for monitoring disease progression and treatment response over 

time. Ultimately, this research contributes to the digital transformation of clinical practice by 

providing a validated set of open-access linguistic biomarkers, this study creates new opportunities 

for remote, low-burden monitoring of neurological health, supporting a future of more accessible, 

data-driven, and personalized care. 

2 Methodology 

2.1 Participants 

The individuals for this study were drawn from Neural Databank collected and developed by the 

second author [72], now part of the Aphasia Bank, and data from the TalkBank consortium 

(https://talkbank.org), which following a similar protocol. Each clinical bank (e.g., AphasiaBank, 

RHDBank) has an established discourse protocol that elicits a variety of discourse genres [73]. 

i. Aphasia Bank: The database contains spoken discourse samples from individuals with 

LHD and control participants, designed to study language production and its neural 

foundations. The research emphasizes connected speech (discourse) rather than single 

words or isolated sentences. Participants completed a full discourse protocol twice within 

a short timeframe to assess the test-retest reliability and stability of discourse measures. 
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The participants contain both people with LHD (536 individuals) and HCs (359 

individuals) [72]. 

ii. Right Hemisphere Damage Bank (RHD Bank): This is a specialized database focused on 

communication in individuals with RHD. The database serves as a resource for 

understanding and treating communication disorders following RHD, particularly focusing 

on pragmatic language abilities, discourse coherence, and real-world communication 

challenges [74]. This bank includes 38 individuals with RHD and 40 Healthy Controls. 

iii. Traumatic Brain Injury (TBI Bank): This is a multimedia database focused on studying 

communication disorders in individuals with TBI. TBIBank protocol includes discourse 

tasks such as the Cinderella story retell, following similar methodology to other TalkBank 

databases. The protocol consists of discourse genres including personal narratives, picture 

descriptions, story retelling, and procedural discourse. TBIBank is a longitudinal study in 

which brain injured people are videoed at 6 different time points post injury performing a 

uniform set of tasks, with the goal of identifying recovery patterns. The database enables 

automated language analysis, diagnostic profiling, comparative evaluation of treatment 

effects, and profiling of recovery patterns in TBI populations, supporting both research and 

clinical applications in understanding cognitive-communication disorders following brain 

injury. This bank includes 58 individuals with TBI. 

iv. Dementia Bank - Delaware MCI dataset: This corpus is part of DementiaBank and includes 

language productions by 71 adults with MCI, from the Delaware Corpus and Baycrest 

Centre Corpus. This data contributes to early detection of subtle changes in language and 

cognition and provide insight into MCI subtypes based on discourse profiles [75]. The MCI 

Delaware corpus contains mostly individuals with amnestic MCI, were the language-

variant should not be predominant. However, they have language differences from HCs 

[66]. 

v. Dementia Bank - Pitt Study (Pitt Study): A comprehensive description of this dataset is 

provided in Becker, Boiler [76].Briefly, the study includes a picture description task from 

the Boston Diagnostic Aphasia Examination [77], a widely used diagnostic tool for 

detecting language abnormalities. In this task, participants were shown the “Cookie Theft” 

picture stimulus and instructed to describe everything they observed. Their responses were 
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audio-recorded and later transcribed verbatim. This study includes 193 individuals with 

Dementia and 99 Healthy Controls. 

 

Table 2 Cognitive assessment tasks administered across diagnostic groups and research studies.  

Diagnosis Task List 

LHD Cat, Cinderella, Flood, Important Event, Sandwich, Speech, Stroke, Umbrella, 

Window 

MCI Cookie Theft 

HC Cat, Cinderella, Cookie Theft, Flood, Illness, Important Event, Sandwich, Speech, 

Umbrella, Window 

MCI Cat, Cinderella, Cookie Theft, Rockwell, Sandwich, Umbrella, Window 

Dementia Cooke Theft 

HC Cookie Theft 

RHS Cat, Cinderella, Cookie Theft, Sandwich, Speech, Stroke 

TBI Brain Injury, Cat, Cinderella, Important Event, Recovery, Sandwich, Speech, 

Umbrella, Window 

Note: Cat = A description of a single picture, in which a cat is being rescued from a tree; Cinderella 

= retelling of the fictional narrative Cinderella, which is done after looking at a wordless picture 

book; Flood = A description of a single picture of a rescue during a flood; Important Event = a 

personal narrative about an important event; Sandwich = a procedural narrative describing how to 

make a peanut butter and jelly sandwich; Stroke or Recovery = A personal narrative about one’s 

brain injury and recovery; Umbrella = A multiple scene picture sequence, in which a boy and 

mother interact about taking an umbrella into the rain; Window = A multiple scene picture 

sequence, in which a boy kicks a soccer ball through a man’s window, shattering it; Cookie Theft 

= A description of a single picture, in which two kids steal a cookie; Rockwell = A description of 

a single picture, which is Norman Rockwell’s “Coming and Going”. 
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This study presents a comprehensive analysis of linguistic measures across various 

diagnostic groups by combining data from multiple discourse tasks (see Supplementary Data 1). 

Our primary analysis provides a consolidated overview of these linguistic features (Table 2; 

Supplementary Data 2, provides a more comprehensive data breakdown of Data Count by Group, 

Project, and Task). Recognizing that different tasks may elicit distinct communication patterns, 

we have preemptively accounted for potential task-specific effects within our statistical models by 

adding the task in the random effects. To ensure full transparency and to allow for a more granular 

examination of these variations, we provide a detailed breakdown of the linguistic signatures for 

each task in the Supplementary Tables. 

Table 3 Participant demographics across diagnostic groups and research databases. The table 

presents sample sizes, mean ages, and educational attainment for participants in each diagnostic 

group across different research corpora. Age is reported as mean years (standard deviation). 

Education is reported as mean years of formal education (standard deviation) except for the MCI 

group where educational categories are presented as percentages. 

Diagnosis Project Speakers Age at Testing Education 

HC Aphasia Bank 359 56.89 (15.91) 15.91(2.64) 

 
RHD Bank 40 47.95(13.54) 17.09 (2.93) 

 
Pitt Study 99 63.7 (7.9) 13.9 (2.5) 

LHD Aphasia Bank 536 61.04(12.4) 15.7 (2.91) 

Dementia Pitt Corpus 193 71.0 (8.6) 12.2 (2.9) 

MCI Dementia Bank  71 

73.5 (8.03) 

PhD: 10.81%,  

Bachelor/MA: 67.57% 

Vocational Training: 21.62% 

RHD RHD Bank 38 57.4 (12.33) 17.10 (3.99) 
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TBI TBI Bank 58 36.25 (13.47) 13.91 (3.05) 

Note: LHD: left hemisphere damage, RHD: right hemisphere damage, MCI: Mild Cognitive 

Impairment, and TBI: Traumatic Brain Injury. The Dementia group is composed primarily of 

patients with Alzheimer’s-type dementia (91%), with MMSE scores of 17–18 (out of 30), 

alongside individuals with MCI (whose MOCA scores are typically <23 out of 30). 

Participants participated in different tasks providing often more than one samples, the 

analysis is based on 9955 language samples drawn from multiple clinical databases produced by 

the individuals reported in Table 3 (see also, Table 2 and Supplementary Data 2). These databases 

exhibit significant clinical heterogeneity. For instance, the LHD database contains participant 

groups classified by subtype, including anomic, Wernicke's, and Broca's aphasia. The Pitt study's 

dementia subgroup (N=193) further illustrates this diversity; it is composed primarily of patients 

with dementia (91%), who present with lower average Mini-Mental State Examination (MMSE) 

scores of 17–18, alongside individuals with MCI. We chose to incorporate these databases in their 

entirety for several reasons. This approach maintains the ecological validity of the data, ensuring 

our findings reflect the natural heterogeneity of clinical populations. Furthermore, it preserves the 

integrity of these standard corpora, which is crucial for the reproducibility and comparability of 

our results within the wider research community. 

2.2 Measures 

Texts were automatically preprocessed using a python algorithm to remove TalkBank’s 

Computerized Language Analysis CHAT/CLAN coding, labels, and tags (e.g., prosodic markers, 

time-aligned tiers with annotations, CHAT metadata) and prepare clean texts for further analysis. 

Subsequently, the text samples were analyzed using Open Brain AI (http://openbrainai.com; Figure 

1), a custom clinical linguistics platform developed by the first author [61] to facilitate automatic 

audio and linguistic analysis of texts. Unlike generic computational models, Open Brain AI was 

designed specifically for phenotyping of language features through a clinical lens, enabling 

hypothesis-driven research into speech pathology and neurogenic communication disorders. The 

platform calculates linguistic metrics in real-time as participants type or as clinicians transcribe 

speech samples, enabling immediate quantitative analysis of discourse features relevant to 

neurological conditions. Additional analysis modules accessible via the toolbar include syntactic 
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complexity measures, semantic density calculations, and comparative normative data. This 

example demonstrates the platform's capability to automatically extract objective linguistic 

measures from naturalistic discourse samples, facilitating evidence-based assessment of 

communication disorders across various neurological populations. Open Brain AI executed a 

cascade of NLP techniques. Core NLP steps included tokenization (segmenting text into individual 

words or tokens), part-of-speech tagging (assigning a grammatical category to each token), and 

dependency parsing (identifying the grammatical relationships between words and the syntactic 

structure of sentences). For each extracted feature, both raw counts and ratios (to normalize for 

variations in text length) are computed. These quantitative linguistic data were automatically 

exported by our computational platform as spreadsheet files, ready for statistical analysis. 

