STORY GRAMMAR RECOVERY IN THE FIRST TWO YEARS FOLLOWING SEVERE TRAUMATIC BRAIN INJURY

Kathryn J. Greenslade, Ph.D., CCC-SLP Elise Elbourn, Ph.D. Joanna Gyory, Ph.D. Serena Jaskolka, M.S., CCC-SLP Amy E. Ramage, Ph.D., CCC-SLP

Contact author: kathryn.greenslade@unh.edu

STORYTELLING / NARRATIVE DISCOURSE

- Storytelling involves generating or retelling a series of logically sequenced, causally connected events
- Narrative discourse is commonly impacted following traumatic brain injury (TBI)^{1,2,3}

"Tell us again, Grandpa, about the time you almost had Tarzan for lunch."

¹ Coelho, 2002; ² Marini et al., 2017; ³ Stout et al., 2000

EFFECT OF DISCOURSE CHALLENGES

Can have negative impact on social participation

Correlates with community reintegration as well as employment, relationship, and other psychosocial outcomes ^{4,5}

STORY GRAMMAR

Story grammar ⁶ is a framework used in Western narratives to organize content in a predictable, linear event sequence.

Additional Episodes

TBI & NARRATIVE MACROLINGUISTIC ANALYSIS

Prior research comparing adults with TBI or no brain injury (NBI) has shown mixed results in terms of:

- Story grammar productivity ^{7, 8, 9}
- Completeness of story grammar episodes ^{1,10}

Limited research on how story grammar changes over the first two years post-TBI

No prior research on adults has explored elaboration; only explored in child narrative analysis¹¹

⁷ Liles et al., 1989; ⁸ Mozeiko et al., 2011; ⁹ Snow et al., 1999; ¹⁰ Power et al., 2020; ¹¹Gillam et al., 2017

RESEARCH AIMS

To use a complex Cinderella retells to:

- 1. Compare productivity, completeness, and elaboration in adults with TBI and NBI
 - Hypothesis: TBI differ from NBI group early in recovery, but become nonsignificant later in recovery¹⁰
- Examine longitudinal changes in these variables over the first two years following severe TBI and factors the influence these changes
 - Hypotheses: Productivity, completeness, and elaboration will improve over the first two years post-TBI, and changes will be related to injury severity and education¹²

PARTICIPANTS

PARTICIPANTS

	Sex	Age (years)	Years of	Length of	Primary	Monolingual
	(M:F)		Education	PTA (days)	Language	
TBI	46:11	35.25	13.58	52.88	52 English	43 Monolingual
(N=57)		(±13.11)	(±2.99)	(±40.03)	5 Other	11 Other (8
		16-66	8-20	6-215		Bilingual, 3
						Multilingual)
NBI	35:22	35.61	14.43		56 English	35 Monolingual
(N=57)		(±13.03)	(±1.54)		1 Not	3 Other (3
		18-66	12-18		reported	Multilingual)
						19 Not
						reported

PARTICIPANTS

	Sex	Age (years)	Years of	Length of	Primary	Monolingual
	(M:F)		Education	PTA (days)	Language	
TBI	46:11	35.25	13.58	52.88	52 English	43 Monolingual
(N=57)		(±13.11)	(±2.99)	(±40.03)	5 Other	11 Other (8
		16-66	8-20	6-215		Bilingual, 3
						Multilingual)
NBI	35:22	35.61	14.43		56 English	35 Monolingual
(N=57)		(±13.03)	(±1.54)		1 Not	3 Other (3
		18-66	12-18		reported	Multilingual)
						19 Not
						reported

Episode Types:

Simple Complete (SC) Simple Incomplete (SI) Elaborated Complete (EC) Elaborated Incomplete (EI)

¹¹ Gillam et al., 2017; ¹³ Lê et al., 2011

EXAMPLE EPISODE

42so she got close to twelve o'clock .	IE	3	
43it was time for her to leave .	IE	3	
44and she &+b basically ran away from the [/] the prince .	A	3	
45and <left her="" shoe=""> [//] lost her shoe on the way back</left>	DC	3	
that the 46prince then found .	DC	3	Ep3: EC- MB

IE = Initiating Event

A = Attempt

DC = Direct Consequence

STORY GRAMMAR MEASURES

Total number of episodes (productivity)

Total number of story grammar elements (productivity)

Total number of elaborated complete episodes (episodic completeness/elaboration)

Number of episodic elements per episode (elaboration)

ANALYSES:

SG variables were all non-normally distributed

RQ1: Mann-Whitney U-tests: compare TBI vs. NBI at each time point

RQ2: Generalized estimating equation (GEE) models:

- Poisson distribution for Total Number of Episodes, Total Number of SG Elements, Total Number of Elaborated-Complete Episodes
- Gamma distribution with log link function (+constant of .001): Mean Number of Episodic Elements per Episode
- Covariates: age, years of education, length of PTA (days)

RESULTS: Total Number of Episodes

N II V

RESULTS: Total Number of Story Grammar Elements

RESULTS: Total Number of Elaborated-Complete Episodes

010

RESULTS: Mean Number of Episodic Elements per Episode

DISCUSSION

Productivity and elaboration differed between the TBI and NBI groups at 3, 6, and 9-months post-TBI

Only total number of story grammar elements and elaborated-complete episodes differed at 12-months

No difference remained by 24-months

DISCUSSION

Statistically significant improvements observed across all productivity & elaboration measures over the first 2-years post-TBI

Post-hoc comparisons showed improvements were first detected between:

- 3 and 6-months for total number of episodes
- 3 and 9-months for total number of story grammar elements
- 3 and 12-months for both elaboration measures

Longer PTA = risk factor for narrative recovery

Greater educational attainment = protective factor

LIMITATIONS

TBI participants from Australia were compared to NBI controls from US

Lack of longitudinal NBI data

FUTURE DIRECTIONS

- Explore relationships between narrative measures & executive functioning as well as declarative memory.
- Further examine elaboration deficits, including use of mental state terms
- Develop analyses for more ecologically valid narrative tasks (personal recounts, anecdotes)
- Improve efficiency of training and transcription to enhance clinical feasibility

CONCLUSIONS

Narrative productivity & elaboration are key story grammar variables that 1) differentiate narrative skills in TBI vs. NBI, & 2) document narrative improvements over the first two years post-TBI

Story grammar analysis yields promising metrics for capturing discourse-level cognitive-communication difficulties post-TBI

REFERENCES

- 1) Coelho, C. A. (2002). Story narratives of adults with closed head injury and non-brain-injured adults: Influence of socioeconomic status, elicitation task, and executive functioning. *Journal of Speech, Language, and Hearing Research, 45*(6), 1232-1248.
- 2) Marini, A., Zettin, M., Bencich, E., Bosco, F. M., & Galetto, V. (2017). Severity effects on discourse production after TBI. *Journal of Neurolinguistics*, 44, 91-106. <u>https://doi.org/10.1016/j.jneuroling.2017.03.005</u>
- 3) Stout, C., Yorkston, K., & Pimentel, J. (2000). Discourse production following mild, moderate, and severe traumatic brain injury: A comparison of two tasks. *Journal of Medical Speech-Language Pathology*, 8(1), 15-25.
- Galski, T., Tompkins, C., & Johnston, M. V. (1998). Competence in discourse as a measure of social integration and quality of life in persons with traumatic brain injury. *Brain injury*, 12(9), 769-782. <u>https://doi.org/10.1080/026990598122160</u>
- 5) Elbourn, E., Kenny, B., Power, E., & Togher, L. (2019). Psychosocial outcomes of severe traumatic brain injury in relation to discourse recovery: a longitudinal study up to 1 year post-injury. American Journal of Speech-Language Pathology, 28(4), 1463-1478. <u>https://doi.org/10.1044/2019 AJSLP-18-0204</u>
- 6) Stein, N. L., & Glenn, C. G. (1979). An analysis of story comprehension in elementary school children. In R. O. Freedle (Ed.), *New directions in discourse processing* (pp. 53-120). Ablex.
- 7) Liles, B. Z., Coelho, C. A., Duffy, R. J., & Zalagens, M. R. (1989). Effects of elicitation procedures on the narratives of normal and closed head-injured adults. *Journal of Speech and Hearing Disorders*, 54(3), 356– 366. <u>https://doi.org/10.1044/jshd.5403.356</u>

REFERENCES CONT.

- 8) Mozeiko, J., Le, K., Coelho, C., Krueger, F., & Grafman, J. (2011). The relationship of story grammar and executive function following TBI. Aphasiology, 25(6-7), 826-835. <u>https://doi.org/10.1080/02687038.2010.543983</u>
- 9) Snow, P. C., Douglas, J. M., & Ponsfordoe, J. L. (1999). Narrative discourse following severe traumatic brain injury: A longitudinal follow-up. Aphasiology, 13(7), 529–551. <u>https://doi.org/10.1080/026870399401993</u>
- Power, E., Weir, S., Richardson, J., Fromm, D., Forbes, M., MacWhinney, B., & Togher, L. (2020). Patterns of narrative discourse in early recovery following severe Traumatic Brain Injury. *Brain Injury*, 34(1), 98–109. <u>https://doi.org/10.1080/02699052.2019.1682192</u>
- Gillam, S. L., Gilliam, R. B., Fargo, J. D., Olszewski, A., & Segura, H. (2017). Monitoring Indicators of Scholarly Language: A progress-monitoring instrument for measuring narrative discourse skills. Communication Disorders Quarterly, 38(2), 96-106. <u>https://doi.org/10.1177/1525740116651442</u>
- 12) Elbourn, E., Kenny, B., Power, E., Honan, C., McDonald, S., Tate, R., Holland, A., MacWhinney, B., & Togher, L. (2019). Discourse recovery after severe traumatic brain injury: Exploring the first year. Brain Injury, 33(2), 143-159. <u>https://doi.org/10.1080/02699052.2018.1539246</u>
- 13) Lê, K., Coelho, C., Mozeiko, J., & Grafman, J. (2011). Measuring goodness of story narratives. Journal of Speech, Language, and Hearing Research, 54(1), 118–126.