 

Figure 1 User interface of the Open Brain AI text analysis platform [61] for neuropsychological 

assessment. The web-based platform provides real-time linguistic analysis of narrative discourse 

samples. The interface displays a text editor (top panel) containing a participant's narrative 
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description of the “Cat Rescue” picture stimulus, commonly used in aphasia and cognitive 

assessment batteries. The lower panel shows automated lexical measures including character count 

(643), word count (161), sentence count (17), and function word analysis (93 total function words, 

ratio 0.578).  

From these foundational analyses, a comprehensive suite of linguistic measures was 

automatically extracted, quantifying aspects of (Supplementary Data 1 offers a detailed list of the 

measures): 

i. Readability. Readability of text productions in patients with neurological conditions is a 

measure that has been evaluated for the first time concerning all these conditions in this 

study. Metrics assessing text complexity and perceived ease of understanding for a reader. 

Readability metrics include the Flesch-Kincaid Readability Tests, Gunning Fog Index, and 

SMOG Index [58-61] quantify how easy a text can be to be read and understood by a 

reader. It is typically influenced by factors such as sentence length, word complexity, and 

the overall structure of the text. Overall, we expect that patient speech should be simpler 

and more readable than that of healthy individuals.  

ii. Lexicon and Lexical Information. We have designed features related to the vocabulary 

richness, diversity, and usage within the text. This includes measures like Type-Token 

Ratio, counts of content versus function words, and average word length. These measures 

explain the distribution of words and relationships between types and tokens that can 

quantify how words are used in different contexts and how they contribute to the overall 

meaning of a text such as lexical diversity measures [46].  

i. Phonology. Characteristics of sound structure, such as counts of words by syllable Number: 

(e.g., one-syllable, two-syllable words) and the distribution of various Consonant (C) and 

Vowel (V) syllable structures (e.g., CV, CVC, CCVC). We designed these measures to 

quantify how users employ speech sounds, the sound combinations, and the complexity of 

syllables. Comparing these measures across patients with different language impairments 

can reveal characteristics that pertain to the effects of impairment on the cognitive 

representation of sounds and speech production [47, 48]. 

iii. Morphology. Analysis of word structure, encompassing both the distribution of parts of 

speech (e.g., counts and ratios of nouns, verbs, adjectives, and adverbs) and inflectional 
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categories (e.g., tense, Number: Gender: case). Morphological measures quantify the 

structure and form of words, the distribution of parts of speech, and inflectional categories, 

such as tense, Number, Gender, and Case. Comparing patients with morphology 

impairments can reveal pathologies, like agrammatism and anomia [9, 10, 49-52]. 

ii. Syntax. Measures of sentence structure and grammatical complexity. This included 

quantification of various phrase types (e.g., Noun Phrases, Verb Phrases, Prepositional 

Phrases), analysis of core syntactic dependencies and relations (e.g., nominal subjects, 

direct objects, adverbial clause modifiers), and overall sentence complexity metrics (e.g., 

Average Sentence Length, T-units, and syntactic tree depth/Yngve load). These measures 

quantify impairments of sentence structure (e.g., subject-verb-object order), grammatical 

rules (e.g., agreement between subject and verb), and phrase structure (e.g., noun phrases, 

verb phrases) [53-57]. 

iii. Semantics. Primarily focused on Named Entity Recognition (NER), which involves 

identifying and categorizing named entities in text into predefined classes such as persons, 

organizations, locations, dates, and quantities. 

These grammatical analyses utilized the Universal Dependencies framework for 

standardized annotation [78] and custom made metrics, which were systematically selected using 

both established measures  based on established theoretical frameworks in clinical linguistics and 

their demonstrated sensitivity to pathological language changes in neurogenic communication 

disorders (like counts of nouns and verbs) and novel measures that aim to encompass 

microstructural elements (phonology, morphology), macrostructural components (syntax, 

semantics), and pragmatic dimensions. 

Thus, these measures aim to provide a comprehensive characterization of language 

impairments that aligns with current models of linguistic breakdown in clinical populations. By 

capturing this full spectrum of linguistic variation, the analysis framework enables detection of 

subtle but clinically significant changes that might be overlooked by assessments targeting only 

isolated linguistic domains. A complete list of all measures and their detailed operational 

definitions is provided in Supplementary Data 1. Given this large feature set, the analyses 

presented in this paper prioritize a subset of measures selected for their demonstrated high 

sensitivity and specificity in distinguishing between the diagnostic groups (LHD, Dementia, MCI, 
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RHS, TBI) and Healthy Controls, as well as differentiating the clinical groups from one another. 

An exhaustive output of all statistical results for every measure is available in the Supplementary 

Materials. 

2.3 Visualizing linguistic performance across diagnostic groups 

To explore patterns in linguistic performance across diagnostic groups, we conducted an 

unsupervised dimensionality reduction analysis. We standardized all linguistic variables (mean = 

0, SD = 1) to ensure equal weighting. We applied Principal Component Analysis (PCA) [79] to 

identify the main axes of variation in the data and Uniform Manifold Approximation and 

Projection (UMAP) [80, 81] to generate a nonlinear, two-dimensional embedding that preserves 

local similarities. UMAP was configured with n neighbors = 15 and min dist = 0.1, and both 

methods used a random seed for reproducibility. To enhance interpretability, extreme outliers 

(beyond 1.5 × IQR in the reduced dimensions) were excluded from visualizations (retaining 8,927 

and 9,791 participants for PCA and UMAP, respectively). The resulting embeddings were colored 

by clinical diagnosis to assess the degree of separation or overlap among groups. 

2.4 Machine Learning Pipelines 
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Figure 2 NeuroScreen machine learning pipeline architecture for automated neurological 

assessment. The comprehensive workflow shows the development and validation of a diagnostic 

system that analyzes language production to distinguish between neurological conditions. Input 

data comprises speech and text samples from participants across six diagnostic groups: Left 

Hemisphere Damage (LHD), Right Hemisphere Damage (RHD), Dementia, Mild Cognitive 

Impairment (MCI), Traumatic Brain Injury (TBI), and Healthy Controls. Language production 

tasks undergo automated linguistic feature extraction across six domains: Lexicon (vocabulary 

richness), Phonology (speech sound patterns), Morphology (word formation), Syntax 

(grammatical structure), Semantics (meaning content), and Readability (text complexity). The 

preprocessing pipeline includes quality control checks, speaker leakage detection, correlated 

feature removal, mean imputation for missing values, z-score standardization, and principal 

component analysis for dimensionality reduction (retaining 95% variance). Five machine learning 

algorithms are systematically evaluated: Logistic Regression (LR), Random Forest (RF), Support 

Vector Machine (SVM), Gradient Boosting (GB), and Deep Neural Network (DNN). Model 

optimization employs hyperparameter tuning with GroupKFold cross-validation and 

randomized/halving grid search. Synthetic Minority Oversampling Technique (SMOTE) 

addresses class imbalance. The validated models comprise the NeuroScreen diagnostic tool for 

objective, automated neurological assessment based on quantitative linguistic analysis. 

We designed a machine learning pipeline to classify a speaker's diagnosis into one of six 

categories based on statistical features derived from language productions on tasks, namely patient 

with LHD, RHD, dementia, MCI, TBI, and HCs. The pipeline is designed to manage speaker-

dependent data, address class imbalance, and a provide comprehensive, comparative evaluation of 

multiple machine learning (ML) models, namely include Random Forest, Support Vector Machine 

(SVM), Logistic Regression, Gradient Boosting, and a Deep Neural Network (DNN). The entire 

process, from data preparation to model evaluation, was conducted in a Python environment 

utilizing pandas for data manipulation [82], scikit-learn [83] and imbalanced-learn [84] for 

machine learning algorithms. The deep learning component was build using Tensorflow [85].  

2.4.1 Data Preparation and Cohort Definition 

The core of our methodology is built upon the principle of speaker-independent validation, which 

is crucial for developing models that can generalize to new, unseen individuals rather than 
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memorizing characteristics of specific speakers in the training set. To facilitate this, a designated 

speaker identifier column was used to group data points belonging to the same individual. The 

dataset was then partitioned into features and the target variable.  

To ensure that the model evaluation provides a realistic estimate of performance on new 

individuals, a strict speaker-independent splitting protocol was enforced. The dataset was divided 

randomly into a training set (80%) and a hold-out test set (20%) using the GroupShuffleSplit 

strategy. This method guarantees that all data points from any given speaker are confined to only 

one of the sets (either training or testing), completely preventing data leakage between them. This 

approach is critical for assessing the model's ability to generalize beyond the specific speakers it 

was trained on. 

2.4.2 Preprocessing and Feature Engineering Pipeline 

A multi-step preprocessing pipeline was applied sequentially to the data. Crucially, all 

preprocessing steps were fitted only on the training data to prevent information from the test set 

from influencing the training process. The same fitted transformers were then used to transform 

both the training and test sets. 

i. Missing values in the feature set were managed by imputing them with the mean of their 

respective columns, calculated from the training data. 

ii. To reduce multicollinearity and model complexity, highly correlated features were removed. 

A Pearson correlation matrix was computed on the training set, and for any pair of features 

with a correlation coefficient and we evaluated various threshold features, for correlations 

greater than 0.90, one of the features was discarded. 

iii. The features were standardized by removing the mean and scaling to unit variance using the 

StandardScaler [83]. This transformation ensures that features with larger scales do not 

disproportionately influence model training, which is particularly important for distance-based 

algorithms like SVM and regularization models like Logistic Regression. 

iv. Principal Component Analysis (PCA) was employed as the final feature engineering step. PCA 

transforms the standardized features into a smaller set of uncorrelated principal components. 

The number of components was chosen to retain 95% of the original variance in the training 
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data, effectively reducing noise and the dimensionality of the feature space while preserving 

most of the relevant information. 

2.4.3 Model Training, Imbalance Handling, and Hyperparameter Optimization 

We have evaluated five distinct classification models to explore a range of algorithmic approaches: 

Logistic Regression (LG), Random Forest, Support Vector Machine (SVM) with an RBF kernel, 

Gradient Boosting, and a feedforward Deep Neural Network (DNN). We selected these models to 

allow for a comprehensive analysis of the dataset and selection of a model that explain the data. 

More specifically, the following models were selected:  

1. LG is a fundamental linear classification algorithm. It works by fitting a linear equation 

to the features and then applying a logistic function (or sigmoid function) to the output to return a 

probability between 0 and 1. This probability is then used to predict the class. LG serves as a 

baseline model [86]. 

2. RFs is an ensemble learning method; it constructs many individual decision trees during 

training. It can capture complex, non-linear relationships in the data without requiring explicit 

transformations. It is generally robust to overfitting, especially when compared to a single decision 

tree as it averages the predictions of many trees [87]. 

3. SVM models detect the optimal hyperplane (or decision boundary) that best separates the 

classes in the feature space. SVM can model both linear and non-linear boundary by mapping the 

data into a higher-dimensional space, with good generalization performance on unseen data [88]. 

4. GB is another powerful ensemble technique like the RFs, which builds models 

sequentially. It starts with a simple model and then iteratively adds new decision trees that are 

specifically trained to correct the errors made by the previous ones. RFs, however, build trees 

independently and in parallel whereas GBs are sequential with an error-correcting approach 

leading to more powerful and flexible model [86]. 

5. DNN consists of an input layer, multiple “hidden” layers of interconnected nodes 

(neurons), and an output layer. The network learns to detect complex patterns and features by 

adjusting the connection weights between neurons during training. The DNN approach can 
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uncover patterns in the data than the other, more traditional machine learning models might miss 

[89]. 

The data exhibited an imbalanced class distribution as there are fewer patients with MCI, 

RHD, and TBI, than patients with dementia, LHD, and HC. To mitigate the risk of models 

becoming biased towards the majority class, we integrated the SMOTE directly into our modeling 

pipeline [90]. For each model, a pipeline was constructed with SMOTE as the initial step. This 

approach ensures that over-sampling is performed correctly within each cross-validation fold: 

SMOTE is fitted and applied only to the training data partition of a fold, generating synthetic 

samples for the minority classes before the classifier is trained. The validation partition of the fold 

remains in its original, imbalanced state, providing an unbiased evaluation of the model's 

performance. This in-pipeline application of SMOTE is crucial for preventing data leakage and 

obtaining a reliable estimate of model generalizability. We defined a custom DynamicSMOTE 

class to automatically adjust the k neighbors parameter, preventing errors in cross-validation folds 

where a minority class had very few samples. 

To identify the optimal set of hyperparameters for each model, we employed a hybrid search 

strategy using a participant-aware data partitioning with GroupKFold cross-validation (with 5 

folds) to maintain speaker independence. For the traditional models (Logistic Regression, Random 

Forest, SVM, Gradient Boosting), we used HalvingRandomSearchCV. This efficient method starts 

by evaluating many hyperparameter combinations on a small subset of the data and iteratively 

prunes fewer promising candidates, allocating more resources to the best-performing ones.  

For the computationally intensive Deep Neural Network (DNN), we used 

RandomizedSearchCV to sample a fixed number of hyperparameter combinations from the search 

space. The performance of each combination was evaluated based on its default scoring metric. 

The best hyperparameters for SMOTE's k neighbors parameter were also determined during this 

search. The DNN architecture was also part of the hyperparameter search. Key parameters tuned 

included the number of hidden layers, the number of neurons, the dropout rate, batch size, and the 

learning rate for the Adam optimizer. An “early stopping callback” was used to prevent overfitting 

by halting training when performance on the loss function stopped improving.  
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2.5 Model Evaluation 

After hyperparameter tuning, the best-performing version of each model was evaluated on the 

completely unseen hold-out test set. Model performance was assessed using a comprehensive set 

of metrics to provide a holistic view of their classification capabilities: 

1) Accuracy is the percentage of predictions that were correct out of all predictions made. 

If your model correctly predicts 85 out of 100 cases, your accuracy is 85%.  

2) Balanced Accuracy solves this problem by averaging the accuracy within each class. It 

calculates the recall (true positive rate) for each class separately, then takes the average. 

In other words, the balanced accuracy is defined as the average of sensitivity (true-

positive rate) and specificity (true-negative rate) for the two classes in a binary 

classification “Patient vs. Healthy Control (HC)”, the Specificity (HC Recall) (1) and the 

Sensitivity (Patient Recall) (2) is calculated. Then the Balanced Accuracy is the sum of 

the Specificity and Sensitivity divided by two (2), the number of classes in a binary 

classification. 

Specificity =
number of true HCs correctly predicted as HC

Total number of HCs
(1) 

 

Sensitivity / Recall =
number of patient samples (any subtype) predicted as patient

Total number of patient samples
(2) 

3) F1-Score (Weighted) addresses the trade-off between recall (2) and precision (3). The 

F1-score is the harmonic mean of these two, giving you a single number that balances 

both concerns. The weighted version calculates F1-scores for each class and then 

averages them based on how many samples each class has, making it appropriate for 

imbalanced datasets. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑎𝑚𝑜𝑛𝑔 𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑛𝑒𝑠

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(3) 

4) Cohen's Kappa measures how much better your model performs compared to random 

chance. It is particularly valuable because it accounts for the possibility that some correct 
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predictions might just be lucky guesses. Kappa values range from -1 to 1: 1.0: Perfect 

agreement beyond chance and 0.0: Agreement is no better than random chance; Negative 

values mean worse than random chance 

5) AUC-ROC (Area Under the Receiver Operating Characteristic Curve). The ROC curve 

plots your model's true positive rate against its false positive rate across all possible 

classification thresholds. The AUC-ROC tells you how well your model can distinguish 

between classes. AUC = 1.0: Perfect classifier 

6) AUC-PR (Area Under the Precision-Recall Curve). ROC curves can often be optimistic 

on imbalanced datasets, precision-recall curves focus specifically on the positive class 

performance. This makes AUC-PR especially valuable when you care more about 

correctly identifying the minority class. The PR curve plots precision against recall at 

different thresholds. AUC-PR is particularly informative for imbalanced data.  

7) Confusion matrices were generated for each model to visualize the distribution of correct 

and incorrect predictions across the different classes. For tree-based models (Random 

Forest, Gradient Boosting), feature importance scores were calculated and visualized to 

provide insights into the most influential principal components for classification. Finally, 

the best overall model, along with the fitted preprocessing transformers, was saved for 

potential future deployment. 

2.6 Statistics 

To assess the influence of clinical diagnosis on each linguistic outcome variable, we utilized an 

automated mixed-effects modeling pipeline. This analysis included participants from the five 

diagnostic groups (LHD, Dementia, MCI, RHS, TBI) and the Healthy Control (HC) group. The 

pipeline, developed in R [91] was designed to be flexible, data-driven, and robust to violations of 

statistical assumptions common in linguistic data. 

For each linguistic variable, a mixed-effects model was implemented. Diagnosis was 

specified as a fixed effect to determine its influence on the outcome.  

As discussed earlier there is variation in the subgroups within the participants and the tasks 

they perform, to appropriately account for the non-independence of data arising from the study 
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design, and given the complexity of the databases, two random intercepts were included in the 

model: 

1. The (1 | Speaker) term addresses that multiple observations (i.e., linguistic measures from 

one or more tasks) originate from the same individual. By including a random intercept for 

each speaker, the model accounts for individual-specific baseline differences in linguistic 

performance, thereby modeling the repeated measures dimension of the data. 

2. The (1 | Task) term addresses the inherent variability across different elicitation tasks (e.g., 

“Cinderella,” “Flood,” and “Cookie Theft,” as listed in Table 1). Given that the study 

design involved diverse groups of participants undertaking varying subsets of these tasks, 

this random intercept allows the model to estimate an average deviation from the overall 

mean for each specific task. This effectively controls for baseline differences in how tasks 

might elicit certain linguistic features, regardless of the speaker or their diagnosis. 

These random effects structure is robust to the unbalanced nature of task administration (i.e., 

not all participants completed all tasks, and tasks were not fully crossed with participants). It allows 

for the estimation of the fixed effect of 'Diagnosis' while simultaneously partitioning out variance 

attributable to individual speakers and specific tasks. The general model structure was: 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒~𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 + (1|𝑇𝑎𝑠𝑘)  +  (1|Speaker) (3) 

The analytical pipeline systematically selected the most appropriate statistical model based 

on the distribution of each dependent variable. This adaptive process involved fitting Gaussian 

Linear Mixed-Effects Models (LMMs) for continuous variables, using robust LMMs if residual 

diagnostics (via the DHARMa package [92]) indicated violations of model assumptions, and 

employing Generalized Linear Mixed-Effects Models (GLMMs) with appropriate distributions 

(e.g., binomial, Poisson, or negative binomial) for binary or count data, including checks for 

overdispersion and zero-inflation. If a suitable model could not be fitted through these steps, a 

rank-based LMM was applied as a robust fallback. (Further details on the specific model selection 

criteria and R packages, such as lmerTest [93] and robustlmm [94]. 

When a significant main effect of 'Diagnosis' was found (typically p<.05), post-hoc pairwise 

comparisons were conducted between all diagnostic groups using estimated marginal means (via 
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the emmeans package [95]). Tukey's method was applied to adjust for multiple comparisons. 

Group means and confidence intervals are reported to aid in the interpretation of these differences. 

To create a ranked list of linguistic signatures, a key statistic from the post-hoc analysis of 

your mixed-effects models. A larger z-ratio indicates a more robust and statistically significant 

difference. It simultaneously accounts for the size of the difference and the precision of the 

measurement. We use the absolute value of the z-ratio for ranking because we are interested in the 

magnitude of the difference, regardless of whether a feature's value increased or decreased. This 

allows us to directly compare the most impactful features across all groups. The direction of the 

change (increase or decrease) is then indicated separately in the table with arrows. 

3 Results 

We examined the distinct linguistic production of each group on a comprehensive set of linguistic 

automated measures spanning lexical, morphological, phonological, readability, semantic, and 

syntactic domains. Figure 3 shows a UMAP plot illustrating the distribution of linguistic profiles 

across six clinical groups.1 Centroids (marked with 'x') separate HCs, patients with LHD, 

Dementia, from the three other conditions (that is, patients with TBI, RHD, and MCI), which show 

significant overlap indicating that individual language abilities vary widely within each diagnosis 

and often resemble those of other three diagnostic categories. To study the linguistic differences 

of the diagnostic groups in detail, we conducted a supervised ML analysis and designed regression 

mixed effect models. 

                                                 
1 It uses all data, that is before dimensionality reduction. 
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Figure 3. Uniform Manifold Approximation and Projection (UMAP) visualization of 

linguistic profiles across diagnostic groups. This plot represents the non-linear dimensionality 

reduction of linguistic features extracted from speech samples (covering syntax, morphology, 

phonology, semantics, lexicon, and readability). (A) The axes (UMAP1 and UMAP2) are 

dimensionless coordinates derived to preserve the local neighborhood structure of the high-

dimensional data; absolute values are arbitrary, but proximity between points indicates 

similarity in the overall linguistic phenotype. (B) Colored points represent individual participants. 

The 'X' markers indicate the centroid (geometric mean) for each diagnostic group, and shaded 

ellipses illustrate the general distribution. (C) The spatial separation of Left Hemisphere Damage 

(LHD) and Dementia from Healthy Controls (HC) reflects their distinct and severe linguistic 

deficits (e.g., syntactic simplification and lexical retrieval issues). Conversely, the significant 

overlap of Mild Cognitive Impairment (MCI), Right Hemisphere Damage (RHD), and Traumatic 

Brain Injury (TBI) with the HC cluster indicates that these conditions manifest with subtler 

linguistic deviations and higher individual variability, often preserving core structural language 

elements. (Trustworthiness: 0.868) 

To investigate the global structure of linguistic variations across diagnostic groups, we performed 

a Uniform Manifold Approximation and Projection (UMAP) analysis [80, 81]. Figure 3 displays 
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the two-dimensional embedding of the comprehensive linguistic profiles (derived from the 

extracted linguistic features) for all participants. Interpretation of the UMAP Projection Unlike 

linear projections (e.g., PCA), the axes in Figure 3 (UMAP 1 and UMAP 2) do not correspond to 

specific, single linguistic variables. Instead, they represent non-linear, dimensionless coordinates 

that preserve the local neighborhood structure of the high-dimensional data. Consequently, the 

proximity between data points indicates the similarity of their overall linguistic profiles: points 

clustered closely together represent individuals with highly similar speech patterns across the 

domains of morphology, syntax, lexicon, and phonology. The ‘X’ markers indicate the centroids 

(geometric centers) of each diagnostic group, illustrating the average location of that group's 

linguistic profile in the projected space. 

The distribution observed in Figure 3 is a direct result of the feature selection process, where we 

retained robust, non-redundant measures across all linguistic levels. This multidimensional 

approach reveals three primary patterns of distribution.  Firstly, the distinct clusters in LHD and 

Dementia show that the LHD group forms a distinct cluster significantly separated from the HCx. 

This separation aligns with the severe deficits in syntax and phonology (e.g., reduced complex 

syllable structures and functional words) identified in our statistical analysis. Similarly, the 

Dementia group separates from HCs, driven by their specific lexico-semantic impairments.  

In contrast, the TBI, MCI, and RHD groups show substantial overlap with each other and the HC 

group. This visual overlap suggests that while these conditions have unique linguistic markers (as 

detailed in Table 6), their overall linguistic footprint is less distinct than that of LHD. The wide 

dispersion of the LHD and TBI clouds relative to the tighter HC cluster illustrates the high variance 

in these populations—reflecting that brain injury affects language production in heterogeneous 

ways depending on severity and lesion location. This unsupervised visualization serves as a 

validation of the supervised ML results presented in subsequent sections, confirming that while 

LHD and Dementia present strong, separable signals, conditions like MCI and RHD present subtler 

linguistic deviations that require the high-dimensional discrimination provided by the 

NeuroScreen models. 
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3.1 How well do the models distinguish patients and healthy controls? 

To assess how well the models distinguish patients and HCs, we have collapsed all five patient 

subtypes into one “Patient” group, and we can compute the results shown in Table 4. The plethora 

of available data for this classification enabled the models to perform exceptional well. LR is 

essentially perfect at flagging “Patient” vs. “HC” (balanced accuracy ≈ 99%). The DNN and the 

SVM both perform close to 95% thresholds; the RF and the GB (were close to 90%). Taking the 

best ML models into account (LR, DNN, and SVM), two main findings are important. First, all 

the ML models distinguish patients and HCs; second, the linguistic measures used by the ML 

models distinguish the groups, so they can function as linguistic markers. Although these are multi-

class rather than pure HC vs. Patient, their reported AUC-ROC and AUC-PR reflect overall 

separability. 

Table 4 Model performance of the binary classification “Patient Group” vs. Healthy Controls. 

Model 
HC Recall 

(Specificity) 

Patient Recall 

(Sensitivity) 

Balanced 

Accuracy 

AUC-

ROC 

AUC-

PR 

LR 0.98 0.99 0.99 0.920 0.909 

SVM 0.93 0.98 0.96 0.970 0.972 

DNN 0.91 0.99 0.95 0.966 0.935 

GB 0.88 0.93 0.90 0.918 0.925 

RF 0.86 0.89 0.88 0.902 0.897 

 

3.2 How well does the ML model distinguish each sub-group in the data?  

Above we collapsed all patients into one group, to determine howe well the model identifies 

patients from HCs. In this section, we discuss the performance of the models as multiclass 

classifiers, to determine how well the model distinguishes each group from each individual 

subgroup.  

When examining the classifier’s performance on all categories, all models demonstrate robust 

performance with scores predominantly above 0.8 across most metrics (Figure 4 and 

Supplementary Data 4). For the detection of patients with LHD, all models excel here (F1 ≥ 0.92), 
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with SVM slightly edging out the others (0.96) thanks to near-perfect precision (0.94) and recall 

(0.99). For patients with dementia LR is most balanced (F1 = 0.88), combining good precision 

(0.83) with high recall (0.94). The DNN overcalls patients (precision 0.61) despite high recall 

(0.98), yielding a lower F1. The detection of the HC within the LR again leads (F1 = 0.98), 

misclassifying only ~2 % of controls, while the tree‐based models lag (GB 0.85, RF 0.81). For the 

MCI, SVM outperformed the other models (F1 = 0.60) by balancing 0.63 precision with 0.56 

recall. The detection of minority classes was poor, namely patients with RHD (DNN, F = 0.56 and 

low precision 0.17) comes at poor and TBI (SVM, F1 = 0.58, combining 0.71 precision with 0.50 

recall). These suggests either both the need for more data or that language markers are overlapping 

so that the models are not discriminating these groups well. This will become evident from the 

following statistical analysis of markers associated with each condition in the following sections. 

To address the problem of the minority classes, we collapsed the patient categories with MCI, 

RHD, and TBI into a category “Other Neurological Conditions”. In this way, the model has an 

exceptionally good performance, allowing the detection of patients with Dementia, LHD, and HCs 

and all the minority classes together. In this case, the model-specific performance across all 

categories. SVM demonstrates consistent performance with balanced precision and recall across 

LHD (precision: 0.94, recall: 0.99), Dementia (precision: 0.89, recall: 0.83), HC (precision: 0.94, 

recall: 0.93), and Other neurological conditions (precision: 0.94, recall: 0.72). In contrast, DNN 

exhibits perfect precision for LHD (1.00) but shows high recall sensitivity for Dementia (0.98) and 

Other Neurological conditions (0.93) at the cost of reduced precision (0.61 and 0.59, respectively). 

Support values indicate the sample sizes for each category: LHD (n=1173), HC (n=573), Other 

(n=211), and Dementia (n=47), with Dementia representing the smallest patient subgroup. 
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Figure 3 Two-stage hierarchical classification system for distinguishing neurological 

patients from healthy controls and subsequent patient subgroup classification. The flowchart 

illustrates a binary decision tree where test samples are first classified as either patient or healthy 

control (HC), followed by multi-class classification of patient samples into specific neurological 

conditions. The first stage achieves high performance with F1 scores of 96% for patient detection. 

Patients are subsequently classified into Left Hemisphere Damage (LHD, F1 = 96%), Dementia 

(F1 = 86%), or Other Neurological Conditions including Mild Cognitive Impairment (MCI), 

Traumatic Brain Injury (TBI), and Right Hemisphere Damage (RHD) (F1 = 82%). 

3.3 Which linguistic measures differ most due to diagnostic groups? 

Healthy Controls (HC) served as the intercept, and the estimates for each diagnostic group (LHD, 

Dementia, MCI, RHD, TBI) represent the difference from this HC baseline. The analysis of 

various linguistic measures reveals that the diagnosis has a statistically significant and often 

substantial impact across a wide array of speech and language characteristics provides the top 

features with the largest explanatory power related to neurological condition. The complete results 

are shown in Appendix 2.  
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The strength of this impact, however, varies considerably among measures, as indicated by Partial 

Eta Squared (Partial η²) values for the Diagnosis and the Marginal R-squared (R² Marginal) for the 

overall fixed effects of the models is shown in Table 5. All p-values for the reported F-statistics 

are extremely small (e.g., p < .001), indicating high statistical significance for the effect of 

Diagnosis on these measures. Note that from the presentation below we have removed measures 

with extremely high Partial η² values but very low denominator degrees of freedom, suggesting 

their large effect sizes in this sample should be interpreted with caution due to potential model 

instability or low power for the inferential test despite the large point estimate of effect, also 

removed were measures with non-significant effects of diagnosis. 

Table 5 Measures ranked by effect size, highlighting Large and Robust Effect Sizes (Partial η² > 

0.15). The table presents the top 29 linguistic features ranked by partial eta-squared values, 

representing the proportion of variance in each measure explained by diagnostic group 

membership. Features are categorized into five linguistic domains: Morphology (word structure 

and grammatical forms), Lexicon (vocabulary and word usage), Phonology (sound patterns and 

syllable structure), and Syntax (grammatical relationships and phrase structure). F-statistics, 

degrees of freedom (Num DF = numerator, Den DF = denominator), p-values, partial η², and 

marginal R² values are reported for each measure. Morphological features dominate the top 

rankings, with Indefinite Count showing the largest effect size (partial η² = 0.29, F = 87.39, p < 

0.001), followed by Cardinal Number Count (partial η² = 0.26, F = 90.88, p < 0.001). Lexical 

diversity measures (Types, Content Words Unique) and phonological complexity features (CVCC, 

syllable patterns) also demonstrate substantial discriminative power. All reported features 

achieved statistical significance (p < 0.001) with effect sizes meeting the threshold for practical 

significance in neurological assessment. 

 
 Measure  Categor

y 

F  Num 

DF  
 Den DF  

p 

value 

Partial η2 R2 

Marginal 

1 Indefinite Count  Morpho

logy 

 87.39   2.00   431.02  1.38E-

32 

 0.29   0.26  

2  Cardinal 

Number Count  

Morpho

logy 

 90.88   2.00   526.94  1.24E-

34 

 0.26   0.24  
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3  Types  Lexicon  62.63   2.00   598.34  2.02E-

25 

 0.17   0.19  

4 CVCC  Phonolo

gy 

 63.29   2.00   630.04  8.96E-

26 

 0.17   0.20  

5  Number Plural 

Count  

Morpho

logy 

 56.81   2.00   568.22  3.22E-

23 

 0.17   0.19  

6 Content Words 

Unique  

Lexicon  57.43   2.00   577.53  1.79E-

23 

 0.17   0.18  

7 Attribute Count  Syntax  67.64   2.00   683.24  1.57E-

27 

 0.17   0.24  

8 2 syllables word  Phonolo

gy 

 57.92   2.00   594.29  1.05E-

23 

 0.16   0.19  

9 Appositional 

modifier Count  

Syntax  41.96   2.00   431.04  2.24E-

17 

 0.16   0.21  

10 Degree Positive 

Count  

Morpho

logy 

 48.38   2.00   499.73  6.19E-

20 

 0.16   0.17  

11 Adjective Count  Morpho

logy 

 57.71   2.00   600.00  1.19E-

23 

 0.16   0.19  

12 Adjective 

Phrases  

Syntax  57.47   2.00   597.62  1.48E-

23 

 0.16   0.19  

13 Adjectival 

modifier Count  

Syntax  56.27   2.00   586.36  4.41E-

23 

 0.16   0.19  

14 Numeral Count  Morpho

logy 

 88.21   2.00   941.26  7.68E-

36 

 0.16   0.24  

15 Noun Count  Morpho

logy 

 52.31   2.00   570.44  1.39E-

21 

 0.15   0.17  

16 Expletive Count  Morpho

logy 

 16.51   2.00   180.42  2.61E-

07 

 0.15   0.11  

17 Syllables  Phonolo

gy 

 53.61   2.00   591.15  4.03E-

22 

 0.15   0.18  

18 CVC  Phonolo

gy 

 53.58   2.00   593.36  4.07E-

22 

 0.15   0.17  

19 Content Words 

Total  

Lexicon  51.06   2.00   576.36  3.82E-

21 

 0.15   0.18  
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20 Total Characters 

in Text Letters 

Only  

Lexicon  51.64   2.00   585.38  2.22E-

21 

 0.15   0.17  

21 Corrected TTR 

CTTR  

Lexicon  82.39   2.00   937.05  1.09E-

33 

 0.15   0.20  

22  Prepositional 

modifier Count  

Syntax  51.04   2.00   581.51  3.78E-

21 

 0.15   0.18  

23  Prepositional 

Phrases  

Syntax  51.79   2.00   590.31  1.88E-

21 

 0.15   0.18  

24  Unclassified 

dependent 

Count  

Syntax  10.19   2.00   117.38  8.29E-

05 

 0.15   0.05  

25  Adposition 

Count  

Morpho

logy 

 51.23   2.00   593.33  3.00E-

21 

 0.15   0.18  

26  CV  Phonolo

gy 

 59.48   2.00   693.62  1.44E-

24 

 0.15   0.18  

27  Verb Phrases  Syntax  50.38   2.00   590.91  6.28E-

21 

 0.15   0.17  

28  Direct object 

Count  

Syntax  46.34   2.00   543.58  2.62E-

19 

 0.15   0.17  

29  Words Tokens  Lexicon  49.53   2.00   582.53  1.36E-

20 

 0.15   0.17  

 

Diagnosis demonstrates a widespread influence on a multitude of linguistic measures. The 

strongest differentiating features (those with large Partial η² values and robust model fits) are 

concentrated in areas of semantic content (especially numerical and definiteness marking), overall 

lexical production and diversity, counts of various morphological categories (nouns, adjectives, 

plurals), and basic phonological/syllable structure counts. Additionally, measures of syntactic 

complexity and certain readability characteristics also show substantial impact. 

These findings highlight that the neurological conditions under study manifest with distinct 

and quantifiable linguistic profiles. The identified measures with the largest effect sizes are prime 

candidates for inclusion in diagnostic models or for tracking linguistic changes associated with 

ACCEPTED MANUSCRIPTARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

these conditions. The high R² Marginal values for many of these top-ranking measures further 

underscore the explanatory power of Diagnosis in accounting for the observed linguistic variations. 

A substantial number of linguistic measures demonstrated large and robust effects of Diagnosis, 

indicating these are strong candidates for differentiating between the groups. These involve all the 

aspects of grammar like phonology, morphology, syntax and semantics, lexical usage, and 

readability that is text difficulty. 

Measures with Medium Effects (Partial η² ~0.06 - 0.13) 

Beyond the large effects, a broad range of other measures showed medium-sized effects of 

Diagnosis. These span across all linguistic domains, which we included like the total Number of 

Function Words (Partial η² = 0.14), phonology, such as the different syllable types, like VC and 

CCVCC (Partial η² = 0.14), morphology including the Number of Verbs (Partial η² = 0.14), syntax 

like the number of Complex thematic units (T units), the number of matrix sentences (Root), 

dependent clauses, and the object of preposition. As discussed below although the readability 

measures did not make it to the list shown in Table 5, several readability measures remain 

important as they achieve a Partial η² between 0.14 and 0.13; these include the Estimated Reading 

Time (sec), Smog Index, Total Classical Yngve Load, Difficult Words; the latter is a measure 

based on a standardized dictionary [61]. 

3.4 Which are the distinctive features for each neurological condition compared to HC? 

In this section, we summarize the high-level “linguistic signatures” that distinguish each group. 

Table 6 below synthesizes the results for each neurological condition, by highlighting the top ten 

(10) linguistic features that most strongly distinguish it from Healthy Controls by using the 

magnitude of the z scores from the post-hoc analysis (emmeans). The complete list of distinctive 

linguistic features is provided in the Supplementary Table 5. 

Table 6 Top 10 distinctive linguistic features for each neurological condition compared to healthy 

controls. Features are ranked by absolute t-ratio values from post-hoc pairwise comparisons, 

identifying the most diagnostically discriminative linguistic markers for each condition. Upward 

arrows (↑) indicate significantly increased measures in patient groups relative to healthy controls; 

downward arrows (↓) indicate significantly decreased measures.  
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Rank LHD Dementia TBI MCI RHD 

1 ↑ Verb Type: 

Modal Ratio 

↓ CCVCCC ↓ Pron Type: 

Relative Count 

↓ Clausal 

modifier of noun 

Count 

↓ Degree: 

Comparative 

Count 

2 ↓ Complement 

of preposition 

Count 

↑ Dative Count ↓ CCVCCC ↓ 5 syllables 

word 

↓ Complement 

of preposition 

Count 

3 ↓ 5 syllables 

word 

↓ Degree 

Comparative 

Count 

↓ 5 syllables 

word 

↓ Case marker 

Count 

↓ CCVCCC 

4 ↓ Case marker 

Count 

↑ Verb Type: 

Mod Ratio 

↓ Degree 

Comparative 

Count 

↓ CCVCCC ↓ 5 syllables 

word 

5 ↑ CCCV ↓ Complement 

of preposition 

Count 

↓ Dative Count ↓ Dative Count ↓ Pron Type: 

Relative Count 

6 ↓ Pron Type: 

Relative Count 

↓ 5 syllables 

word 

↓ Complement 

of preposition 

Count 

↓ Complement 

of preposition 

Count 

↓ Degree 

Comparative 

Ratio 

7 ↓ CCVCCC ↑ Clausal 

modifier of noun 

Count 

↓ Clausal 

modifier of noun 

Count 

↓ Pron Type: 

Relative Count 

↓ Case marker 

Count 

8 ↓ Clausal 

modifier of noun 

Count 

↓ Pron Type: 

Relative Count 

↓ Case marker 

Count 

↓ Degree 

Comparative 

Count 

↓ Clausal 

modifier of noun 

Count 

9 ↑ Degree 

Comparative 

Ratio 

↑ CCCV ↑ Verb Type: 

Modal Ratio 

↑ Verb Type: 

Mod Ratio 

↑ CCCV 

10 ↓ Dative Count ↑ Case marker 

Count 

↓ Degree 

Comparative 

Ratio 

↓ CCCV ↑ Dative Count 

Note: Features are ranked based on the absolute t-ratio from post-hoc pairwise comparisons against 

the Healthy Control group. (↓) indicates a significant decrease and (↑) indicates a significant 
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increase in the measure for the patient group compared to controls. LHD = Left Hemisphere 

Damage; TBI = Traumatic Brain Injury; MCI = Mild Cognitive Impairment. Linguistic features 

span multiple domains including morphology (verb types, degree markers, case markers, dative 

constructions), phonology (syllable patterns: CCVCCC = consonant-consonant-vowel-consonant-

consonant-consonant, CCCV = consonant-consonant-consonant-vowel, 5-syllable words), syntax 

(clausal modifiers, complement structures), and lexicon (pronoun types).  

Several key patterns emerge from the statistical analysis. Individuals with LHD are 

characterized by a widespread disruption across multiple linguistic domains. While the most 

discriminating feature is an increased ratio of verb-modifying word types, the majority of the top-

10 features are decreases (↓), reflecting a reduction in phonological complexity (e.g., 5 syllables 

word, CCVCCC), syntactic structures (Complement of preposition ), and the use of specific word 

types (Pronoun Type: Relative Pronouns). Individuals with Dementia show a pattern of 

impairment that is also broad but appears centered on the use of specific content and function 

words (Verb Type: Modal) and a decrease relative to HCs on measures of phonological complexity 

(5 syllables word, CCVCCC). Individuals with TBI present a mixed profile of mostly decreases in 

its top features, suggesting a unique pattern of linguistic disruption with a notable increases in of 

ratio of Modal Verbs. Individuals with MCI is uniquely distinguished by a strong decrease in 

measures that associated with increased production complexity like five (5) syllable-words, 

syllables with complex articulatory patterns (CCVCCC, CCCV) and complex syntactic patterns 

such as the number of Clausal Modifier of Nouns and Complement of Prepositions. This pattern 

of decreased production in several of the top-ranking features supports the hypothesis that 

individuals with MCI more general disruptions in language and domains like memory that can 

explain their use of simpler patterns. Individuals with RHD shows the most subtle linguistic 

profile. Its top discriminators are related to the diminished production of the number Comparative 

Adjectives, Complements of Prepositions and complex syllable patterns (CCVCCC) and 

phonological structures (5 syllable-words). 

A comprehensive list of all statistical comparisons for every measure, is showing in 

Supplementary Data 6 and the primary linguistic signatures based on measures that resulted in 

statistical significance are reported in Supplementary Table 9. 
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4 Discussion 

Language is an extraordinarily complex a distributed network, interfacing with human faculties 

and cognitive processes such as memory, attention, executive functions, and emotions [96-98]. 

Damage in brain areas responsible for language or areas affecting these cognitive systems is 

intrinsically reflected in an individual's language [99]. An impaired cognitive function is often the 

earliest indication of neurological conditions, like mild cognitive impairment (MCI) and dementia, 

or can designate another acquired damage like left (LHD) and right hemisphere damage (RHD), 

and traumatic brain injury (TBI) and can manifest as a subtle or severe change in linguistic 

expression, lexical choice, syntactic structure, acoustic properties, and discourse coherence. This 

makes speech and language a uniquely rich, non-invasive, and continuously available source of 

medical information, offering a veritable window into an individual's brain health and cognitive 

status. The potential to harness this data for diagnostic and prognostic purposes is immense. 

Traditional approaches are time-consuming, require controlled clinical settings, and can be 

stressful to the patients. These drawbacks of traditional methods can be addressed by the recent 

advancements in Machine Learning (ML) and Natural Language Processing (NLP), demonstrating 

remarkable capabilities in pattern recognition, data analysis, and predictive modeling. In our 

previous research, we have already shown that ML techniques can enhance the diagnostic accuracy 

for neurodegenerative disorders by identifying complex patterns in clinical and neuroimaging data 

that often elude conventional analytical approaches [21, 43-45]. Additionally, this underscores the 

methodological capacity of AI algorithms to manage and interpret intricate medical data, a 

capability directly transferable to the complexities of speech. In this study, we employed NLP, 

ML, and robust statistical approach to extract relevant linguistic information and detect signatures 

for text productions of patients in a variety of discoursal tasks. That resulted into an analysis of 

292 linguistic measures from distinct language domains.  

4.1 Language Discriminates Diverse Neurological Conditions: NeuroScreen 

Having a high-performing, end-to-end model is critical for its real-world usefulness in a clinical 

setting. The excellent performance metrics demonstrate that this system is not just a theoretical 

exercise but a potentially powerful diagnostic tool. The model's ability to distinguish between 

patients and healthy controls with up to 99% accuracy is its most crucial feature. This near-perfect 

performance means the system can function as a reliable screening tool for early detection and 
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characterization of neurological conditions. The model excels at identifying common and distinct 

conditions like LHD with a 96% F1 score and Dementia with an 88% F1 score. This provides a 

strong basis as a useful tool in the clinic to advice the diagnostic process. Since the model had 

difficulty with less linguistically distinct conditions (like MCI, RHD, and TBI), we had grouped 

them into “Other Neurological Conditions” category. This approach provides a more realistic 

clinical pipeline, namely first an early diagnosis is being performed to distinguish this group from 

HCs, then we distinguish patients with dementia and patients that require further specialized 

neurological examination. In this way the NeuroScreen flags these patients for more specialized 

expert review at the linguistic level yet, it does not get at propositional, macrostructural, or 

pragmatic levels, required for find grained distinctions especially between TBI, RHD, and MCI 

where these conditions are known to differ more readily from HCs. Therefore, while NeuroScreen 

excels in distinguishing patients from HCs, its diagnostic precision on subtyping between patient 

groups is not overstated, being a complementary to, not a substitute for, gold-standard assessments 

(e.g., WAB-R, BDAE). 

Clinicians can trust the model to accurately flag individuals who need further evaluation, 

minimizing the chances of missing a patient with a neurological condition. It automates the initial 

assessment, saving valuable time for specialists and allowing healthcare systems to screen more 

people, more quickly. Beyond simply identifying a patient, the model's strength lies in its ability 

to differentiate between specific neurological conditions. Knowing which condition a person has 

is essential for providing the right treatment. In essence, this two-stage, end-to-end performance 

creates a complete and practical workflow. It reliably filters the general population and then 

provides a highly accurate differential diagnosis for common conditions while intelligently 

triaging more complex cases. This makes the system on of the most powerful and scalable tool for 

clinical decision support [21, 43, 45, 62-65, 67-69].  

The reasons are twofold, we rely on a large dataset and on the large number of computational 

measures that we have develop and provide within Open Brain AI [61] covering a wide range of 

language domains spanning from textual readability [58-61], Lexicon and Lexical Information  

[46], Phonology [47, 48], Morphology [9, 10, 49-52], Syntax [53-57], and Semantics. Finaly, this 

approach demonstrates the importance of these metrics to function as linguistic signatures 

indicating that symptoms associated with neurological conditions can both facilitate diagnosis and 
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function as therapeutic targets. The characteristics of these language signatures and their patterns 

are discussed next.  

4.2 Overall language characteristics 

The findings revealed condition-specific distinct patterns of linguistic impairments. The most 

significant differences were observed in individuals with LH stroke and dementia, TBI, MCI, and 

finally RHD, which showed the most preserved language.  

Concerning the lexical markers and the vocabulary usage, we found that individuals with 

LHD and TBI showed significant reductions in the number of words produced and lexical 

diversity. Patients with dementia also exhibited reduced word production and diversity, though to 

a lesser extent while patients with MCI and RHD lexical profile was closer to that of HCs. 

Concerning the phonological measurements, such as key syllable patterns and syllable complexity, 

patients with LHD, TBI, and dementia groups produced fewer words of varying syllable lengths 

and less complex syllable structures. Patients with RHD produced similar phonological patterns to 

HCs. 

In addition to the lexicon and phonology, key morphological measures that involve both the 

distribution of part of speech (POS) production and inflectional morphology presented key 

differences among group in the distribution of these measures [100-103]. Patients with LHD and 

TBI demonstrated widespread reductions in the use of most word classes, including determiners, 

adjectives, nouns, and verbs. Patients with dementia also showed a decline in the use of several 

word classes whereas patients with RHD showed relatively minor differences compared to HCs.  

In line with earlier findings [104-106], syntactic complexity was significantly reduced in 

individuals with LHD and TBI, who produced shorter and structurally simpler sentences. Patients 

with dementia also showed notable reductions in syntactic complexity. The MCI group presented 

mostly reductions of the core syntactic measures whereas patients with RHD provided fewer 

distinct patterns compared to HCs.  

The statistical models about the readability of the text, a novel measure that we employed in 

this study, reveal several important insights about the language production in the patient groups. 

Individuals with LHD, TBI, and dementia was generally rated as less complex and easier to read 
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by various readability indices. Patients with LHD, TBI, and dementia groups used fewer named 

entities like cardinal numbers and dates.  

4.3 Overall Patterns Across Diagnostic Groups 

In many clinical contexts, gross differential diagnosis (e.g., stroke vs. neurodegenerative dementia) 

is often straightforward based on history, imaging, and basic cognitive screening, yet this study 

tested whether language can serve as a scalable signal to augment established workflows — not 

only for early screening before individuals reach a specialist, but also for tracking disease 

progression, monitoring treatment response, and stratifying risk in already-diagnosed populations. 

This broader potential is critical because many people with cognitive change are never flagged by 

family, resist specialist visits, face economic or logistical barriers, or live far from tertiary care. 

Language is produced ubiquitously in daily life and can be captured passively and non-invasively, 

enabling remote and longitudinal monitoring. With advances in transcription and automatic speech 

recognition (ASR) embedded in common digital platforms, language-based analytics could help 

identify individuals with subjective cognitive complaints who are at elevated risk for mild 

cognitive impairment or dementia, but also characterize evolving disease trajectories, detect 

meaningful within-person change, and support clinical decision-making over time. This study 

demonstrates that language can augment detection, monitoring, and management across the 

continuum of disease — extending cognitive assessment into primary care, telehealth, and other 

settings beyond specialized neurology clinics. Therefore, these signatures not only aid differential 

diagnosis but also stratify patients for targeted intervention, aligning with precision medicine 

approaches in neurorehabilitation. Table 8 associates these linguistic signatures to therapeutic 

targets, showing their clinical pertinence. 
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Table 7. Linguistic profiles informing potential, personalized therapeutic targets per group. LHD = Left hemisphere damage; TBI = 

Traumatic Brain Injury; MCI = Mild cognitive impairment; RHD = Right hemisphere disorder. 

Group Lexicon & 

Vocabulary 

Phonology & 

Morphology 

Syntax & 

Structure 

Readability & 

Complexity 

Notable Patterns / 

Compensations 

LHD Fewer total words, 

lower lexical diversity 

Reduced syllable 

complexity; fewer 

nouns, verbs, and 

modifiers 

Shorter, simpler 

sentences 

Language is 

markedly easier 

to read 

Impoverished semantic, 

lexical, phonological, 

syntactic output 

TBI Fewer total and content 

words but relatively 

higher diversity within 

reduced output 

Simpler phonology; 

mixed morphological 

use with some 

compensatory 

strategies 

Shorter, less 

complex sentences 

Language 

objectively 

simplified 

Varied vocabulary 

despite reduced output; 

simpler language in 

terms of readability; 

simpler syntax 

Dementia 

(amnestic) 

Slight reductions in 

word count and 

diversity; preference for 

shorter words 

Phonology largely 

intact; mild 

reductions in some 

word classes 

Mild reduction in 

complex structures 

(e.g., dependent 

clauses) 

Moderately 

simplified 

language 

High individual 

variability; some 

objective semantic, 

lexical, morphological, 

and syntactic 

simplification 
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MCI 

(mostly 

amnestic) 

Fewer total and content 

words but relatively 

higher diversity within 

reduced output 

Mild phonological 

impairments: 

morphology largely 

preserved 

Shorter sentences; 

reduced use of 

complex syntax 

(e.g., prepositional 

phrases) 

Language 

simpler and 

more accessible 

than controls 

Varied vocabulary 

despite reduced output; 

simpler language in 

terms of readability; 

simpler syntax 

RHD Similar to healthy 

controls overall, small 

decrease in comparative 

adjectives, second-

person pronouns and 

cardinal numbers 

Phonology and 

morphology largely 

intact 

Syntax comparable 

to controls 

No significant 

changes 

Subtle decreases in 

specific vocabulary (e.g., 

comparative adjectives) 
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Expectedly, individuals with LHD consistently demonstrated the most extensive and 

pronounced differences from HCs across nearly all linguistic categories as detailed in the results 

section. The majority of these were characterized by significantly lower scores (negative 

estimates), particularly in measures of lexical production and diversity, morphological complexity, 

phonological output, and syntactic complexity. These findings corroborate our existing 

understanding about the grammatical difficulties [107], reduced lexical diversity [46], and 

impaired phonological output [108], but at the same time they offer a broader understanding, given 

the extensive coverage our measures provide of the language domain and the systematic 

integration of features spanning the entire linguistic hierarchy—from phonological structures to 

discourse-level semantics. Unlike traditional clinical assessments that typically focus on isolated 

linguistic domains (e.g., naming tests for semantics, sentence repetition for syntax), whereas this 

approach captures the complex interplay between linguistic levels that characterizes real-world 

communication. 

Importantly, the results highlight previously underappreciated compensatory strategies, such 

as increased reliance on proper nouns, socially salient references (e.g., persons, organizations), and 

syntactic simplification through appositional and compound modifiers. This suggests that 

individuals with LHD are not merely producing less language but may be restructuring their output 

(whether consciously or unconsciously) to maximize communicative success within their impaired 

linguistic system. Furthermore, the readability metrics provide novel, ecologically relevant 

evidence that the language produced by individuals with LHD is objectively simpler and more 

accessible, supporting the interpretation that both deficits and adaptations co-occur in spontaneous 

language use. 

Individuals with TBI also exhibited a broad range of significant differences from HCs, which 

lies upon with prior evidence that has also found reductions in linguistic output (e.g., total words, 

content words, unique words), complexity (e.g., Corrected TTR), and various syntactic counts 

[109-111]. In several measures, the magnitude of these differences was comparable to or, in some 

specific instances, even exceeded those seen in dementia. At the same time, the TBI group 

displayed increased lexical diversity and preserved, or even compensatory, use of certain 

morphological and syntactic features, indicating strategic adaptations rather than uniform 

linguistic degradation. The semantic profile of TBI also revealed selective vulnerabilities, 
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particularly in numerical and personal references, suggesting domain-specific disruptions in 

meaning construction rather than global semantic impairment. Importantly, the readability metrics 

demonstrate that language produced by individuals with TBI is objectively simplified, mirroring 

patterns seen in aphasia and underscoring the functional consequences of these linguistic changes 

for everyday communication. Together, these results contribute novel, objective evidence that TBI 

disrupts language in ways that are both overlapping with and distinct from classical aphasia 

profiles. 

The global cognitive impairment is a hallmark of dementia, this study emphasizes this by 

demonstrating that spontaneous language production in this group is relatively preserved across 

many core linguistic domains, particularly in phonology, syntax, and overall lexical productivity 

(this is the case in amnestic dementia, but not necessarily in primary progressive aphasia, which is 

not a syndrome studied here). However, subtle but meaningful disruptions emerged in specific 

areas which echo prior findings, notably reduced lexical diversity [112], simplified word choice 

(e.g., shorter average word length), and decreased use of complex syntactic and semantic structures 

[113-115]. The readability findings further underscore this pattern, showing a moderate shift 

toward simpler, more accessible language that likely reflects both cognitive decline and 

simplification strategies. While the pattern was generally one of decreased scores compared to 

HCs, the effects were often less pronounced and less uniformly distributed across measures 

compared to the LHD group, reflecting high variation in this group [113-115]. 

Unlike LHD aphasia or TBI, MCI was characterized by a subtler but systematic pattern of 

linguistic simplification, which has been shown previously, particularly evident in reduced lexical 

productivity, decreased syntactic complexity, and phonological impairments [116-118]. The 

findings reveal that even at this early disease stage, individuals with MCI produced fewer total 

words, content words, and unique word types, accompanied by reductions in sentence length and 

the use of complex syntactic structures such as dependent clauses and prepositional phrases. 

Interestingly, lexical diversity (standard TTR) was increased compared to HCs, reflecting a 

compensatory pattern where speakers produce fewer words overall but rely on a more varied 

vocabulary within their reduced output. Readability metrics further indicated that MCI speakers 

produce objectively simpler, more accessible language than HCs, likely reflecting both cognitive 

constraints and emerging compensatory strategies.  
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These results provide new, quantitative evidence reinforcing and extending long-standing 

but often inconsistently documented observations that language production following RHD is 

relatively preserved in terms of core linguistic structure, but may still exhibit subtle disruptions, 

particularly in semantic, pragmatic, and higher-order discourse features. The present analyses 

reveal that individuals with RHD performed comparably to healthy controls across most lexical, 

phonological, morphological, syntactic, and readability measures, supporting prior research 

showing that RHD does not typically produce the overt language breakdown observed in left 

hemisphere stroke or TBI. However, the detection of reduced use of specific structures, such as 

comparative adjectives, complex syllable patterns, and second-person pronouns, along with a 

selective reduction in certain semantic categories (e.g., cardinal numbers), highlights that RHD 

may subtly affect aspects of language tied to complexity, perspective-taking, or relational meaning. 

These findings align with previous evidence that while RHD does not result in classical aphasia, 

it can impact elements of discourse organization, inferencing, and pragmatic language, often in 

ways that evade detection by standard language batteries.  

A key insight from these findings is that while language simplification emerges as a common 

consequence of neurological damage, the specific linguistic signature varies systematically across 

disorders, reflecting both the nature of the underlying neural disruption and the ways in which 

language production shifts in response to these deficits. Across conditions such as LHD, TBI, MCI, 

and dementia, individuals consistently produced simpler language characterized by reduced lexical 

output, diminished syntactic complexity, and lower readability. Yet, the precise linguistic domains 

affected, and the nature of these changes differed. For example, individuals with MCI and TBI 

showed increased lexical diversity within reduced output, while LHD and dementia speakers 

exhibited greater reliance on proper nouns and socially salient references. These patterns suggest 

that language production does not decline uniformly but instead reflects a combination of 

impairment and adaptive linguistic shifts, whether conscious or automatic. Even in the context of 

cognitive or neural decline, measurable alterations in language use indicate preserved linguistic 

capacity and potential compensatory processes. Capturing both these deficits and adaptations 

provides a more complete and clinically informative picture of how language reflects the complex 

interaction between neural damage, cognitive constraints, and preserved linguistic mechanisms 

across neurological conditions. 
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4.4 Limitations and Future Research 

Although this study marks a critical starting point for comparing more than one and 

especially often conditions that are dissimilar in their underlying pathology making this 

comparison possible there are several that are inherent to this approach. First, for many 

neurological conditions, especially rare disorders or the initial stages of more common ones like 

MCI, large-scale speech datasets are lacking, especially for languages other than English, so shared 

corpora like DementiaBank and TalkBank are crucial.  

A second issue is the need for more fine-grained distinctions between the populations. 

Although the categories we have presented here like LHD, or dementia correspond to a broader 

diagnosis, there is an important variation within the population because of their condition, the 

potential influence of medication and other comorbidities on the linguistic profiles. So, there is a 

need for a greater understanding through subtyping the populations into subgroups, like individuals 

with anomic aphasia and conduction aphasia and individuals with different severity levels as 

severity is a critical factor both for interpreting the results and for understanding the limits of 

generalizability. In the present study, harmonizing severity indicators across groups was not 

feasible because the source datasets used different clinical scales (e.g., MMSE for dementia, 

NIHSS for stroke, and no directly comparable metric for TBI or MCI). Given this heterogeneity, 

and our goal of evaluating whether language features alone can distinguish diagnostic categories, 

we chose not to include severity as an explicit covariate. Instead, we partially accounted for 

patient-specific variability by including subject-level random intercepts in the statistical models 

and by grouping observations by individual in the ML analyses. This approach allowed the models 

to adjust for within-subject dependencies without relying on non-uniform severity scores. As 

feature sets grow richer (e.g., incorporating acoustic or pragmatic AI-derived measures), we 

anticipate even finer-grained resolution of behaviorally meaningful subgroups exceeding 

traditional diagnostic categories 

Understanding disease progression and the evolution of linguistic signatures over time 

necessitates longitudinal data collection, where individuals are assessed repeatedly. Such data, as 

used in the MCI-to-AD progression study, is invaluable but expensive and time-consuming to 

acquire. The noted lack of longitudinal AD speech data, particularly at the MCI stage, and 

DementiaBank's aim for longitudinal tracking highlight this ongoing need.  
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A key limitation of the current study is that we collapsed language data across multiple 

discourse tasks, despite well-established evidence that different tasks elicit distinct linguistic 

profiles [119, 120]. This approach maximizes statistical power and facilitates broad comparisons 

across diagnostic groups, but it an obscure task-specific linguistic patterns that are clinically and 

theoretically meaningful. We have planned for future work that will systematically examine how 

task type interacts with diagnosis to influence linguistic profiles. 

Future work must advance on two fronts. First, we need to develop composite metrics that 

integrate multiple linguistic features into coherent, interpretable scores and validate these scores 

as meaningful indicators of underlying cognitive and communicative processes. Such aggregate 

measures could improve the signal-to-noise ratio, enhance generalizability across tasks, and align 

more directly with clinical constructs such as agrammatism or anomia. Second, linguistic analyses 

should be enriched with acoustic data. Even subtle acoustic cues can convey a surprising amount 

of information. For example, previous research has shown that the extension of information 

provided be even a single sound is incredible. As we have learnt from our research, the way 

speakers pronounce their vowels [121], consonants [89], voice quality and prosody [62] reveal 

aspects of speakers’ identity, like their dialects, sociolects and pathology. Our future research will 

intergrade these different concepts together and provide multimodal systems for understanding 

language and cognition. Future research should also prioritize the continued expansion of this 

dataset, enhancing its diversity and generalizability. Integrating multimodal signatures, such as 

neuroimaging data, alongside these linguistic measures will be the next frontier, promising even 

greater precision and clinical utility. Ultimately, this open library provides the essential 

groundwork for a future where language analysis is a core component of neurological care. 

4.5 Conclusion 

This study represents a critical step toward transforming language analysis from a research tool 

into a scalable, clinically actionable digital biomarker for neurological disorders. By applying 

automated, computational linguistic analysis to one of the largest and most diverse databases of 

spoken language, we demonstrate that distinct, quantifiable linguistic profiles can differentiate 

between individuals with left hemisphere damage, right hemisphere damage, dementia, MCI, TBI, 

and healthy controls. These findings not only advance scientific understanding of language 
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impairments but also establish a practical foundation for integrating language-based digital 

biomarkers into routine neurological assessment. 

Importantly, the architecture of Open Brain AI provides a clear pathway for translation 

beyond the research setting. With further development, this platform could be scaled into an 

accessible, secure application deployable by researchers, speech-language pathologists, and 

clinicians worldwide. Such a tool could enable real-time, automated language analysis in clinical 

environments, telemedicine, or even remote monitoring contexts—delivering objective, 

reproducible language metrics that augment clinical decision-making. The naturalistic, low-burden 

nature of speech samples makes this approach uniquely suited to scalable, patient-friendly 

assessment. 

Looking ahead, the integration of Open Brain AI into clinical workflows, combined with 

regulatory-compliant development and continued dataset expansion, holds the potential to redefine 

how language is used to detect, monitor, and personalize care for individuals with neurological 

conditions. Thus, future validation of this work will include direct comparisons with traditional 

metrics (e.g., naming accuracy, fluency scores) to establish convergent validity, as well as future 

directions noted in Section 4.4. 

By moving beyond proof-of-concept and toward scalable, validated tools, this work 

contributes to the broader goal of leveraging AI and language as accessible, ecologically valid 

biomarkers in digital medicine. 
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